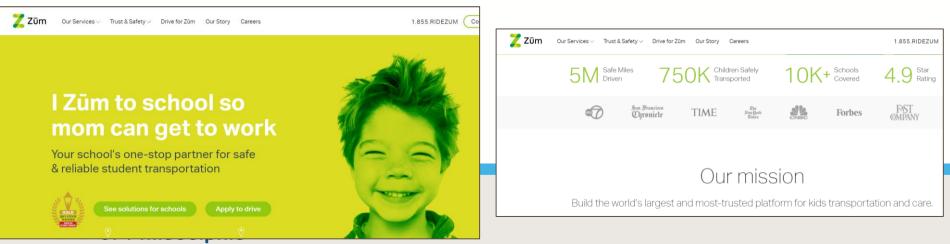


AUTOMATED TECHNOLOGIES: PERSPECTIVES ON PROTECTION FOR CHILDREN AND TEENS

Kristy Arbogast, PhD


Co-Scientific Director Center for Injury Research and Prevention

Thomas Seacrist, Patrice Tremoulet, Aditya Belwadi, Helen Loeb, Ethan Douglas, Rhidi Sahani

AUTOMATED VEHICLE TECHNOLOGY

- Most research focused on crash avoidance
 - Are there particular crash scenarios where technologies such as AEB are most effective?
- What about "Are there particular drivers for whom these technologies are most effective?"
- Children and youth in automated vehicles
 - Coming to a city near you...

MENU OF RESEARCH STUDIES

- Crash and near-crash scenarios vary by driver age – teens are unique
- Novel method for evaluating effectiveness of AEB for different age groups
- Thinking beyond AEB, what do families want with regard to automation?

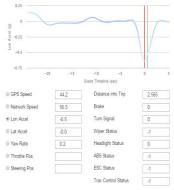
NEED FOCUS ON TEEN DRIVERS

- *Risky teen drivers* over represented in MVCs
 - MV Fatalities in 2016 (IIHS 2016)
 - 2,413 teen deaths (age 16-19)
 - Teen crash rate 10x greater than experienced drivers (Seacrist et al. 2016, 2018)
 - Helps illustrate scope of problem, *but*...

RELEVANCE OF NEAR CRASHES

... crashes do not tell the whole story.

- Study of **near crashes** is needed to fully understand scope of *risky driver* errors
 - <u>At-fault</u> near crashes involve preventable error
 - May differ in type, contributing factors, or crash avoidance mechanisms
- Near crashes not reported in archival data
 - Naturalistic driving studies are a reliable method to study near crashes


STRATEGIC HIGHWAY SAFETY PROGRAM 2 (SHRP2) NATURALISTIC DRIVING STUDY

ADVANTAGES OF SHRP2 DATASET:

- Reliably capture crashes and driving exposure
 - Inclusive of <u>all</u> crashes and near crashes
 - Accurate number of miles driven
- Driver behavior
 - In-board cameras, secondary tasks
- Environment
 - Scene videos, crash type
- Vehicle Dynamics
 - Radar data, acceleration

OBJECTIVE

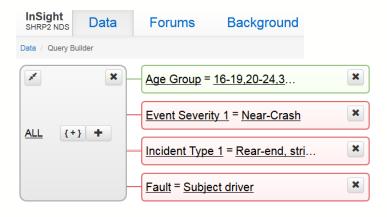
- To compute near crash rates for risky drivers and experienced adult drivers using SHRP2
 - Focus on rear-end striking events
 - Most common crash scenario for young drivers (McDonald 2014)

Work led by Thomas Seacrist To be published in J. Safety Research

METHODOLOGY DATA SOURCE

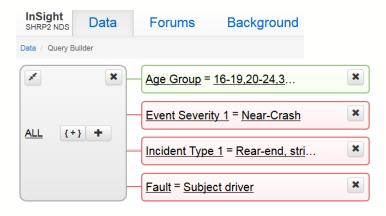
• SHRP2 InDepth:

Group	Age (yrs)	# Drivers
Teens	16-19	550
Young Adults	20-24	748
Adults	35-54	591
Older Drivers	70+	672


- Scene videos
- Event narratives
- Time series data
 - Acceleration, Velocity, Radar data

SHRP2 Raw Video Data

METHODOLOGY DATA REDUCTION/VIDEO REVIEW


Incident Types

- Rear-End Strikes
- Road Departures
- Intersections
- Pedestrian/Cyclist

- Side-Swipe
- Head-On
- Animal
- Other
- Near Crash <u>at-fault</u> event involving evasive maneuver to avoid a crash or departing the roadway
 - Filtered SHRP2 near crashes by incident type and fault

