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Abstract

This thesis presents behavior and motion planning method that enables Autonomous
Vehicles (AV) to achieve SuperHuman driving performance in terms of safety, efficiency
and comfort. The developed method enables synergy of research in behavior and mo-
tion planning for Automated Driving, with research in eco-driving community, which
target mainly complementary problem variations. Established approach in eco-driving
is considering long planning horizons and multiple constraints (i.e. traffic lights, speed
limits, etc.), but exclusively single lane driving. On the other hand, motion planning
for Automated Driving considers multilane driving, but short planning horizons and
decoupled (or hierarchical) solutions, focused on effectively reacting to the changing
situations, and not on the long-term optimal behavior.
As a result of the synergy, developed search-based optimal motion planning (SBOMP)
solution enables optimal Automated Driving scalable to various challenging scenarios
in urban, rural and highway environment. As a highlight, SBOMP enables, what is
believed to be, the first demonstration of optimal multilane diving in dense traffic
with traffic lights, while achieving SuperHuman driving performance. Even though,
this scenario is pretty common in everyday driving, it was not tackled by any of these
research communities before.
The presented SBOMP framework is also extended to the third use-case, Performance
Driving. By considering a more detailed vehicle model, SBOMP enables minimum lap-
time driving on a slippery road, effectively entering and exiting drifting maneuvers and
switching between right and left turns.
The presented work is extensively tested in simulation, benchmarked with human
driving behavior acquired in driving simulator study and in-vehicle testing on proving
ground. The results show that in challenging urban driving scenario with traffic lights,
AV outperforms even the best human drivers in terms of safety, efficiency and comfort.
While human drivers violate traffic rules and even cause crashes, by using predictive
planning, AV manages to drive smoothly through the traffic.
Hopefully, this work contributes to the effort that Autonomous Vehicles become the
first mass product of intelligent mobile robots in our society.

Keywords: Autonomous Vehicles, Motion Planning, eco-driving, Automated Driving,
Performance Driving, SuperHuman Autonomous Vehicles
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Kurzfassung
In dieser Arbeit werden Methoden zur Verhaltens- und Bewegungsplanung präsen-
tiert, die es autonomen Fahrzeugen (autonomous vehicles, AV) ermöglicht, eine Su-
perHumane Fahrperformanz im Sinn von Sicherheit, Effizienz und Komfort zu er-
reichen. Die entwickelten Methoden ermöglichen Synergien der Forschungsgebiete
Verhaltens- und Bewegungsplanung mit den oft komplementären Ansätzen aus dem
Bereich der Fahreffizienz. Die Methode für energieoptimales Fahren basiert auf einem
langen Planungshorizont und berücksichtigt Nebenbedingungen wie z. B. Ampelanla-
gen und Geschwindigkeitsbeschränkungen auf einspurigen Fahrbahnen. Im Gegensatz
dazu basiert der Ansatz zur Bewegungsplanung für automatisiertes Fahren auf einem
kurzen Planungshorizont, berücksichtigt mehrspurige Straßen, und legt den Fokus auf
die Reaktion auf sich ändernde Verkehrssituationen, anstatt dem energieoptimalen
Verhalten.
Als Resultat der oben angesprochenen Synergien ermöglicht die entwickelte such-
basierte Bewegungsplanung (engl. search-based optimal motion planning, SBOMP)
optimales automatisiertes Fahren im Sinn von z.B. Energie oder Zeit, skalierbar auf
verschiedene herausfordernde Szenarien in ländlichen und urbanen Umgebungen bzw.
auf Autobahnen. Hervorzuheben ist, dass SBOMP die vermutlich erste Umsetzung
von optimalem, mehrspurigem Fahren in dichtem Verkehr mit Ampelanlagen bei Erre-
ichen SuperHumanen Fahrverhaltens ermöglicht. Obwohl dieser Anwendungsfall eine
alltägliche Fahrsituation darstellt, wurde er von den oben genannten Forschungskreisen
bisher nicht betrachtet.
Das vorgestellte SBOMP-Framework wird schließlich auf den dritten Anwendungsfall
“Fahren am physikalischen Limit” erweitert. Unter Verwendung eines detaillierteren
Fahrzeugmodells ermöglicht SBOMP Fahrten mit minimaler Rundenzeit auf rutschiger
Fahrbahn, gleichmäßige Übergänge zu bzw. aus Driftmanövern und Wechsel zwischen
Rechts- und Linkskurven.
Die vorgestellten Algorithmen wurden ausgiebig in Simulationen sowie auf der Test-
strecke getestet und basierend auf Daten aus einer Fahrsimulatorstudie zu men-
schlichem Fahrverhalten bewertet. Die Resultate zeigen, dass das AV die fähigsten
menschlichen Fahrer in einem anspruchsvollen urbanen Fahrszenario mit Ampelanla-
gen im Sinn von Sicherheit, Effizienz und Komfort übertrifft. Während menschliche
Fahrer gegen Verkehrsregeln verstoßen oder sogar Unfälle verursachen, ermöglicht das
AV durch prädiktive Planung eine reibungslose Fahrt.
Es bleibt zu hoffen, dass diese Arbeit zu den Anstrengungen beiträgt, autonome
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0 Kurzfassung

Fahrzeuge zum ersten Massenprodukt intelligenter mobiler Roboter in unserer
Gesellschaft zu machen.

Schlagwörter: autonome Fahrzeuge, Bewegungsplanung, energieoptimales Fahren,
automatisiertes Fahren, Fahren am physikalischen Limit, SuperHuman autonome
Fahrzeuge
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1
Introduction

An autonomous vehicle is definitely more than a pure application for Con-
trol Theory, Artificial Intelligence or Robotics. It makes use of all existing
methods and aggressively pushes development of new ones. The multidis-
ciplinary interest in autonomous vehicles makes it challenging to introduce
this topic concisely. Therefore, the introductory chapter of this PhD thesis
aims to provide a concise overview of the thesis objective, contributions and
structure. A more comprehensive insight into autonomous vehicle technol-
ogy and theoretical foundations and related work are provided in following
chapters.

Nowadays, it is hard to find a person who did not hear about Autonomous Vehicle
(AV), Automated Driving (AD), Advanced Driver Assistance System (ADAS), Self-
Driving Car, Driverless car, Robot Taxi, Intelligent Vehicle, etc. The naming diversity
indicates the interdisciplinary interest and relatively low maturity level of this technol-
ogy. Although people are exposed to news about AVs and used to everyday interaction
with some automated systems such as elevators, metros, etc., AVs are mainly perceived
as technology of the future, with some even questioning if it is realistic that it will be
achieved at all.
Besides the public, in industry it has been more than 50 years since the first deploy-
ments of robots (in automotive assembly lines of General Motors) and 50 years since
Shakey, the first intelligent mobile research robot that employed full sense-plan-act
cycle, was developed. Still, currently deployed robots are typically manually pro-
grammed (i.e. industrial robots), teleoperated (i.e. medical robots) or “simple” rule
based (i.e. robot lawnmowers or warehouse robots). Autonomous Vehicles cannot rely
on “simple” rules as there is a high diversity of situations to be manually programmed.
On the other hand, full benefits of autonomy cannot be achieved if teleoperated.
The challenge of automated driving is very hard, and some even compare it to the
Mars mission, with the additional risk of endangering many human lives. The driving
environment is not fully controlled (i.e. as in the case of elevators), and understanding
situation around the vehicle is challenging as the environment is constantly changing,
objects come in different sizes and colors, weather and light conditions vary a lot. On
the other hand, the vehicle has to provide timely, rational response to any situation.
It has to continuously adapt it’s behavior and avoid collisions with other participants,

1



1 Introduction

Figure 1.1: Illustrative problem, multilane driving with traffic lights.

obey traffic rules and comply with vehicle dynamics and factors like comfort, safety
and efficiency. This is extremely challenging as the environment is usually highly dy-
namic with many participants and the full information is not available. Also there is
a high degree of interaction with other drivers who may behave unpredictably. Ad-
ditionally, the road conditions may change (i.e. slippery road). Increased research
interest combined with modern computer technology (and respective computational
power) as well as novel sensing technologies and advanced algorithm (for perception
and rational decision making and control) might make this human dream finally pos-
sible. This achievement would make AVs the first commercial mass deployment of
robotic systems with autonomous features.
Motivated by the example of human drivers who drive successfully both in good and
bad conditions, appropriately adapting their behavior (i.e. reduce the speed on icy
roads or during low visibility) to the changing conditions, we may conclude that the
planning system is overall responsible for AV performance. However, most of the
research in AVs is focused on getting the maximum performance from sensing and
perception, as perception is the first problem we face. However, a lot of potential
improvement which could be gained trough improved planning is unexploited. The
current planning systems cannot efficiently cope with some common situations (i.e.
multilane driving with traffic lights) since most of the solutions are crafted only for
specific situations. This thesis focuses on expanding capabilities of planning systems
of autonomous vehicles in a hope to finally achieve SuperHuman performance.
Achieving favorable behavior of the system by manipulating the system is of major
interest of two fields, Control Theory and Artificial Intelligence. The approaches in
these fields vary a lot and are rather complementary. They can be roughly grouped as
Control, Planning and Learning. Control approaches try to devise the general mecha-
nisms or a rule, which can be applied to bring the system from current to the desired
state. Rules and mechanisms should be as simple but as general as possible, and should

2



1.1 Objective and Approach

provide strong theoretical guarantees on performance, such as stability, optimality, etc.
They generally assume that the desired behavior description is available (i.e. reference
state trajectory) and are hard to devise for complex systems. Planning approaches rely
on deliberative reasoning about the current state and the sequence of future reachable
states to solve the problem. In many cases planning approaches reason about what
the desired state trajectory should be. However, they might be unusable if situation
deviates from the planned trajectory. Learning is focused on improving performance
based on experience or available data. Classic (model-free) learning problems start
from no encoded information, tabula rasa, and learn a favorable behavior. However,
it is hard to provide any guarantees for learning systems, since they can behave un-
expectedly in seemingly simple, similar situations. Therefore, the approach adopted
in this thesis is in a direction of highly needed reconciliation and cross-fertilization of
these fields.
Control, Planning and Learning share many common benchmarks such as cart-pole
balancing or acrobot. Having a good benchmark is essential as the greatest contribu-
tions come from applications. For example, Shakey robot inspired the development
of A* Search, a basic algorithm for heuristic search, vehicle kinematics was the chal-
lenge of kinodynamic motion and automated driving fostered developments in motion
planning in dynamic environment with state-time approach. Autonomous Vehicles,
tackled in this thesis, are specifically challenging benchmark putting on test all avail-
able methods in these fields and fostering new developments.

1.1 Objective and Approach

As mentioned, the major focus of the research leading to this thesis is behavior and
motion planning for fully autonomous vehicles achieving SuperHuman performance.
The motivating use-case is Energy-efficient Driving, so-called eco-driving. The eco-
driving problem is being researched even since the 70s, and many solutions based on
predictive planning with long horizons (i.e. full trip) were developed for energy-efficient
driving considering road-slopes and “using” the gravity, passing trough multiple traffic
lights without stopping and so on. However, solutions in this community exclusively
consider single lane driving, which makes them rather theoretic and not so practical.
In the best case, they can be used on highways with no traffic [1].
On the other hand, in the mainstream automated driving motion planning community,
the research considers multi-lane driving problem. The focus is on effectively reacting
to the changing situations and not on the optimal behavior, and computationally
efficient solutions with provable guarantees. This lead to decoupled (or hierarchical),
Model Predictive Control (MPC)-like re-planning solutions, with planning horizons
in the order of 10 seconds, which prevents to consider energy-efficiency. To consider
energy-efficiency properly, MPC solver must deal with nonlinear models (i.e look-up
tables for efficiency map) and handle arbitrary road slope function. This is out of the
capabilities for most MPC solvers [2][3].
Major focus of this research is unification of these fields and closing the gap between
eco-driving and AD motion planning community, offering general motion planning
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framework capable of dealing with eco-driving, and extending eco-driving to all driving
situations such as multilane driving with traffic lights. The proposed motion planning
framework is scalable, so it can be applied for other criteria as well, and detailed
vehicle models necessary for high performance driving can be considered.
The general approach adopted is to solve the hardest challenge first (i.e. fully au-
tonomous vehicle - Level 5), in all situations, with some assumptions (i.e. assuming
full information is available). This requires planning (behavior and motion) to provide
decision making and control of the vehicle in all driving environments (i.e.highway,
rural and urban driving) and all different scenarios like merging, overtaking, crossing
intersection, etc. A further step would be to strengthen assumptions (i.e. limited
perception). The specific approach adopted during development of the solution was to
efficiently balance model expressiveness with computational complexity (i.e. vehicle
lateral model). To avoid problems of too specific cost functions (i.e including obstacle
avoidance in cost function), so called reward hacking, the cost function is kept very
simple and complex requirements are expressed as constraints.
Major methods used in this work are based on Heuristic Search and Dynamic pro-
gramming, dealing well with combinatorial optimization problems. For the continuous
dynamic aspect of the problem, motion primitive sampling with a grid-based pruning
of theoretically infinite number of continuous trajectories was adopted, based on hy-
brid A* approach. Several admissible and non-admissible domain-specific heuristics
were developed to focus the search and improve performance. To deal with the chang-
ing environment, Search-based planning was used in MPC manner with moving, finite
horizon, considering long-term effects trough heuristic function.