METHODOLOGY DATA REDUCTION/VIDEO REVIEW

Incident Types

- Rear-End Strikes
- Road Departures
- Intersections
- Pedestrian/Cyclist

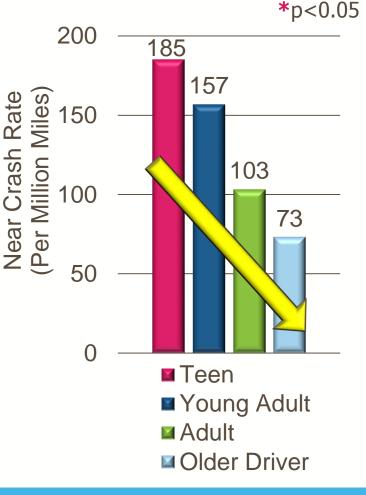
- Side-Swipe
- Head-On
- Animal
- Other
- **Near Crash** at-fault event involving evasive maneuver to • avoid a crash or departing the roadway
 - Filtered SHRP2 near crashes by incident type and fault

RESULTS EXEMPLAR NEAR CRASHES

• Teen

• Adult

• Both events involve distracted drivers (cell phone use)



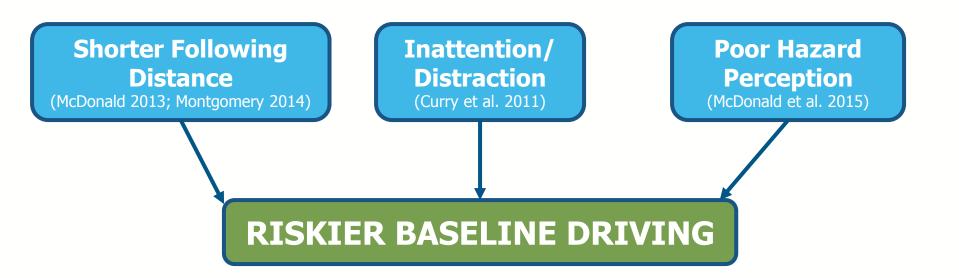
NEAR CRASH RATES & EXPOSURE

Group	Miles Driven	Near Crashes	
Teens	4,205,474	779	
Young Adults	7,691,129	1206	
Adults	5,651,315	583	
Older Drivers	4,766,699	348	
Total	22,314,617	2916	

- Decreased near crash rate
 with increasing age
- Elevated near crash risk reflective of previous archival & naturalistic crash data

(Williams et al. 2003; Dingus et al. 2006; Guo et al. 2010; Simons-Morton et al. 2011; Seacrist et al. 2016)

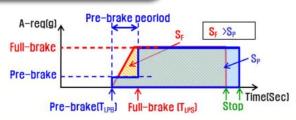
NEAR CRASH RATES BY INCIDENT TYPE


Group	Miles Driven	Rear-End	Road Departure	Intersection	Pedestrian/ Cyclist
Teens	4,205,474	147.4*	12.6*	11.4	2.4*
Young Adults	7,691,129	125.5*	4.9	9.5	3.5
Adults	5,651,315	72.5*	2.5	11.9	5.1
Older Drivers	4,766,699	42.8*	1.9	14.7	4.0

*p<0.05

- Teens had greater Rear-End, Road Departure rates
- Intersection near crashes did not vary by age group
- Teens exhibited lowest pedestrian/cyclist rate
 - Possible differences in road type traveled (urban vs. rural)
- Unique targeted opportunities for crash avoidance technology

WHY DO YOUNG DRIVERS ENCOUNTER MORE CRITICAL EVENTS?



AUTOMATIC EMERGENCY BRAKING

- Rear-end crashes the most common crash and near-crash scenario for teens
- AEB has potential mitigate these crashes
 - Studies suggest that ADAS can prevent up to 57% of crashes and injuries

(Kusano et al. 2010; Rosen et al. 2010; Searson et al. 2014; Kusano et al. 2014; Edwards et al. 2014, 2015)

- - Use step pulse, assume constant jerk
 - Do *not* account for driver reaction or road conditions