1.2 Contributions

Detailed contributions of the thesis are presented after the review of related work
in section 3.3, while here we present only the overview. Major contributions can be
summarized as:

• Theoretical results on longitudinal energy efficient driving (eco-driving).
– Definition and analytical formula for calculating optimal cruising velocity.
– Comprehensible and concise cost function based on energy-efficiency includ-

ing economic aspect such as hourly rate.
• Formalization of general planning problem for automated driving, scalable to

wide range of scenarios, including:
– comprehensive catalog of semantic features which describes requirements for

driving, including speed limits, traffic lights, other vehicles, road markings,
traffic rules, etc.,

– hybrid continuous-discrete vehicle motion model capable of capturing non-
holonomic constraints without increasing complexity, effectively reducing
one degree of freedom.

• Resolution complete optimal kinodynamic motion planning algorithm based on
heuristic search for solving mentioned problems, including:
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– provable guarantees on optimality,
– capability to cover full range of velocity (slow and fast trajectories),
– multiple admissible and inadmissible heuristic functions (i.e. model-based,

relaxed problem-based, Machine Learning-based),
– capability to consider nonlinearities and non-holonomic constraints.

• Solving several challenging autonomous vehicle use-cases.
– Believed to be, the first solution for multilane eco-driving, considering over-

taking possibility in eco-driving.
– Believed to be, the first solution for optimal motion planning for automated

driving in multilane traffic with traffic lights.
– Believed to be, the first solution for minimum lap time driving on slippery

roads with arbitrary shape (i.e. varying curvature, mixed right and left
curves).

• A novel approach to model exploration for value function learning; to be used
as heuristics to speed up the search.

• Extensive demonstration, verification and validation, including:
– a novel approach to validation of SuperHuman automated driving perfor-

mance,
– simulation study of various scenarios,
– driver simulator study to compare to human driving,
– testing in the vehicle on proving ground.

1.3 Results and publications

Publications

This thesis is partially based on the following publications:
• Book chapters:

[4] Ajanovic, Z., Stolz, M. and Horn, M., 2018. Energy-Efficient Driving in Dy-
namic Environment: Globally Optimal MPC-like Motion Planning Framework.
In Advanced Microsystems for Automotive Applications 2017 (pp. 111-122).
Springer, Cham.
[5] Ajanovic, Z., Stolz, M. and Horn, M., 2017. Energy efficient driving in dy-
namic environment: considering other traffic participants and overtaking possi-
bility. In Comprehensive Energy Management–Eco Routing & Velocity Profiles
(pp. 61-80). Springer, Cham.

• Conference/Workshop papers:
[6] Ajanovic, Z., Stolz, M. and Horn, M., 2018, June. A novel model-based
heuristic for energy optimal motion planning for automated driving. Proceedings
of the 15th IFAC Symposium on Control in Transportation Systems (CTS 2018).
IFAC.
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[7] Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., Horn, M., 2018 October.
Search-based optimal motion planning for automated driving. In Intelligent
Robots and Systems, 2018. IROS 2018. IEEE/RSJ International Conference
on. IEEE.
[8] Ajanovic, Z., Lacevic, B., Stettinger, G., Watzenig, D., Horn, M., 2018 July.
Safe learning-based optimal motion planning for automated driving. In Proceed-
ings of the ICML/IJCAI/AAMAS 2018 Workshop on Planning and Learning
(PAL-18).2018.
[9] Ajanovic, Z., Beglerovic, H., Lacevic, B., 2019. A novel approach to model
exploration for value function learning. In Proceedings of the RSS 2019 Work-
shop on Combining Learning and Reasoning – Towards Human-Level Robot
Intelligence. 2019.
[10] Ajanovic, Z., Regolin, E., Stettinger, G., Horn, M., A. Ferrara, 2019. Search-
Based Motion Planning for Performance Autonomous Driving. In IAVSD Vehi-
cles on Road and Tracks 2019. IAVSD.

• Patent application:
[11] Ajanovic, Z., Stolz, M., 2016. Predictive control system for autonomous
driving vehicle. Patent application, Intellectual Property Office of the United
Kingdom.

• Magazine articles:
[12] Ajanovic, Z., Stolz, M. and Horn, M., 2017. Energy Efficient Autopilot:
Energy efficient driving in dynamic environment. Virtual Vehicle Magazine (pp.
36-37). Virtual Vehicle, Graz.

Awards

During doctoral process for the work presented in this thesis author was awarded
following rewards:

• June 2018: IFAC Young Author Award, for the paper “A novel model-based
heuristic for energy optimal motion planning for automated driving”, awarded
during IFAC Symposium on Control in Transportation Systems in Savona, Italy.

• October 2019: Hans List Fond scholarship, for PhD thesis, awarded by AVL
List GmbH in Graz, Austria.

1.4 Structure of the PhD thesis

The presented PhD thesis is organized in 9 chapters.

Chapter 2, AV Technology, includes concise overview of autonomous vehicle
technology including motivation, history, classifications, architecture and com-
ponents as well as current trends.
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Chapter 3, Related work, provides comprehensive but concise overview of the
related work focused on planning for Autonomous Vehicles, especially three use-
cases: Energy-efficient Driving, Automated Driving and Performance Driving.
Chapter 4, Problem Definition, elaborates definitions of the driving prob-
lem and three variants tackled in this thesis (longitudinal eco-driving, multilane
automated driving and performance driving on slippery road) including the chal-
lenges as well as assumptions and requirements on the solutions.
Chapter 5, Modelling, presents models used for all aspects of driving problem
such as vehicle, road, traffic rules, other traffic participant and performance
criteria.
Chapter 6, Motion Planning, presents solutions for mentioned problems
(eco-driving, automated driving and performance autonomous driving), includ-
ing development of several admissible and sub-admissible heuristics.
Chapter 7, Simulation, presents extensive simulation study on various sce-
narios from highway, rural and urban driving with appropriate analysis and
benchmarking.
Chapter 8, Validation, presents a novel validation methodology and results of
validation performed in driving simulator, in-vehicle testing on proving ground
providing valuable conclusions on achieving aimed SuperHuman driving capabil-
ities in terms of safety, efficiency and comfort.
Chapter 9, Conclusion, presents conclusion on the work and possible direc-
tions for further research.
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2
Autonomous Vehicle Technology

Autonomous vehicle technology is a complex interdisciplinary challenge.
It requires advancements in several fields including sensing technologies,
algorithms and models for robust perception, planning and control of the
vehicle. The aim of this chapter is to introduce autonomous vehicle tech-
nology. The chapter starts with motivation for developing this technology,
followed by an overview of the history of the development of autonomous
cyber-physical systems with focus on autonomous vehicles. Finally, the
mainstream approach in delivering this technology is presented includ-
ing classification of levels of automation and technology components from
sense-plan-act cycle. The chapter is concluded with a short insight in the
current trends in this field.

As every emerging technology, AV technology is going trough many phases explained
well with Gartner hype curve [13]. Based on the report from 2018, AV (level 4)
technology passed peak of inflated expectation as early publicity produced a number of
success stories, but was accompanied also by several failures. AV is now approaching
trough of disillusionment as several participants fail to deliver and community realizes
that the problem is harder than initially expected. It is expected that it will take
more than 10 years to reach the plateau of productivity, when mainstream adoption
starts to take off. The relaxing fact is that AV technology in reduced form (Level 1-2)
is already being introduced incrementally trough ADAS functions, which keeps the
momentum of development and improves user adoption.

2.1 Motivation

Besides the hype caused by moonshot character of AV technology, sometime compared
even to the Mars mission [14], there are several clear promises which motivate research
and development of this technology. Promises can be roughly grouped into three
clusters: safety, efficiency, and comfort [15]. Combined achievement of these promises
could potentially change the mobility as we know it [16].
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2.1.1 Safety

The number of the annual road traffic deaths has reached 1.35 million, making the
road traffic injuries the leading killer of people aged 5-29 years [17]. As human safety
is one of the major concerns of vehicle engineering, reinforced with initiatives to to-
tally remove traffic fatalities such as Vision Zero [18], minimizing the occurrence and
consequences of traffic collisions is one of the major goals of AV technology.
There are two complementary approaches to this problem, passive and active safety.
Passive safety is focused on reducing the effect of crash when it already happens.
Systems such as seat belts, airbags and safe body structures are saving thousands of
lives. About 50 % of non-belted heavy goods vehicle occupants would have survived
accident if they had used seat belt properly [19].
On the other hand, active safety aims to prevent the crash in the first place. Human
drivers are causing 90% of crashes because of fatigue, lack off attention, driving under
influence of drugs, alcohol, etc. [19]. By automating the driving, these causes could
be circumvented as digital controller does not suffer from these problems like human
drivers do. Additionally, autonomous vehicles could have faster response time and
make more informed decisions, as they can rely on more sources of information, i.e.use
additional sensors which work even in conditions where visibility is low and can get
information from other vehicles or infrastructure using connectivity. For example,
using additional sensors and advanced models, controller could have precise estimate of
road surface friction and use it for planning driving as such that the critical situations
are avoided when driving on icy roads. Introduction of active safety functions as
mandatory in newly produced vehicles is already in progress. The Electronic Stability
Control (ESC) is mandatory in newly produced passenger vehicles in Europe and
Advanced Emergency Braking System (AEB) additionally in commercial vehicles [19].
The real-world study showed the 38% overall reduction in rear-end crashes in vehicles
equipped with AEB [20].
However, active safety systems only complement human driver and improve perfor-
mance when it is possible. To achieve safety levels higher than a human driver in
fully AV, errors introduced by AV technology should be minimized which is still a
challenging goal. Current traffic safety sets a very high bar with about 210 million km
driven between two fatal accidents (about 230 years of non-stop driving with velocity
100 km/h) [21].

2.1.2 Efficiency

Transportation has a significant impact to the society in many aspects of the everyday
life. The transportation sector alone accounts for 20% and 27% of the total carbon
dioxide (CO2) emissions in Europe and in the USA, respectively [22][23]. Traffic
congestions cause a massive waste of time, fuel, and money. In the USA alone, 3.1
billion gallons (11.7 billion liters) of fuel, 6.8 billion hours of extra time (equivalent to
47 million average summer vacations), and 153 billion dollars in delay and fuel cost
[24], while in the European Union, about 1% of the total GDP annually is wasted
due to congestions [25]. Increasing environmental awareness, strict regulations on
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greenhouse gas emissions and constant desire to increase the range of electric vehicles
as well as the big economic benefits motivated significant research interest in the field
of energy-efficient driving.
Over the past few decades, many different approaches addressing this topic were devel-
oped. Some approaches are related to the vehicle design optimization, some to using
alternative propulsion systems, some to the driving behavior optimization and some
to the efficient traffic management. Energy-efficiency is affected by vehicle weight. By
reducing probability of a collision with active safety, a part of passive safety systems
could be reduced, therefore reducing the overall weight of the vehicle and improving
efficiency. In the case of transportation vehicles, fully removing the driver could im-
ply totally removing the cab enabling higher load/vehicle mass ratio. On the topic
of driving behavior, in [26] authors presented a study which shows that the driving
behavior has a rather big influence on energy consumption. It was shown that energy
consumption may vary in a range of approx. 30% depending on driving behavior in
terms of aggressiveness.
Advancements in Connected and Autonomous Vehicle (CAV) technology might enable
achieving optimal driving behavior in terms of energy-efficiency, so-called eco-driving.
By utilizing information about the upcoming driving route (i.e. the road slope profile),
information from on-board sensors (i.e. the position and velocity of vehicle in front)
and the ability to precisely control the vehicle’s propulsion, vehicle velocity trajectory
can be optimized with respect to the energy consumption to avoid unnecessary accel-
eration/deceleration (stop/go) cycles. This can lead to savings ranging up to 20% [1].
Efficiency could be improved by keeping a convoy of vehicles on a small inter-vehicle
distances one behind the other, in a formation called platoon. Having fast response
time and direct communication with other vehicles enables driving in a such formation
without sacrificing safety. This in turn can reduce aerodynamic drag resistance up to
about 30% [27], which is significant if we know that at highway speeds, half of energy is
used to overcome aerodynamic drag [28]. Technologies like Vehicle-to-Anything (V2X)
communication could provide information about future state of upcoming traffic lights
so driving can be also optimized by utilizing to that information to arrive at the traffic
light on green light phase (catch the “green wave”). This could potentially improve
the fuel consumption by 47% and lower CO2 emissions by 56% [29].
Besides improving energy efficiency and reducing emissions on individual vehicle level,
CAV technology could have effects on the level of the whole traffic system. Some
studies show that implementing automation which satisfies all traffic rules can reduce
traffic flow as professional human drivers usually improve traffic flow by slightly break-
ing the rules, but it might be expected that in the future traffic rules for automated
vehicle change according to their capability [16]. If properly managed, there are many
possible benefits of CAVs [30]. Driving on a shorter inter-vehicle distances can im-
prove road capacity as more vehicles can occupy the same road. Having all vehicles
equipped with V2X communication and being centrally controlled, could totally re-
move the need for traffic lights on intersections. Intersection could be fully automated
[31], which could bring significant capacity benefits ranging even more than 100% [16].
However, it is not realistic that all vehicles will become CAVs overnight, and related
benefit is significantly influenced by the penetration rate (percentage of CAVs in the
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whole traffic). While the full benefit is available with 100% penetration rate of CAVs,
a penetration rate of 40% can bring only about 10% of the benefits [16]. However,
recent work [32] shows that it is possible to use CAVs to influence human drivers
leading to potential 20% increase in road capacity which promises other benefits in
mixed-autonomy traffic.
AV technology reinforces some independently developed mobility concepts (i.e. Mo-
bility as a Service (MaaS)) where transportation users do not own the vehicle but
they use it and share it with others [33]. Several companies (i.e. Uber or Lyft) are
already operating platforms with human driven fleets providing MaaS, making taxi
service smother and more transparent. Theoretically, it would be possible to optimize
the system and maintain equal mobility with CAV fleet sizing from about 10% up to
about 33% of currently used independent conventional vehicle fleets [16]. Fleets of
AVs serving as Robot-taxis can be used to provide timely and convenient transporta-
tion to anybody in Automated Mobility on Demand (AMoD) system, considering even
multiple occupancies in vehicles [34]. AMoD is one of the most promising use cases
of AVs (besides autonomous trucking on highways), due to possible high exploitation
rate of generally still expensive AV technology.

2.1.3 Comfort

Potential contribution of AV technology for improving travel experience is multifaceted
ranging from lowering the effort and improving accessibility of driving to optimizing
and customizing driving comfort to fit passenger’s taste. If the vehicle is fully au-
tonomous, the stress of driving can be transferred to the vehicle (i.e. in traffic jams
or long rides) and driver can use added time for some other, more preferred activities
(i.e. work or entertainment). Fully autonomous vehicle could also conveniently pick
the passenger at the origin and drop at the destination, avoiding need to search for
parking place and walking from/to the vehicle. Besides parking itself autonomously
after destination is reached, the vehicle could also continue to operate as in the case
of AMoD. One of the particularly important benefits of AV is improved accessibility
of travel for persons who do not have access now (i.e. elderly, children, persons with
disabilities, etc.)
Besides accessibility and lowering the effort of driving, the driving experience itself
could be improved. As vehicle is precisely controlled, riding comfort for passengers
can be improved with predictive control based on future driving situation to reduce
motion sickness. Driving style could also be customized to the passenger’s taste,
providing consistent experience over the long drives. As a consequence of overall
traffic improvement and predictive planning of the trip, travel times could be shorter
in general and longer distances would be more accessible for driving.

2.2 History

General public perception is that AVs are objects of the future to that extent that
many do not believe that they are even possible. The futuristic image hides the facts
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that human desire to automate the work has long roots and that autonomous vehicles
are an active research topic for decades.
Some of the first visions about automated driving were publicly presented on the
New York World’s Fair in 1939. General Motors presented Futurama: Highways &
Horizons, the vision of how world could look like in the 60s. Futurama exhibited a
model of future transport system with automated highways and vast suburbs [35].
In the 50s, GM together with RCA (Radio Corporation of America) did some initial
work and developed Autonomous Highway System tests where a steel cable, used
as the guidance, was embedded in the road and tracked by magnets mounted in the
vehicle [36][37]. This, however, was not so practical, and further research on automated
vehicles will require almost three decades to get active again.
In the 50s, there was a growing general awareness of the potential of automatic control.
Based on the feedback concept [38], the Sense-Act loop could be employed to achieve
self-adaptable behavior, providing desired behavior even in the presence of distur-
bances [39]. Conference “Automatic Control” held in 1951 in Cranfield (England) and
the “Frequency Response Symposium” held in 1953 in New York, as well as numerous
textbooks, brought automatic control to the attention of many engineers. Norbert
Wiener’s work, among others, brought concept of “feedback” to the attention of the
wider community also, expanding the control from technical systems to other systems
in the fields such as biology, philosophy, and the organization of society. Wiener’s book
[40] also popularized the term “Cybernetics” (derives from the Greek “kybernetike”,
which means the art of steersmanship) such that term “cyber” is actively used even
today, describing almost anything that deals with computers, robots or Internet [41].
In a quest to develop thinking machines, in 1955, John McCarthy, then a young Assis-
tant Professor of Mathematics at Dartmouth College, initiated organization of Summer
Research Project. To avoid strict focus on feedback concept, as it was in Cybernetics,
he picked a distinct name for this topic, “Artificial Intelligence”, setting the name as it
is still used [41]. In 1956, Dartmouth Summer Research Project eventually took place
with participation of many notable scientist such as Ray Solomonoff, Marvin Minsky,
John McCarthy, Claude Shannon, John Nash, Herbert A. Simon, Allen Newell, and
others, making this a seminal event for Artificial Intelligence (AI) as a field [42]. The
initial goal of developing unifying theory or paradigm that guides AI research was not
achieved, as interests were quite diverse ranging from algorithms to play games and
automating induction to artificial neural networks. This diversity of approaches is one
of the characteristics of AI field even nowadays.
In the 1950’s and 1960’s, one notable stream of development of control theory was
focused on achieving optimal behavior (i.e. Optimal Control). This was mainly based
on the R. Bellman’s discovery of principle of optimality and Dynamic Programming
method based on it [43] and the discovery of Maximum Principle (MP) by L.S. Pon-
tryagin and his students, V.G. Boltyanskii and R.V. Gamkrelidze, in 1956–58 [44].
However, this work will stay rather theoretical with application mainly focused on
space and military until late 70s. In 1978, after publishing of successful applications
of MPC in the publication “Model Predictive Heuristic Control” [45] interest for MPC
started raising [46].
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Starting from 1966, Stanford Research Institute began working on Shakey robot
[47], one of the first intelligent mobile robots, utilizing the full Sense-Plan-Act cy-
cle. Although the performance of Shakey was very low compared to current robots
(i.e.averaging about two meters an hour), it was one of the most ambitious attempts
at an autonomous robot at the time. Shakey could reason out a path using input
from its variety of sensors and robustly follow it. Research on Shakey fostered several
contribution widely used even today. These contributions include A* search (used for
path planning [48]), Hough transform adapted for use in vision [49] (applied later for
lane detection) and STRIPS rules for planning [50]. Around the same time, at Stan-
ford Artificial Intelligence Laboratory, experimenting with outdoor Stanford Cart was
ongoing [51]. Stanford Cart was initially created in order to study driving a vehicle
on the Moon remotely from Earth. In 1966, it was reconfigured with the idea of self-
driving vehicles. It was able to follow a bright white line under controlled lighting by
utilizing stereo vision system.
In the 70s and partially the 80s as well interest for the research in AI slowly decreased,
marking the first AI winter.
Perhaps one of the first works on autonomous vehicles relying only on vehicle on-board
modifications was presented in 1977 by group of Sadayuki Tsugawa from Mechanical
Engineering Laboratory in Tsukuba, Japan. They presented the vehicle which could
drive autonomously up to a speed of 30 km/h [52]. Vehicle control was based on
processed input from two cameras (i.e.road pattern recognition and obstacle detection)
and preprocessed optimal controls were acquired from the look-up table based on that
input.
In Europe, in 1986, after several years of development, group of Ernst Dickmanns pre-
sented VaMoRs vehicle [53]. VaMoRs managed to drive autonomously, and by 1987
it was capable of driving itself at speeds of up to 96km{h (60 mph), making it prob-
ably the first autonomous vehicle capable of driving on speeds comparable to human
drivers [54]. The tests were executed at the closed stretch of newly built highway.
After this success, European automotive industry became more seriously interested in
the research in Autonomous Vehicles. With financial support from European Union,
PROMETHEUS (Program for a European Traffic with Highest Efficiency and Un-
precedented Safety) was launched in 1986 [55]. The main objective was to make
driving in Europe safer, more economical, more environmentally acceptable, more
comfortable, and more efficient. This was a massive research effort culminating with
a demonstration in 1995, a 1600 km drive by the VaMP car, 95% of which was driven
autonomously [56]. VaMP was reaching maximum speed of 180 km/h on a free stretch
in the northern Germany.
Meanwhile in US, in the 1985, as a part of DARPA’s Strategic Computing Program,
The Autonomous Land Vehicle project demonstrated offroad vehicle ALV capable of
driving 2 mph (about 3 km/h) [57]. In 1986, Carnegie Mellon University researchers
built NavLab 1 vehicle, but it wasn’t until the late 80s that software systems could
drive the vehicle, reaching the top speed of 20 mph (about 32 km/h) [58]. In 1986, the
same year the first NavLab vehicle was built, and the team of Geoff Hinton introduced
approach for training neural networks using back-propagation [59]. Using Artificial
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Figure 2.1: PROMETHEUS project vision.

Neural Networks, Dean A. Pomerlau developed ALVINN [60], capable of generating
control inputs directly from camera input. Using ALVINN, the vehicle was able to
drive autonomously, but at a maximum speed of about 1 mph, mainly due to low
computation power needed to process the networks. This was probably the first end-
to-end approach to control of the vehicle, coupling directly camera input to vehicle
steering and throttle inputs (pixel-to-torque approach). In 1995, based on improved
driving road detection and more modular approach, NavLAb made USA tour driving
2,850-mile from coast to coast, driving 98.2% autonomously [61].
Major efforts of these initial developments lied in perception and computer vision
system. On the other hand, not so much effort was invested in intelligent decision
making beyond rule based decisions.
Complementary to autonomous driving, significant effort was invested in development
of Intelligent Transportation Systems (ITS). In 1986, as the first research program in
North America focused on ITS, California Partners for Advanced Transit and High-
ways (PATH) Program was founded. PATH, as 2011 incarnation, is still running at
University of California, Berkeley [62]. It aims to apply advanced technology in order
to increase highway capacity and safety, and reduce traffic congestion, air pollution,
and energy consumption. Besides traffic engineering related topics, PATH extensively
focused on autonomous vehicles with several notable demonstrations such as four-car
automated platoon in San Diego, CA, in 1994 [63].
Around the mid 90s, the reduced interest in AI research as well as the lack of funding
marked the second AI winter.
Although the research in autonomous vehicles was largely reduced, it still partially
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continued. Besides the work done on automating highway driving, which was focused
primarily on improving capabilities of already existing passenger vehicles, rather vi-
sionary approach of developing novel vehicle concepts was very active with coordi-
nation of INRIA, France. Several projects such as PRAXITELE (mid 90s) [64][65],
followed by CyberCars (2001 - 2004) [66][67] and CyberCars-2 (2006-2009) [68]), as
well as some international cooperations examined ways of transforming urban mobility
using a fleet of novel connected and autonomous vehicles as a complement to public
transport. The approach was to develop customized “urban autonomous and electric
public cars” and to efficiently operate the fleet of these cars (which can be shared
among users), with a goal to minimize urban traffic congestion problems. Several
notable results were demonstrated. In 1996, autonomous parking was demonstrated
[69], as a work carried out within the framework of the PRAXITELE project. In 2002,
Griffith University’s Intelligent Control Systems Laboratory (ICSL), in cooperation
with researchers from INRIA’s IMARA Laboratory executed what is believed to be
the world’s first on-road demonstration of cooperative driving solutions in unsignalized
intersection scenario and an overtaking maneuver scenario [70].
Modern interest for autonomous vehicles was kick-started in 2004 when DARPA
launched Grand Challenge [71] with offered prize in money (1 million USD). Final
race happened in the Mojave Desert region of the United States, along a 150-mile
(240 km) route. None of the participating teams managed to drive the full course of
the race. A year after, in 2005, the second DARPA Grand Challenge was organized.
Five vehicles successfully completed the course, with Stanley vehicle, from Stanford
University team led by Sebastian Thrun, winning the challenge [72]. In 2007, DARPA
organized Urban Challenge [73], the 97 km long drive, with traffic consisting of 50
manned and unmanned vehicles, from 35 teams. The Challenge consisted of several
requirements such as driving in lanes, three-point turns, parking, and maneuvering
through obstacle fields. Race showed impressive progress towards motion autonomy,
but there were still many issues, and even the first collision of autonomous vehicles.
The BOSS vehicle from Carnegie Mellon University [74] won the race, followed by
Junior vehicle from Stanford University [75], VictorTango from Virginia Tech [76] and
MIT [77]. After the DARPA Challenges, Sebastian Thrun joined the Google in 2009
and started working in Google Self-Driving Car project.
In 2010, as a preparation for World Exposition to be held in Shanghai, China, Vis-
Lab decided to make VisLab Intercontinental Autonomous Challenge (VIAC). VIAC
expedition was 13,000 km, three-month long trip, from Parma (Italy) to Shanghai
(China). The vehicle control was based on cooperative leader–follower approach. As
no complete map was available, the leader was human driven and ran autonomously
only in places where no decision had to be made (i.e. on highways) with the follower
fully autonomous [78]. Another notable work related to cooperative vehicle convoys
was aiming to improve energy consumption by utilizing air drag reduction caused by
driving in convoys, so-called platooning. EU project named SARTRE (Safe Road
Trains for the Environment) [79], running from 2009 to 2012, aimed to develop strate-
gies and technologies to enable platooning on public highways. To promote work on
cooperative driving, TNO (the Netherlands Organisation for Applied Scientific Re-
search), organized Grand Cooperative Driving Challenge (GCDC), in 2011. GCDC
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was the first competition to implement realistic heterogeneous, cooperative driving
scenarios [80]. Participants had to come up with control strategies which are robust
to unexpected behavior of other vehicles, varying data quality or failures in communi-
cation, among others. The winning team was AnniWAY from Karlsruhe Institute of
Technology (KIT), lead by Christoph Stiller [81].