METHODOLOGY OVERVIEW

- Reviewed SHRP2 for <u>rear-end crashes</u> with reliable vehicle/radar data
 - Vehicle velocity, acceleration
 - Lead vehicle relative velocity, position
 - Environmental conditions
- Conducted counterfactual AEB simulations
 - Used *"real world"* AEB deceleration profile and TTC activation times from IIHS AEB tests (IIHS TechData)
 - Accounted for <u>driver reaction</u> and <u>road conditions</u>

Work led by Thomas Seacrist Published ESV June 2019

Real-world data

prior to crash

ACCOUNTING FOR ROAD CONDITIONS AND DRIVER REACTION

- Road conditions are known in SHRP2 crashes
- Scaled deceleration profile by road surface factor
 - Gustafsson et al. (1997) Automatica

Road Surface	Factor
Dry	1.0
Wet	0.7
Snowy	0.3
lcy	0.1

- If driver was already braking at time of AEB activation...
 - Started AEB deceleration curve at current deceleration

SHRP2 EVENTS WITH RADAR DATA

• Reviewed all rear-end events for reliable radar data

AEB EFFICACY AMONG RISKY DRIVERS

Overall AEB was very effective

- Prevented 80% of crashes (n=32 of 40)
- -Higher than previously reported (14-57%)

Crashes Prevented Per Age Group

AEB EFFICACY AMONG RISKY DRIVERS

- Teen crashes occur at higher speeds
 - AEB onset/deceleration insufficient to stop vehicle

Group	Age Range (yrs)	Impact Velocity (kph)	Median Impact Velocity (kph)
Teen	16-19	29 ± 5	31
Young Adult	20-24	17 ± 4	12
Adult	35-54	6 ± 1	6
Older	70+	17 ± 5	14

These data provide further support for customized driver assist systems

WHAT WOULD YOU DO?

- Your 12 year old needs a ride from school to play practice.
 - Do you let her ride in a self-driving Uber?

METHODS

- 3 parent focus groups (N=19)
 - Driving simulator in two modes
 - Private interviews
 - Moderated group discussion

Interviews of 8-16 year old children (N=14)

- Simulator in self-driving mode
- Discuss when, how they'd use HAVs

Parents 30-53; mean=44 Children 8-16; mean=11

Work led by Patrice Tremoulet Published in *Human Factors*, 2019

PARENT INTERVIEWS

- 80% felt comfortable & safe entire time
 - But 55% reported urge to take control!
 - They would expect to take control using brake, accelerator, or steering wheel "similar to disengaging cruise control"
- Level of comfort using self-driving vehicles
 - 60% comfortable alone or with a child
 - 25% comfortable allowing a child to use alone

CHILDREN EXPECT TO TAKE CONTROL BY...

- Using brake pedal (33%)
- Using a button *"like on school buses"* (33%)
- Talking to the vehicle (21%)

DESIRED SAFETY FEATURES

- Seat-belt:
 - Verification/checking for use
 - Fastening assistance
- 'Intruder alert' notification

- Safety-lock preventing manual mode
- Secure passenger ID system
- Emergency stop switch

OTHER FEATURES

- Parental controls/monitoring
 - Call or establish video link with passengers
 - Only parent can set or modify destination
 - Automatic notification when child arrives
 - Access trip info (speed, location) remotely
- Ability for vehicle to send alerts to previously identified 'emergency contacts'

RESPONSIBILITY = OPPORTUNITY

- HAVs coming fast...
- Few people thinking about child passengers
 - Responsibility to consider children up front
 - **Opportunity** to pioneer a challenging topic
 - Parent and child inputs needed to inform
 - New policies
 - HAV safety feature design and development
 - Best practices/recommendations
 - Societal / infrastructure requirements

MENU OF RESEARCH STUDIES

- Teen drivers are in crash types relevant for AEB
 - Inform driver-specific ADAS features
 - For Teens emphasize rear end crashes, road departures
- Novel method for evaluating effectiveness of AEB for different age groups
 - Most realistic simulations to date
 - Less effective at preventing teen crashes higher velocity
 - Need to consider AEB + FCW
- Don't forget about kids in highly automated vehicles
 - Consider usability and human factors

ACKNOWLEDGEMENTS

CChIPS | Center for Child Injury Prevention Studies

HONDA

Thomas Seacrist, MBE Biomechanics Project Manager, CHOP

Patrice Tremoulet, PhD Human Factors Scientist, CHOP

Aditya Belwadi, PhD Research Scientist, CHOP

Helen Loeb, PhD Research Scientist, CHOP

Ethan Douglas Masters Student, UPenn/CHOP

Rhidi Sahani Summer Student, CHOP Current PhD Student, UVA