In 2010, researchers from Stanford University together with researchers from Volk-
swagen Group tested Autonomous Audi TT on the Hill Climb course in Pikes Peak.
Vehicle was able to successfully navigate 156 turns over 12.42 miles in 27 minutes
without a driver [82]. In May 2012, Google’s test vehicle, Toyota Prius, modified for
test of autonomous driving was licensed by the Nevada Department of Motor Vehi-
cles (DMV) with the first license in the world issued for a autonomous vehicle [83].
Soon after, many institutions followed and tests on public roads began in Nevada. In
2013, 125 years after Bertha Benz made first overland journey in automotive history,
research team from Daimler, in cooperation with KIT, followed the same route from
Mannheim to Pforzheim, Germany, in fully autonomous manner [84]. The route was
103 km long and covered rural roads, 23 small villages and major cities (e.g. down-
town Mannheim and Heidelberg). Vehicle relied solely on vision and radar sensors in
combination with accurate digital maps to obtain a comprehensive understanding of
complex traffic situations.

In the end of 2015, Tesla motors rolled out version 7 of their software in the USA
that included Tesla Autopilot capability, making them the first Original Equipment
Manufacturer (i.e. vehicle producers) (OEM) to offer Automated Driving (Level 2)
capabilities [85]. Later they added a new “summon” feature that allowed cars to self-
park at parking locations without the driver in the car [86]. By October 2018, test
vehicles of Waymo, Google self driving car project spin off company, had traveled
over 10,000,000 miles (16,000,000 km) in automated mode, adding about 1,000,000
miles (1,600,000 kilometers) each month [87]. In December 2018, Waymo announced
that they are starting to offer “Waymo One” service, the first commercial self-driving
service to hundreds of early riders [88], beginning the commercialization of Level 4 AD
on certain regions.

The presented overview is a sampling of a very rich history of AVs. It is almost
impossible to cover the full breadth of AV research. Currently, OEMs, technology
companies, start-ups and many others, invest significant efforts into development of
autonomous driving technology. Landscape is very wide and acquisitions of relatively
young startups are reaching billions. It is outside of the scope of this work to map
all activities, but I will try to provide an overview with several milestones to see
the depth and the scope of the presented challenge. Although significant research
effort was invested, it is important to note that there still exists no solution that is
capable to drive in new, unknown environments. Solutions are always limited either
by functionality or by geographic operational coverage.
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Figure 2.2: Levels of automation.

2.3 Technology

As AV should operate in dynamic and not fully controlled environment, the technology
necessary for achieving it encompasses all other technologies present nowadays, such
as aviation autopilots, industrial automation, space missions, etc. AV requires totally
new sensor types (i.e. Lidars), advanced signal processing (i.e. computer vision),
High Performance Computing (HPC), reliable decision making, robust and redundant
actuation etc. Many components are still developing and there is still no standardized
approach for many of them. Several topics which are widely accepted are levels of
automation as well as rough architecture of the control system of fully autonomous
vehicles.

2.3.1 Levels of vehicle automation

To make distinctions between capabilities of different systems, the Society of Auto-
motive Engineers (SAE) identifies 6 levels of autonomous vehicles, ranging from no
driving automation (Level 0) to full driving automation (Level 5), as illustrated on
the Figure 2.2 [89].

• Level 0 - No assistance: At this level, the driver is the sole decision maker
being in control of the steering wheel, brake and throttle. Driver may be sup-
ported by warning systems such as lane departure warning or forward collision
warning systems but without any direct action on the vehicle.

• Level 1 - Driver assistance: At this level, the driver can get function specific
support from vehicle with either steering or acceleration. The driver is still in
control and must stay fully engaged, but one or more independent functions are
automated. Examples include adaptive cruise control and lane keep assist.

• Level 2 - Partial automation: At this level, the vehicle controls combined
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functions such as automatic cruise control and lane keeping, providing both steer-
ing and throttle/brake. The driver is still responsible for the control of the system
and has to take over control at any time, if corrections are needed. The parking
assistance or Tesla’s autopilot feature [90] or Mercedes-Benz DISTRONIC PLUS
with Steering Assist [91] are examples of the Level 2 systems.

• Level 3 - Conditional automation: A Level 3 system provides autonomous
driving in certain conditions. All safety critical functions are automated, but in
some cases, control may be returned to the driver with prior notice. Driver can
be partially distracted but should be ready to take over when requested by the
system to do so.

• Level 4 - High automation: In this level, vehicle controls all aspects of
the driving, so that the driver is not expected to perform any task. Vehicle of
this level might not even have the steering wheel. Vehicle autonomous operation
might however be restricted to some area, so-called geofence. Example of this
level is Waymo’s self-driving taxi service [88].

• Level 5 - Full automation: This is the highest level of vehicle automation.
At this level vehicle can operate autonomously in all driving conditions where
human driver can drive. Currently there are no examples of Level 5 AD.

Focus of this work is on Level 5 autonomous vehicles which can operate fully au-
tonomously in all driving conditions where human drivers operate.

2.3.2 Architecture of Autonomous Vehicles

Despite several demonstrations of end-to-end control approaches, where AV control
gets as input raw data from camera and generates directly desired controls to vehicle,
it is widely accepted that AV need a modular approach. Modular approach divides the
problem into smaller subproblems and solves them individually [92]. This approach
has several advantages including improved transparency, easier development cycles,
verification and reuse. Major components of AV control system are Sense, Plan and
Act and they form Sensing-Planning-Acting cycle. This is a well known approach in
designing intelligent agents in AI or mobile robots [93].

Sense

The goal of Sense component is to provide timely and reliable information about state
of the driver, vehicle and environment based on readings from multiple sensors. Raw or
preprocessed information from sensors is combined together in a process called sensor
fusion and provides outputs such as object list (i.e. from multi-object tracking) and
occupancy grids representing vehicle environment.
Besides the environment perception, major tasks of sense component are ego vehicle
(i.e. controlled vehicle) state estimation (i.e. localization) as well as driver/passengers
monitoring. The task of environment perception is to provide vehicle with complete
and reliable information (with uncertainty information) about the state of the envi-
ronment (i.e. position and velocity of other vehicle participants, drivable road, etc.),
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Figure 2.3: Autonomous Vehicle architecture.

robust to environmental changes such as bad weather conditions, low lightning etc.
The task of ego vehicle state estimation is related to the environment perception, but
it is focused on ego vehicle and may include ego vehicle position, velocity and orienta-
tion (i.e. localization), but also higher vehicle dynamic states such as wheel-tire forces,
side slip angle and slip ratio. In-vehicle monitoring system is responsible for providing
vehicle control system with information about state of the driver and the passengers.
Monitoring systems like this are particularly important for lower levels of automation
where responsibility is shared between the human and the vehicle.
Because of inherent disadvantages of each sensor type, various sensor types are used
together in a sensor suite complementing each other. Sensors like radar, lidar, camera,
etc. are used and their outputs are fused using sensor fusion to provide single source
of information, decrease uncertainty, improve robustness, accuracy and availability
trough redundancy [94]. One of the major challenges in Sense component is to achieve
real-time, robust processing of sensor inputs. Processing is usually hierarchical and
multiple sensors can be combined at a lower level (i.e. without much processing) or/and
higher level (i.e. preprocessed, with objects detected). Tasks of preprocessing include
object detection and classification (i.e. vehicle detection, traffic sign recognition, lane
detection, etc.), semantic segmentation (i.e. free road detection), etc. [95].
On-board sensor perception can be augmented by communicating with cloud systems
and other vehicles. Systems like this include Electronic Horizon, High Definition Maps
and V2X communication [96].

Plan

The goal of Plan component is to provide a reasonable plan on how to drive vehicle in
dynamic world based on the information provided by Dense component and a priori
models (i.e. vehicle model, traffic rules, etc.). As output, plan component provides
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collision free and comfortable trajectories, as sequence of vehicle states (i.e. position,
orientation and velocity, timestamped). Vehicle trajectory is derived based on HD
maps, environment perception, localization and desired goal provided by the user.
Major tasks of plan component are route planning, prediction of other participants (i.e.
trajectories or intentions), behavior and motion planning. Planning tasks are usually
organized hierarchically. Routing is the highest level problem, it answers which road to
take to go from point A to point B on the map. It takes as input the map data in form
of the street network and gives the output drivable path (i.e. much like Google Maps
Navigation). Map information may include real-time traffic information. Navigation
map is simpler than HD map as it usually represents the graph on which some graph
search algorithms are applied for solving it [97]. As vehicle moves among other cars,
to provide collision-free plans, vehicle needs to predict what other vehicles will do in
the future. In several situations such as merging, where there is a high interaction
between the vehicles, it is not possible to directly predict trajectory of other vehicles
as ego vehicle actions influence actions of other participants. In these cases, the vehicle
has to detect intention and evolve different situations of interactions during planning
[98][99]. Behavior planning assumes higher level planning in a form of discrete decision
with a smaller subset of actions-maneuvers (i.e. stay in the lane, change lane, follow,
stop etc). Behavior planning was historically decoupled from motion planning and it
provides motion specification for which motion planning provides feasible trajectory.
Behavior and motion planning are tightly coupled as solutions of motion planning are
required to evaluate certain maneuver in behavior planning. Both behavior and motion
planning influence the quality of the final trajectory which includes making decisions to
avoid obstacles and satisfy traffic rules, vehicle dynamics, etc. Because of the coupling,
recent approaches integrate behavior and motion planning. Integrated behavior and
motion planning is presented as trajectory planning in stl space, where maneuvers
represent different homotopy classes. As the focus of this thesis is particularity on
integrated behavior and motion planning, this will be further discussed in related
work and modeling chapter.
Besides driving on the structured roads, distinctive task is planning in unstructured
environment (i.e. parking lot navigation). This might seem like a harder problem as
some simplifications from planning in structured environment are not vali. However,
it is relatively easier as motion is limited to lower speeds and is less dynamic.

Act

The goal of Act component is to accurately track plans provided by the plan com-
ponent and to minimize deviations caused by disturbances (i.e. unmodelled vehicle
dynamics, external factors such as wind). It takes as input target trajectory from
planning module as sequence of desired future vehicle states (i.e. position, velocity,
orientation). Based on the error from current measured vehicle state (i.e. position,
orientation and velocity or deviation from lane provided by Sense component), control
component generates as outputs acceleration, braking and steering commands to the
vehicle. These commands are then executed on the vehicle by drive-by-wire system
which ensures robust execution and necessary redundancy for target reliability.
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Major tasks of act component are longitudinal and lateral stabilizing control of the
vehicle. These tasks may be decoupled (i.e. using methods like LQR, PID control)
[100]. However, maximum performance is reached only with coupled control of this
MIMO system (i.e. MPC) [101]. Typically, control command must be feasible to the
car, and preferably smooth (i.e. minimize jerk). However, in some situations it might
be also necessary to control the vehicle at the limits of handling [102]. Lower levels of
driving automation (i.e. Level 1 or Level 2), functions like Lane Keeping Assistance,
ACC [103] may be realized directly with Sense-Act cycle, avoiding use of Planning.
However, for higher levels of automation, full Sense-Plan-Act cycle is necessary.

2.4 Trends

Vehicle automation is not an isolated trend and as such it influences and is influenced
by many other trends such as vehicle electrification and connectivity, vehicle sharing
and mobility-as-a-service. The safe approach for developing AV is to use all possibilities
(i.e. connectivity) but not critically rely on them.
Across the industry two major approaches for introducing AV are present. One ap-
proach aims to introduce Level 4 AD directly on limited geographic regions and in-
crementally increase operational range. This is mainly by technology companies in a
form of Robot-taxi [88]. The other approach is lead mainly by OEMs, who offer vehi-
cles with iteratively increasing levels of automation. As mentioned earlier, currently
commercially available are Level 2 AD.
In regards to the research and development, major efforts so far were focused on Sense
part, which is reasonable since reliable perception is a prerequisite for other compo-
nents. As mentioned before, lower levels of automation can be achieved only based on
Sense and Act components, or enhanced with simple rule-based decision making. As
these problems are being partially solved, problems in planning become notable, and
it is clear that Level 3-5 AD and long-term autonomy are not possible without reliable
planning which can deal with complex driving situations [104]. Therefore, the focus
of this thesis is on the planning for Autonomous Vehicles which achieve Level 5 AD.
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Autonomous vehicle is essentially a mobile robot, or an intelligent agent
in a more general sense, therefore enormous work in Control Theory, Ar-
tificial Intelligence and Robotics provide extensive theoretical foundations
for solving this problem. On the other hand, autonomous vehicle builds
upon more than a century of engineering experience since Karl Benz
introduced the first practical automobile. Pedigree like this makes work in
autonomous vehicles widely spread across disciplines.

As it is stated in Lavalle’s1 book from 2006 [105], Robotics, Artificial Intelligence and
Control Theory, three traditionally distinct topics are on a collision course. We may
say that they are already in collision and autonomous vehicles are one of the most chal-
lenging applications all of these methods are being applied to. Interest in autonomous
vehicles is far beyond these three fields. Researchers in the field of Vehicle and Traf-
fic engineering, among others, focus on extending capabilities of conventional vehicles
and traffic system by adopting the concept of autonomous vehicles. Additionally, large
effort of non-technical researchers in the field of human factors, economy, legislative,
etc. is crucial for wide acceptance and adoption of this technology in the society. This
makes autonomous vehicles one of the most cross-disciplinary problems of our time.
Because of the overwhelming literature available, the focus here is on three different
use-cases of autonomous vehicles: Energy-efficient Driving, Automated Driving and
Performance autonomous Driving. Together, these use-cases present pillars for au-
tonomous vehicles with SuperHuman performance in terms of efficiency, comfort and
safety.

3.1 Use-cases

Although all three use-cases mentioned above are dealing with autonomous vehicles,
they attracted attention of different communities and have different historical devel-
opments, so mainstream approaches differ, as well as development directions.

1Steven M. LaValle, the author of the book “Planning algorithms” and the pioneer of RRT paradigm
in sampling-based motion planning.
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Figure 3.1: Related work.

Saving fuel has been a major concern ever since automobiles came to use, and repre-
sents Energy-efficient Driving use-case. This use-case attracts wide attention and it
was addressed even in popular science shows like MythBusters [106]. Special train-
ings were offered to drivers to improve their driving behavior, to achieve better fuel
efficiency. Research in this field goes back at least to 60s with a quest to improve
energy-efficiency in road and rail vehicles by optimizing driving behavior. It started
as a theoretical analysis of possible fuel saving, but served also as a benchmark problem
for optimization methods. Although initially the results of optimization offered only
an insights into efficient behavior and advice to human drivers, as vehicle automation
becomes reality, they offer basis for optimal control of the vehicle.
The other concern is to free human drivers of repetitive tasks and improve safety by
automating driving task. This represents automated driving use-case. From a per-
spective of Artificial Intelligence and Robotics automobile can be seen as “a bit” more
complex mobile robot, having more complex dynamics, dealing with more complex
environment and having higher safety requirements. The goal here is to achieve ac-
ceptable behavior while driving among other traffic in everyday driving situations (i.e.
driving on multilane roads, highway, intersection, etc.) and satisfying traffic rules.
The final use-case, Performance Driving, considers driving on the limits of vehicle
handling. This is an use-case mainly addressed by researchers interested in vehicle
dynamics and motorsport enthusiast. The approach here is to model the behavior of a
race driver and emulate it using control, planning and learning approaches to achieve
minimum lap-time driving.
These use-cases together serve as representative examples of wide operational range of
autonomous vehicles. Their complementarity motivates synergy between developments
as well as need for general solution to achieve SuperHuman autonomous vehicles.
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Figure 3.2: Approaches to increase driving energy-efficiency.

3.1.1 Energy-efficient Driving (eco-driving)

Increasing environmental awareness, strict regulations on greenhouse gas emissions and
constant desire to increase the range of electric vehicles, as well as the large economic
benefits, drive a lot of research in the field of energy efficient driving. As a result, there
are many different approaches addressing this topic. Some approaches are related to
the vehicle design optimization, some to using alternative propulsion systems and some
to the driving behavior optimization. In [26] the authors present a study which shows
that the driving behavior has a rather large influence on energy consumption. It is
shown that energy consumption may vary in a range of approx. 30% depending on
moderate or aggressive driving behavior.
Driving behavior related approaches for improving energy-efficiency can be grouped
into: “eco-routing”, “using road slope information”, “traffic light assist”, “platooning”
and “overtaking”, as shown in Figure 3.2.

Eco-routing

The goal of eco-routing is to determine the most energy-efficient route for the trip,
which may differ from the shortest or the fastest one. Problem is set by creating road
network graph, where weighted edges represent road segments and weights represent
the cost of traveling that segment. Graph search algorithms are used to find the
shortest path on the graph representing the route with the lowest energy consumption.
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Many solutions are available in the literature, i.e. [107] which presents an example of
using historical data to determine an eco-route or [108] which considers traffic lights
as well. Extensive review of routing algorithms is presented in [97].

Driving on the open roads

The classic eco-driving problem is driving on the open road with a variable slope.
In this problem, the goal is to determine the vehicle speed trajectory which results
in optimal energy consumption for the given transportation task, while taking into
account traffic rules (i.e speed limits). In the following sections classic eco-driving
problem is extended with consideration of traffic lights and other traffic participants.
Knowledge about the upcoming driving route, the road conditions and the ability to
control the vehicle’s propulsion enables the optimization of the speed trajectory of the
vehicle with respect to the energy consumption. This problem has been extensively
studied. What is believed to be the first scientific research on economization of train
operations was presented in 1968 [109] (overview of the optimal control of a train
[110]). One of the earliest energy-efficient velocity planning for road vehicle based on
Dynamic Programming was presented in 1983 in [111] and analysis is extended to the
fleet in [112]. An alternative approach was presented even earlier in 1976, based on
so called “pulse and glide” method, consisting of periodically accelerating vehicle in
short pulses and then coasting without any engine torque [113].
Discrete dynamic programming (DP) has been used extensively in the last decade for
generating energy-efficient global velocity trajectory e.g. in research focused on heavy
duty vehicles [114][115]. A comparison between different optimization methods (Euler-
Lagrange, Pontryagin’s Maximum Principle, DP, and Direct Multiple Shooting) was
presented in [116], where the reader can find an analysis on the DP grid choice, as
well as some tips on backward and forward dynamic programming. Other works based
on Dynamic Programming are presented in [117][118]. Major drawback of Dynamic
Programming solutions is high computational requirements. Because of this drawback
in [119] authors used a cloud service to compute energy efficient velocity trajectories.
Other approach recently presented is iterative Dynamic Programming [120], which
offers better solution quality in same computation time. Alternative approach to
reduce computational requirements is exploiting heuristic function to focus search on
more promising regions of the search space. A* search algorithm enables to do this
optimally while keeping guarantees on optimality [121].
Explicit, closed-form, solutions usually offer much better computational performances.
Several explicit solutions for global trajectory planning were also provided in the liter-
ature. However, they usually assume some simplification. For example in [122] authors
assume low speed so air drag effect can be neglected, while in [123] authors present
formula for calculating weight factor for travel time in optimization, to achieve desired
stationary velocity. Some of many other alternatives of global trajectory planning
include rule based [124] and Evolutionary Algorithms [125].
Instead of looking for a whole trip and global trajectory planning, some authors pro-
posed using Model Predictive Control (MPC) with horizons of 5-10 seconds [126][127].
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Besides predictive approaches relying on look-ahead planning, several solutions exist
based on instantaneous actions. In [128] Neural Networks (NN) were used to define
single action by taking lookahead slopes in account as input to NN, without lookahead
planning. In [129] authors introduce Estimated minimum principle, where driving
trajectory is “optimized” online by applying instantaneous control (no preview).

Previously, optimized speed trajectories were usually used to advise a human driver via
an appropriate human-machine-interface (HMI). Rarely, optimized speed trajectories
were used to directly provide a reference value for underlying low-level controllers such
as cruise control. Increasing vehicle automation is expected to change this in the near
future, and several of these mentioned works have already presented prototypes.

Driving in the presence of other traffic participants

Majority of the early eco-driving works considered driving on an empty road. If leading
vehicles are neglected in the optimization, the unconstrained plan will not be fully
achievable in real driving conditions, and may in some situations lead to drawbacks
in energy consumption and very likely to bad driver acceptance. As in general in
eco-driving, only single lane driving is assumed, the approaches that consider other
traffic consider only vehicle following and not overtaking possibility. Multi-lane driving
makes problem combinatorial, and therefore hard to solve for several methods.

In [130] a possible solution for a vehicle following problem is presented, showing dif-
ferent concepts for safe vehicle following, defining helpful concepts such as the safe
distance, time-inter-vehicular and time-to-collision. In [131] authors use A* search for
safe vehicle trajectory as a basis for energy oriented adaptive cruise control. Several
works used MPC approach for dealing with the vehicle following problem. MPC was
used to control a hybrid vehicle driving over a hill and performing vehicle following in
[132]. Several methods (iterative PMP, LQR, SQP) were used in Moving Horizon ap-
proach (MPC) for non-cooperative [133] and cooperative [134] driving. Instantaneous
control previously mentioned was also extended also to safe vehicle following [129].

Besides vehicle following, several works deal with optimizing overtaking execution. In
these works ([135][136][137][138]), velocity trajectory planning is done by minimizing
deviation from the desired velocity while the vehicle is overtaking. These approaches
provide a locally optimal solution by trying to track the reference velocity that should
not be reference after passing other vehicle. They introduce unnecessary braking after
overtaking occurs to minimize the deviation.

Based on author’s best knowledge there exists no other approach (before our work was
presented) that holistically considers multilane eco-driving as such that it provides
velocity trajectory, the decision if the vehicle should overtake or not, and where is the
best location for potential overtaking, based on energy-efficiency. Some work appeared
recently, inspired by our work [139].
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Driving in the presence of Traffic Lights

Driving in the presence of traffic lights puts additional constraints on velocity trajec-
tory. It has been widely studied how one could use knowledge of Signal Phase And
Timing (SPaT) of oncoming traffic lights with the aim to improve energy-efficiency
and reduce trip time. Approaches in the literature are usually hierarchical. On the top
level, limits on velocity or desired velocity are determined so that the vehicle can pass
one or more traffic lights without stopping. The output is then fed to MPC-based local
motion planning. The approaches for top level planning vary, such as simple kinemat-
ics [29], Dijkstra’s algorithm [140] or simple MPC [141], but the structure is usually
the same. Local motion planning is usually based on MPC. It may consider other
vehicles as well, but only vehicle following and single-lane driving is considered [29]
[141]. Some approaches extend planning to the situations with incomplete knowledge
about SPaT as well [142].
Several very recent works advance the state-of-the-art. In [143] authors extend by op-
timizing engine torque, the brake force, and the gearshift while ensuring safe distance
separation and traffic speed limits. They show 8% energy savings in a realistic sce-
nario. In [144] authors present public transit use-case with communication to Traffic
Lights. Optimal velocity is displayed to the driver via mobile application and 5.5%
improvement compared to regular driving without advice was shown in tests in real
traffic in Beijing. In [145] authors incorporate stochastic red light duration delays in
higher level planning via chance-constrained optimal control to improve robustness of
tracking.
To the best of author’s knowledge, none of the related works successfully tackled
combined multi-lane driving in the presence of traffic lights so far (besides our work).
Authors of [145] state in outlook their plans to extend the work to a multi-lane driving
situations and refer to our work.

Search-based methods for eco-driving

As this PhD work relies on search-based methods (i.e. A* search, Dynamic Program-
ming, Dijkstra, etc.), in this section, more focus is drawn on these methods applied to
eco-driving problem.
Many variants of Dynamic Programming were already presented. Dijsktra’s algorithm
was used in [146] and [140]. In [125] authors formulated the problem as distance-based
so no cycles appear, which makes it possible to implement Breadth First Search (BFS).
BFS improved computational complexity to Opnq compared to Dijsktra’s Opnlognq.
As mentioned earlier A* search was also used for planning energy-efficient velocity
trajectory. In [121] it was used for electric bicycle. For heuristic function, authors
used kinetic and potential energy, as well as a rolling resistance, but for estimation
of air drag resistance, the authors used an upper instead of a lower bound. The re-
sults were suboptimal with a difference of around 1.2% from another optimal control
strategy. In [147] authors introduced air drag and a time proportional cost without
interdependence. For air drag, they used a tunable minimum velocity, and for the
time-proportional cost, they computed a minimum time based on the maximum ve-
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Figure 3.3: Schema of the planning and decision-making components for automated
driving. Upper branch represents hierarchical planning approach and lower
branch represents integrated planning approach.

locity. This approach leads to a not-so-precise estimation and a loss of admissibility if
velocities are lower than the tuned value. Another use of A* search was presented in
[131], but authors did not reveal the computation of their heuristics. From the results,
it is clear that some of the heuristics are giving a suboptimal solution.

Conclusion on Energy-efficient Driving

Based on reviewed work we can conclude that research in energy-efficient driving so
far considers only single lane driving. In [148] an overview of the existing approaches
and current state of the art can be found. Furthermore, the presented solutions are
partial and consider only specific scenarios and not general solution exist. This might
be partially caused by limited actions, as most of the time solutions are presented to
a driver as an advice and therefore have to stay simple. However, this should change
with vehicle automation so concepts from energy-efficient driving research should be
integrated into automated driving.

3.1.2 Automated Driving

Driving automation is based on classic robotics Sensing-Planning-Acting cycle, where
Motion Planning (MP) is the crucial step. Task of MP is to provide a collision-free
motion plan from the given starting pose to the given goal region, taking into account
system dynamics, obstacles and possibly desired criteria (cost function). MP has
been researched since 1970s [149], mostly in robotics. However, vehicle automation
application brings new challenges as the environment is cluttered, dynamic, complex,
uncertain and the vehicle is often operating on the limits of its dynamics. Several
works give a comprehensive overview of current motion planning approaches in vehicle
automation domain [3][150][2][151][152].

Hierarchical planning

Usually, planning for automated vehicles is structured hierarchically, with route plan-
ning at the top, and is operating with the smallest frequency (e.g. once a trip), followed
by the behavioral layer responsible for decision-making on maneuvers to be executed.
When a decision is known, the local motion planning layer generates a trajectory or a
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waypoint that satisfies safety and traffic rules, and is further executed by a stabilizing
controller [3].
The behavioral layer was initially implemented using finite state machines and most
of the participants in DARPA Urban challenge used it [74][153][75]. To deal with un-
certainty, solutions based on Partially observable Markov Decision Process (POMDP)
[154] were also proposed. In general, decision making requires a sample trajectory to
estimate whether a certain maneuver is possible. This natural coupling of trajectory
planning and decision making calls for the integration of behavioral and local MP [2].
However, integration of the behavioral layer with local MP introduces combinatorial
aspects and a local minimum problem [155].

Integrated decision-making and motion planning

Coupling of behavioral and local motion planning has been tackled by several ap-
proaches with limited success. In [156], where authors proposed spatiotemporal state
lattices used with a dynamic programming search to plan collision-free motion in the
presence of dynamic obstacles. The proposed search was rather fast (less than 20 ms),
yet only a limited number of velocity variants (7 different) were used and lattice con-
struction is such that full stop is not possible. Similar approach with spatiotemporal
lattices is presented in [157]. Another approach is presented in [158], authors formal-
ized the generation of all possible combinations and used local planning [155] for each
one of them. The best one of them is then chosen as the global optimal result. This
approach is not applicable to environments where many combinations are possible, es-
pecially where traffic lights are present as they introduce infinitely many combinations.
Additionally, several authors [159][160] used mixed integer programming approaches
to treat multiple variants with the assumption that the desired velocity is defined and
the deviation from this velocity is used within a cost function for optimization. This
simplification leads to the local optimal solution as the gap for the lane change can be
influenced by the velocity history of the ego vehicle.

Interactive driving

Vehicles in traffic do not operate in isolation, actions of the ego vehicle will have effects
on other drivers’ actions and vice versa [99]. Interaction can be modelled by Game
Theory [161], i.e. as cooperative [162], non-cooperative [163] game, etc. But Game
Theory restricts interaction to the simple set of rules and therefore does not represent
full specter of interactions. Several works [164] [165] recently provided solutions for
some scenarios, but there still does not exist a general solution dealing with all traffic
situation [166].

Search-based motion planning for automated driving

As this PhD work relies on search-based methods (i.e. A* search), in this section,
more focus is on these methods applied to automated driving. One of the first uses of
A* search for autonomous vehicle motion planning was presented in [167], the result
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of a Prometheus project. The author used A* search to find the shortest time motion
in the presence of dynamic obstacles and introduced state-time space for dealing with
dynamic obstacles. A* search was also used in DARPA Urban challenge by many
teams, mainly for planning in unstructured environment (i.e. parking lot) and route
(mission) planning. Worth mentioning here is planning in unstructured environment
from Stanford team where the authors introduced Hybrid A* search to deal with the
problem that kinodynamic motion primitives do not generally end exactly on grid
points [168]. Another approach worth mentioning is from Carnegie Mellon University
team which also used A* search, but applied multi-resolution lattice state-space to
deal with kinodynamic problem [169]. Stanford team used search-based methods for
planning on structured roads as well. They used Dynamic Programming applied to
road network and generated cost-to-go map instead of single route and used it with a
MPC-like forward trajectory planner to achieve the shortest travel time [75].
Spatiotemporal lattice approaches mentioned earlier ([157] [156]) rely on using Dy-
namic Programming search over the lattice graph. In [157] DP was using GPUs, so
authors managed to find solution in real time. However, these methods were not so
practical as they explore the whole search-space and problem explodes when reasonable
precision is required. These solutions rely on 6 or 7 dimensional lattices, consisting of
two-dimensional position, orientation, time, velocity, etc.
Several works in past few years rely on heuristic search-based approaches (like A*
search), which focuses search on promising parts of the search-space. An interesting
approach for kinodynamic motion planning is presented in [170] where the authors
used exploration guided heuristic search to plan the ego vehicle motion in the dynamic
environment. Another recent application of A* search for planning safe trajectories
on structured roads while driving in dynamic traffic is shown in [171]. Authors used
flexible steps to deal with kinodynamic problem. However, they consider only 3D
search-space (two-dimensional position and time), and only 9 branches, which makes
it not complete.
Very recently, some hybrid approaches appeared, which heavily rely on search algo-
rithms. Authors of [172] apply hierarchical decomposition of the problem to path and
velocity planning problems to solve the problem. Also, recent work similar to our and
referencing our work is presented in [173]. Authors used Dynamic Programming for
rough planning with spline based quadratic programming

Conclusion on motion planning for automated driving

As it was shown, there are many different approaches to planning for automated driv-
ing. Search was established recently as very popular solutions, due to combinatorial
nature of the problem. Usually, it is used together with some optimization based
smoothing to improve final solution quality. However, the problem is far from being
fully solved. Many of the solutions are shown to work only in specific scenarios and
it is hard to generalize them to consider all different traffic situations that may occur
(i.e. multilane driving with traffic lights, merging, intersections, unstructured environ-
ment etc.). Having a single planner for considering all scenarios is crucial for proving
safe operations. Additionally, none of the above mentioned motion planners considers
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Figure 3.4: Performance Driving overview.

optimal passing through multiple intersections with traffic lights. Although some ap-
proaches show potential to be extended, many would probably fail. Regarding solution
quality, almost all solutions either decompose the problem or make some assumptions,
which makes them not complete and therefore not optimal. For those which are com-
plete, it is challenging to achieve real-time performance. Besides extending to different
scenarios, most of the approaches are not well suited for the extension to multi-agent
situations where interaction aspects are important, robust planning and execution or
perception limits-aware planning.

3.1.3 Performance autonomous driving

Similarly to other use-cases, autonomous vehicle control for Performance Driving is
based on a Sensing-Planning-Acting cycle. Due to different dominant effects in vehicle
dynamics, we can distinguish different approaches suitable for road surfaces with high
and low friction coefficients. High friction surfaces enable to achieve better controlla-
bility of the vehicle, while on lower friction surfaces the control action often enters the
saturated region.

High friction surfaces (high µ)

For driving on high µ roads, many different solutions were presented so far, and some
were even tested on real vehicles [174][175]. Predictive planning of future vehicle states
can enable real-time control of driving while avoiding static obstacles [176]. Recently
the approach has been extended to racing scenarios with multiple agents (although
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not real-time) [163]. Although these approaches use nonlinear bicycle model with
Pacejka’s tire model, road surface had a high µ, which can be observed as vehicle
is not performing drifting or trail-braking maneuvers. This Motion Planning (MP)
approach is based on an exhaustive search and works well only for short horizons
(due to exponential complexity). Furthermore, it is well suited only for high friction
conditions where fast transitions between simple, constant velocity, primitives can
be achieved. Approaches like this are not well suited for controlling a vehicle in
lower friction conditions, which require larger horizons and a more detailed vehicle
model as the control action often enters the saturated region and where road surface
is not consistent. As in minimum-time driving on high µ surfaces optimal trajectory
minimizes curvature of the driving path, the path is on the edge of the road, so it is
not robust for a gravel like roads which are not consistent.

Slippery surfaces (low µ)

Another line of work considers driving on gravel-like roads, i.e. driving with high side-
slip angles like drifting, trail-braking, etc. to improve robustness of the trajectory.
Most of the current works in this direction consider two specific scenarios: sustained
drift or transient drift. One example of a transient drift scenario is drift parking, as
shown in [177], where the vehicle enters temporarily a drift state. On the other hand,
in sustained drift scenarios, the goal is to maintain steady-state drifting. Velenis et al.
modelled high side-slip angle driving and showed that for certain boundary conditions
it can be a solution for the minimum-time cornering problem [178], [179]. Tavernini
et al. showed that aggressive drifting maneuvers provide minimum time cornering
in low-friction conditions [180]. Because of computational complexity, most of these
works cannot achieve online performance.
Based on results generated offline, by using [179], You and Tsiotras proposed a so-
lution for learning the primitive trail-braking behavior, enabling online generation
of trail-brake maneuvers [181]. This approach decomposes trail-braking into three
stages: entry corner guiding, steady-state sliding and straight line exiting. A similar
decomposition of the problem was also presented in [182]. This one divides the horizon
into three regions, finds a path for each region (using Rapidly-exploring Random Trees
(RRT), rule-based sampling and Proportional Integral Control) and then concatenates
them. As it appears from the results, though, in the drifting region the rule-based
solution produces non optimal solutions. Impressive demonstration of model-based
reinforcement learning approach on scaled vehicle is shown in [183]. However, as for
the aforementioned sustained drift approaches, considered scenario is relatively simple
with only one curve. It is hard to expect that these approaches generalize well to more
complicated scenarios.

Conclusion on Performance autonomous Driving

Automated performance driving of the vehicle on the empty road (single agent) with
high road friction coefficient µ can be considered as a solved problem. Although
recently several solutions were proposed also for multi-agent driving case, appropriate
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solution for real-time control still does not exist. For low µ surfaces, development
still lags. Several solutions are available for specific scenarios such as drift parking
and trail-braking in a single curve, but driving the full track generally requires solving
more curves, with variable curvature radius and a mix of right and left curves. For
this scenario decoupling approach is not well suited, as finding out how to split the
horizon and assigning the segments arises as a problem, which can be viewed as a
combinatorial optimization problem. This confirms that the problem of continuous
driving is a different one from sustained drift or transient drift.

3.2 Theoretical foundations

Regarding the approaches for solving these problems, we can make rough distinctions
between three orthogonal approaches: Control, Planning and Learning.
Control approaches try to devise a general mechanisms or a rule which can be applied
to bring the system from current to desired state. Rules and mechanisms should be as
general as possible and provide strong theoretical guarantees on performance such as
stability, optimality, etc. They generally assume that the desired behavior is available
(i.e. reference).
Planning approaches rely on deliberative reasoning about current state and sequence
of future reachable states to solve the problem. In many cases planning approaches
reason about what desired state should be.
Learning approaches are focused on systems which improve automatically based on
experience or available data, in many cases starting with no a priori knowledge (’tabula
rasa’). Practical solutions are commonly a mix of these approaches.
All of these approaches represent dedicated research fields and many textbooks
cover these topics. Some of the most notable textbooks focused on methods are
[184][185][186] for Control, [105][187] for Planning and [188] for Learning.
In the following sections an unjust overview of several methods will be presented, to
help better understanding the related work and placing of contributions of this work.

3.2.1 Control and Planning

Control and Planning are complementary approaches, with complementary strengths
and weaknesses. Control approaches itself are generally computationally light as they
use simple mechanism, while Planning algorithms generally require intensive com-
putations. Control approaches are generally robust to disturbances as they devise
general rules applicable for wide regions of state-space. On the other hand, planning
approaches usually devise single plan from a current state and are invalid if plan is
not perfectly executed. Additionally, Control approaches deal better with continuous
system dynamics (or discretized) while Planning approaches deal better with discrete
problems (i.e combinatorial optimization problems). However, devising control mech-
anisms is possible only for a quite restricted class of problems. They are hard to devise
for the more complicated systems such as hybrid systems or systems with multiple in-
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puts and outputs (MIMO). On the other hand, planning approaches are not so much
influenced by system complexity as they use computational methods for simulating
system evolutions. And in fact, many approaches are based on combining the benefits
from both of these approaches.
TheModel Predictive Control (MPC ) is an example of effective combination of Control
and Planning. It combines the concept of Moving Horizon and Optimal Control (pre-
dictive planning). MPC is solving optimal control problem, starting from the current
state for certain horizon in future, executing a single step, and then repeating the pro-
cedure with new state. While concept of Moving Horizon can be considered a Control
concept, which provides the feedback by taking the current state in each step, un-
derlaying solver for finding optimal control is usually optimization or planning solver.
However, most of the solvers still rely on numerical optimization methods (i.e. convex
programming), and full potential of the synergy with advanced planning approaches
is still not capitalized. In fact, many of the planning solutions are used with tracking
controller and not in Moving Horizon fashion. The one of the reasons might be that
planning methods are generally much slower than convex optimization methods and
that they deal with different horizons. Related MPC work generally deals with limited
horizon while Planning generally deals with infinite horizon (until the goal is reached).
Because of limited horizon, MPC cannot guarantee globally optimal solutions and
suffers from terminating set problem (how to value different terminating states), but
is generally dealing well with changing environment as replanning is executed often.
On the other hand, optimal planning approaches generally guarantee globally optimal
solutions for the initial problem, but not in the presence of disturbances. Effective bal-
ance between limited horizon and infinite horizon is an open problem, and decaying
horizon is one of the approaches, but this is suboptimal as well.
Planning for dynamical systems requires special treatment of kinodynamic constraints.
Usually, full motion trajectories are constructed by concatenating so called “motion
primitives” [189]. Motion primitives represent dynamically feasible trajectories which
evolve according to the system dynamics. They can be generated by simulating system
evolutions and assuming piecewise constant inputs (by gridding the inputs), starting
from the state defined by end state of previous motion primitive. Motion primitives can
be also precomputed by gridding the compact subset of state and input sets in some
cases, when system exhibits invariance to some operations (i.e. most ground vehicles
exhibit invariance to translation in the horizontal plane and to rotation about a vertical
axis). In this case, it is important to take care about the feasibility of concatenation of
different motion primitives. For unstable systems it might also be useful to use closed-
loop prediction approach (i.e. CL-RRT [190]). Closed-loop prediction approaches use
motion primitives of closed-loop system for the expansion when open-loop dynamics
are unstable, as the exploration by variations in the open-loop dynamics becomes
inefficient.
Another example of combining Control and Planning is feedback motion planning
[105]. Feedback motion planning approaches provide not a single planing solution but
a solution tree which then can be used even when system deviates from optimal trajec-
tory. For example LQR-Tree [191] provides a set of controllers and their operational
regions, covering effectively the whole controllable state-space.
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Controlling hybrid discrete-continuous systems is a challenging problem. This prob-
lem is present is different fields such as Control of hybrid automata [192] in Control
Theory, Combined Task and Motion Planing Problems [193][194][195] in Robotics,
Mixed-Integer Programing [196] in Optimization, Mixed Discrete-Continuous Domains
[197][198][199] in AI Planning. Research in all of these fields can benefit from cross-
fertilization of the ideas.

3.2.2 Planning and Learning

As mentioned earlier, Planning and Learning also have complementary strengths and
weaknesses. It is an issue for learning approaches to provide any guarantees on perfor-
mance, have safe exploration or to learn long-term rewards. In these aspects, planning
algorithms can provide valuable support. On the other hand, planning algorithms are
rather slow in high dimensional spaces. This can be improved if planning is properly
guided.
Having fast planning algorithms is crucial for practical use of robots in changing envi-
ronments and safety critical tasks. Efficiency of Heuristic Search-based planning (A*
Search [48]) largely depends on the quality of the heuristic function for estimation of
the cost-to-go [200]. Ideally, if we knew the exact cost-to-go (oracle), we could find the
optimal solution with minimum effort (practically traversing greedy Value function).
If the robot operates in similar environments, previous search experience might be
useful for the learning of the Value function. Effective synergy of Planning and Learn-
ing provided exceptional results so far including seminal achievement of SuperHuman
performance in the game of Go [201].
Interaction of Planning and Learning has a long history [43][202][203], with several
modern directions, including End-to-end learning approximations of planning algo-
rithms (i.e inspired by Value Iteration algorithm [204], MCTS [205], MPC [206]),
planning to guide exploration in Reinforcement Learning [207], [208] and learning to
guide planning [209][210][211][212], as well as model learning and Model Based Rein-
forcement Learning in general.
Planning and Learning work related to the work in this thesis is in direction of learning
the value function in order to guide heuristic search-based planning. The most similar
approaches to one presented here appeared concurrently in [213] and in [214]. However,
in [213] authors used only nodes from the shortest path for learning and in [214]
authors used backward Dijkstra’s algorithm which explores the whole search space.
Our proposed approach has certain advantages when compared to both of these.

3.3 Thesis contributions

The main goal of this work is to develop a general decision making and control solu-
tion for autonomous vehicles, applicable to all use-cases, while achieving SuperHuman
performance. Because of the diversity of communities interested in this topic, con-
tributions of this work are mainly grouped in three use-cases of autonomous vehicles
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and minor contributions related to basic research in fields of Control, Planning and
Learning.

3.3.1 Energy-efficient Driving (eco-driving) use-case

Regarding Energy-efficient Driving use-case contributions of this work can be summa-
rized as:

• A novel concept optimal cruising velocity (OCV) and analytical formula for cal-
culating it.

• Efficient, custom implementation of Dynamic Programming-based solution for
planning long trips (longer than 40 km) in reasonable time (less than 5 seconds).

• Comprehensible and concise cost function based on energy-efficiency including
economic aspect such as hourly rate.

• Arguably, the first solution for multilane eco-driving, considering overtaking pos-
sibility.

• Arguably, the first solution for optimal motion planning for automated driving
in multilane traffic with traffic lights.

• Extensive study with more than 20 human drivers in urban traffic.
Through this work, I developed two solutions for classic eco-driving problem, longi-
tudinal velocity planning. The first solution is custom developed without using any
libraries and is based on Dynamic Programming (DP) [5]. It was approximately 100
times faster than state-of-the-art solution based on Dynamic Programming [215].
The other solution is based on A* search [48], utilizing heuristic function based on a
novel theoretical concept, optimal cruising velocity (OCV). Optimal cruising velocity
is the velocity which minimizes energy consumption for driving on a flat, horizontal,
empty road. It finds optimal balance between air drag influence and time-proportional
cost influence. I derived analytical formula for calculating optimal cruising velocity
as:

v˚ “ 3

d

Paux ` Phr

ρacdAf
. (3.1)

As it can be seen from the formula, the optimal cruising velocity is unique for the
vehicle (and it’s hourly rate of operational costs khr). It depends on the vehicle aero-
dynamic shape (cd, Af), air density (ρa) and power consumption (auxiliary power Paux
and power equivalent of operational costs Phr). It was shown that proposed heuristics
based on OCV significantly improves the precision of the energy consumption estimate,
which in turn then improves planning efficiency (decreases the number of examined
nodes) compared to the state-of-the-art heuristics. Moreover, the proposed solution
explores significantly less trajectories compared to DP approach.
Classic eco-driving work generally assumes single lane driving and often empty roads as
well. If leading vehicles are neglected in the optimization, the unconstrained planning
will not be fully achievable in real driving conditions, and may in some situations lead
to drawbacks in energy consumption and very likely to bad driver acceptance. The
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work which considers leading vehicles or other traffic constraints such as Traffic Lights
still considers single lane driving and therefore longitudinal vehicle control only (i.e.
only vehicle following).
This work focuses on the integration of constraints imposed by leading vehicles and
other traffic constraints (i.e. traffic lights) in a global approach to optimize energy
consumption. In [4] we presented the first solution (based on my knowledge) for mul-
tilane eco-driving, considering overtaking possibility in eco-driving. This was further
extended to full Level 5 automated driving with energy-efficiency considerations. In [7]
we presented the first solution (based on my knowledge) for optimal motion planning
for automated driving in multilane traffic with traffic lights.
To benchmark benefits of the proposed solution compared to human drivers, I orga-
nized a study in driving simulator with more than 20 participants. The results confirm
significant improvements in safety and efficiency compared to human drivers.

3.3.2 Unified motion planning solution for automated driving

As previously presented, many different approaches for motion planning are available,
but still, finding a collision-free motion plan, while taking into account system dynam-
ics, dynamic obstacles and possibly desired criteria (cost function) in a real time is an
unsolved challenge.
I developed Search-Based Optimal Motion Planning framework (SBOMP) presented
in [7] that is scalable to complex driving situation (combinations of multi-lane driving,
traffic lights, forbidden lane change, lane termination etc.) and can also enable energy
optimal driving (eco-driving), among other criteria. SBOMP framework relies on
MPC-like scheme and reusing the cost-to-go map to increase the search efficiency.
Cost-to-go map can be computed numerically by applying dynamic programming (DP)
to a relaxed problem, [5][4] or model-based (MB) [6].
SBOMP is based on the following features:

• a convenient search space definition, enabling intuitive formulation of a wide
variety of semantic constraints and their catalog including: traffic lights, other
vehicles, forbidden lane change, speed limits, etc.,

• the possibility to reuse backward planning results from a relaxed problem for
shorter planning times,

• integrated reference lane decision making and velocity trajectory planning (lon-
gitudinal and lateral motion),

• hybrid time/distance horizon and discretization steps that enable both slow and
fast trajectories,

• search in continuous time, distance and lane space provided by hybrid A* search,
• linear lateral motion model for efficient and effective lane-change planning.

In [7] we provided the first demonstration on the complex use-case with multi-lane
driving in a presence of traffic lights.
SBOMP framework is well suited for future extensions such as:
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• Smooth transition between different planning problems such as structured and
unstructured environment.

• Any kind on behavior prediction algorithms as well as interactive driving.
• Integration of Machine Learning approaches.
• Consider arbitrary type of constraint.
• Partial Observability.
• Non-deterministic behaviors.

3.3.3 Performance Driving use-case

The proposed A˚ search-based motion planning framework was adapted for perfor-
mance driving use-case and used to generate dynamically feasible trajectories on a
slippery surface, which is a novel approach in this field. The proposed method extends
drift-like driving from a steady state drifting on single curve to a continuous driving
on the road effectively entering and exiting drifting maneuvers and switching between
right and left turns. It assumes that the vehicle parameters and the road surface
properties are known to a certain degree, which allows it to define a set of steady-state
cornering maneuvers. The method is evaluated on a mixed circuit characterized by
slippery conditions (gravel), which contains several road sections of varying curvature
radii Rc.
As generating references in a continuous driving problem can be considered as a combi-
natorial optimization problem, heuristic search methods like A˚ can be effectively used
for automated optimal trajectory generation. The space of the possible trajectories
is explored by expanding different combinations of motion primitives in a systematic
way, guided by a heuristic function. Motion primitives are generated using two differ-
ent vehicle models. A bicycle model is used for small side-slip angle operations (i.e.
entry and exit maneuvers and close-to-straight driving) and a full nonlinear vehicle
model for steady state cornering maneuvers. Approach of generating motion prim-
itives for steady state cornering maneuvers is similar to the closed-loop prediction
approach (CL-RRT) [190], which uses closed-loop motion primitives for the expansion
when open-loop dynamics are unstable, so that the exploration by variations in the
open-loop dynamics becomes inefficient. Such automated motion primitives genera-
tion enables it to generate arbitrary trajectories, not limited to just single curve as in
previous approaches.

3.3.4 Basic research-related contributions

Besides direct contributions to the autonomous vehicle application, research work pre-
sented here contributes to several notable directions of fundamental research in the
fields Control, Planning and Learning as well. Contributions mainly lay in overlap
between these fields.

39



3 Related Work

Planning and Control

In the context of Planning and Control, contributions of this work can be summarized
as:

• extending solver methods used in MPC framework from generally used numerical
optimization (i.e convex optimization) to motion planning methods.

• enabling the use of results from infinite horizon in limited horizon MPC avoiding
problems of terminating set;

• using of optimal control results from simplified problem (i.e. optimal cruising
velocity, driving on the empty road) to improve search efficiency in complex
problem;

• using of equilibrium state manifold to generate motion primitives by sampling
from latent space, extension of closed-loop predictions (ideal closed-loop);

• efficient planning in some hybrid continuous-discrete problems.

The proposed solution is based on motion planning used in Moving Horizon fash-
ion. This is possible as motion planning can provide solution practically in real-time.
Moving Horizon fashion with limited horizon enables fast adaptation to the changing
environment. Furthermore, solution effectively combines infinite and finite horizon
planning. It uses solutions from infinite horizon planning for a simplified problem
(in a form of cost-to-go function) to guide search-based forward planning for limited
horizon. This avoids the need for a terminating set and reference, as forward planning
gets long term benefits of the final state trough cost-to-go function. Use of cost-to-go
function also improves computational performances and informs planner more. We
also provided theoretical solutions for simplified problem Optimal Cruising Velocity,
which can be computed from analytical solution.
For performance driving use-case, the presented approach uses closed-loop predictions
to generate motion primitives by sampling from latent space - equilibrium state man-
ifold. The presented approach is similar to the closed-loop prediction approach (CL-
RRT) [190], which uses closed-loop motion primitives for the expansion when open-
loop dynamics are unstable, so exploration by variations in the open-loop dynamics
becomes inefficient. This work is further improved as only solution from equilibrium
state are used effectively reducing sampling from 6-dimensional space to sampling in
the 2-dimensional space.
The proposed solution demonstrates no challenges when dealing with nonlinear, hy-
brid continuous-discrete systems, combinatorial optimization problems and switching
between models used for generation of motion primitives. It solves multiple combi-
natorial optimization problems behavior and motion planning for urban automated
driving and performance automated driving with different modes.

Planning and Learning

To improve computational performance of search-based planning, it is critical to im-
prove precision of heuristic function. We proposed to use Machine Learning (ML) to
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approximate Value function and use it as a heuristic function and used it in determin-
istic planning framework such as SBOMP. The proposed ML-based heuristic function
takes into account dynamic obstacles, thus adding to the performance consistency for
achieving real-time implementation of the motion planning [8]. The large drawbacks
of pure ML-based solution, such as hard-to-guarantee safety, could be improved if used
in deterministic frameworks, such as SBOMP [7]. Proposed ML heuristic is bounded
by admissible heuristic (acquired by solving relaxed problem using DP), so guarantees
on sub-optimality can be provided as well. Heuristic is bounded to be ε-admissible
so the solution is always maximum ε times greater than the optimal solution [216].
Values of ε closer to 1 guarantee smaller deviation from optimal solution but reduce
computational performance.
The main contribution of this work can be summarized as:

• systematic dataset generation from exact optimal solutions for supervised learn-
ing of optimal behavior,

• convenient representation of driving situation as input for machine learning al-
gorithm,

• use of machine learning for a heuristic in a deterministic planning framework
with guaranteed maximum deviation from optimal solution,

• use of receding horizon approach instead of greedy policy search on value func-
tion.

Further on, that work was significantly improved and generalized to Shortest Path
Problems in general [9]. The main contribution is a novel search-inspired approach
for efficient and systematic exploration of the models for Value Function (cost-to-go)
learning, based on backward and prolonged heuristic search. While other concurrently
introduced approaches in this direction use only states from the solution path (which
wastes most of the explored states) or expand all states with Dijkstra’s like algorithms
(which explores unnecessary states as well), our approach offers balance and ensures
that only interesting nodes are explored and all explored nodes are used for value
function learning.
Our work is based on a premise: For learning of the Value function it is more beneficial
to explore states in the neighborhood of the optimal path (policy) than elsewhere, as
the agent will spend most of the time in the neighborhood of optimal path.
Having explored neighboring region around optimal path helps to get back to the
optimal path if the planner deviates and provides a better coverage for A* algorithm,
which always looks for neighboring states. This, in return, improves both the efficiency
and robustness of successive planning.
Motivated by this idea, we can prolong the search even after the optimal path was
found. Search does not stop when the first path connecting goal and start is found
(optimal path), but rather prolongs search such that k-times more states are explored.
This ensures that wider region around the shortest path is explored. Additionally,
the direction of the search is flipped, such that the search starts from the goal node.
In this way, goal state is reachable from all explored nodes and therefore the exact
cost-to-go value is available.
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Presented approach is not restricted only to problems like this, but can also be used
in reinforcement learning frameworks.
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A problem well stated is a problem half-solved.
Charles Kettering

So far in introduction chapters, we have seen anoverview of autonomous vehicle tech-
nology and related work in planning for autonomous vehicles, as well as concrete
contributions of this work. This chapter aims to provide the definition of concrete
problems tackled in the thesis. These problems are then further investigated in Mod-
elling and Motion Planning chapters that follow.
This chapter is organized as follows. In section 4.1, the ultimate goal of the research
is defined. In section 4.2, the general driving problem is introduced as well as three
concrete use-cases covered in this thesis. In sections 4.3 and 4.4, preliminaries about
vehicle dynamics and environment modeling are presented. In section 4.5, evaluation
of SuperHuman driving performance is discussed. In section 4.6, a concise analysis of
the problem complexity is presented. This is followed by a summary of the challenges
and specific problems.

4.1 SuperHuman Autonomous Vehicle

The ultimate goal of my research is to develop real-time decision-making and control
systems that would enable autonomous vehicles to achieve SuperHuman driving per-
formance, while operating autonomously in full real world complexity. The vehicle
equipped with such systems is referred to as SuperHuman Autonomous Vehicle
(SHAVe). SHAVe would be able to take over repetitive driving tasks from humans
when needed, operating with increased safety, efficiency and comfort, while providing
humans with the time for more creative tasks and an increased quality of life. Be-
sides performing the regular driving task better than human drivers, SHAVe would
be capable to do even some tasks that regular human drivers are not capable of (i.e.
performance autonomous driving).
Here, I define SuperHuman driving performance as a performance better or equal to
the performance achievable by human drivers in terms of: safety, efficiency and com-
fort. In the section 4.5 evaluation of each of these is defined in more detail. Achieving
SuperHuman performance might be possible by intrinsic properties of the digital sys-
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tem such as robustness to the disadvantages of human drivers due to fatigue, lack off
attention, driving under influence of drugs or alcohol etc. Additionally, autonomous
vehicles could have faster response time and make more informed decisions, as they
can rely on more sources of information, i.e. use additional sensors that work even
in conditions where visibility is low and get information from other vehicles or in-
frastructure using connectivity. To operate in all conditions a human can operate,
with improved performance, SuperHuman autonomous vehicles should make use of all
available information, but should however not critically rely on them, as the vehicle
will most probably have to co-exist with human drivers in the traffic.
In Artificial Intelligence, Control Theory and related fields, the term autonomous is
widely used for a long time. In Control Theory, autonomous system is the system that
has no input, so dynamics of the system cannot be manipulated [184]. In Artificial
Intelligence, autonomy is a property of intelligent agents. The term agent is used to
represent an entity existing in an environment, capable of perceiving it’s environment
through sensors and acting upon it through actuators. If an agent is behaving in a such
way that it maximizes some expected performance measure, the agent is called to be a
rational agent and can exhibit intelligent behaviors [93, p. 34]. A rational agent should
be autonomous, meaning it should be able to perform its intended functions without
being directly operated by a person [187]. An agent can be equipped with compu-
tational deliberation capabilities (planning) that allow an agent to “reason about its
actions, choose them, organize them purposefully, and act deliberately to achieve an
objective” [187]. For low diversity tasks and fully specified environments, the agent
may not need deliberation (i.e. manufacturing robot), as it can be pre-programmed
with a library of reactive behaviors. However, an agent will require some degree of
deliberation if it has to operate in diverse environments, tasks and interactions that is
definitely the case for Autonomous Vehicle (Level 5 Automated Driving).
In the SAE J3016 report [89], it is recommended to avoid using the term “autonomous
vehicle” as the meaning is often inconsistent and can sometime refers to Autonomous
Driving Systems with Level 3 that still relies on contribution of human operator. In
this work, the term autonomous vehicle is used for Automated Driving Systems
(ADS) with full driving automation (Level 5). Additionally, an autonomous vehicle
transcends Level 5 ADs, as it can achieve some tasks that regular driver cannot (i.e.
performance autonomous driving).
Developing SuperHuman autonomous vehicles is a tremendous feat far beyond a single
PhD thesis. Therefore, this work is focused on three use-cases, sampled from a width
of autonomous vehicle operation. Energy-efficient Driving, i.e. applicable to heavy
duty vehicles operating with increased energy-efficiency; Automated Driving in com-
plex, urban environment; Performance Autonomous Driving, exploiting the full vehicle
dynamics. Moreover, autonomous vehicles should perform all these tasks achieving a
performance that significantly exceeds average human driving performance, even pro-
fessionals.
Many other use-cases remain out of the scope of this thesis, including long-term auton-
omy vehicles (delivery robots, exploration rovers etc.), multi-vehicle fleets (cooperative
driving, platoons, Mobility-on-demand, etc.), etc.
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4.2 Driving task

Driving is a complex task consisting of continuous perception, planning and execu-
tion in order to achieve desired goals while avoiding collisions with other participants,
obeying traffic rules, complying with vehicle dynamics and factors like comfort, safety
and efficiency. To fully automate driving, the vehicle has to be able to autonomously
make decisions and plan its motion, while considering all mentioned requirements. The
environment is usually highly dynamic, with speeds that may reach 50m{s or above
(highway driving). Moreover, the environment may be complex, including many dif-
ferent participants, traffic rules, traffic control devices, etc. The mentioned conditions
impose many different constraints on the driving. To achieve safety levels higher than
a human driver in full AV, errors introduced by technology should be minimized, which
is still a challenging goal (210 million km driven between two fatal accidents) [21].
For developing a functional system architecture for automated driving, Ulbrich et al.
[92] provides a very insightful overview of research about human driving behavior.
They mention that [217] distinguishes three levels of performance of skilled human
operators for performing general tasks. These behaviors are: “skill-based behavior”,
“rule-based behavior”, and “knowledge-based behavior”. Skill-based behaviors are the
lowest level, sub-conscious, sensory-motor activities. Rule-based behaviors are, as the
name indicates, based on rules defined for a certain situation. If the operator does
not have defined rule for a certain situation (i.e. did not have a similar experience),
existing knowledge can be used for reasoning about how to achieve the goal, that
is knowledge-based behavior. Furthermore, they mention that Donges [218] distin-
guishes three hierarchical levels of driving tasks. These are: “navigation”, “guidance”,
and “stabilization”. Hale et al. [219] combines these two classifications and suggests
that the Donges’ three levels of driving tasks and the three levels of Rasmussen are
orthogonal to each other. Depending on the setup, different levels of human behavior
might be used for doing the same task as shown in the Table 4.1.

Table 4.1: Examples of driving tasks with related processing levels based on Hale. Ilus-
tration is based on Ulbrich’s et al. [92] translation of [220].

Processing level
Skill-based Rule-based Knowledge-based

D
riv

in
g
ta
sk Navigation Daily commute Choice between

familiar routes
Navigating in
foreign town

Guidance Negotiating
familiar junctions Passing other car

Controlling a skid
on icy roads

Stabilization Road following
around corners

Driving an
unfamiliar car

Learner on first
lesson

Based on Donges’ hierarchical levels of driving tasks we can define, a rather usual,
architecture of vehicle control, consisting of “mission (route) planning”, “behavior and
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Use-case
Scenario

Scene

Functional range

Desired behavior

Functional System
boundary

Actions and events

Goals and Values

Dynamic
elements

Scenery

Self
representation

Figure 4.1: Scene, Scenario and Use-Case definitions based on [221].

motion planning” and “stabilizing control”. Focus of this research is on behavior and
motion planning.
Formally, Society of Automotive Engineers (SAE) defines Dynamic Driving Task
(DDT) in SAE J3016 [89] as:
“Dynamic driving tasks comprise all the real-time operational and tactical functions
required to operate a vehicle in on-road traffic, excluding the strategic functions such
as trip scheduling and selecting destinations and waypoints, and including without
limitation:

• Lateral vehicle motion control via steering (operational)
• Longitudinal vehicle motion control via acceleration and deceleration (opera-

tional)
• Monitoring the driving environment via object and event detection, recognition,

classification, and response preparation (operational and tactical)
• Object and event response execution (operational and tactical)
• Maneuver planning (tactical)
• Enhancing conspicuity via lighting, signaling and gesturing, etc. (tactical)”

4.2.1 Tackled use-cases

Across the literature many terms related to automated driving are not clearly defined
(i.e. scene, scenario, use-case). Ulbrich et al. [221] provides extensive definitions for
describing autonomous vehicle operations. These definitions are adopted in this work.
Ulbrich et al. [221] defines scene as:
“A scene describes a snapshot of the environment including the scenery and dynamic
elements, as well as all actors’ and observers’ self-representations, and the relation-
ships among those entities. Only a scene representation in a simulated world can be
all-encompassing (objective scene, ground truth). In the real world it is incomplete,
incorrect, uncertain, and from one or several observers’ points of view (subjective
scene).” Further scenario builds upon scenes and includes as well “actions and events”
and “goals and values”. Ulbrich et al. [221] defined it as:
“A scenario describes the temporal development between several scenes in a sequence of
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4.2 Driving task

scenes. Every scenario starts with an initial scene. Actions & events as well as goals &
values may be specified to characterize this temporal development in a scenario. Other
than a scene, a scenario spans a certain amount of time.” Temporal development of
scenario is generally conditioned by actions of ego-vehicle as well. Finally, the use-case
builds upon scenarios and includes additionally “functional range”, “desired behavior”
and “functional system boundary”. Ulbrich et al. [221] defined it as:
“A use-case entails a description of the functional range and the desired behavior, the
specification of system boundaries, and the definition of one or several usage scenarios.
While these scenario descriptions might be rough and incomplete in the first phase, they
may be detailed to achieve fully testable test-cases in the development process.”
These relations are depicted in Figure 4.1.
As mentioned in introductory chapters, there are three major use-cases treated in this
work: Energy-efficient Driving, Automated Driving and Performance Autonomous
Driving. For each of the use-cases all aspects will be defined.

4.2.2 Problem 1: Energy-efficient Driving (eco-driving)

The goal of this use-case is to execute transportation task from point A to point B
using the least energy, while complying with constraints (i.e. speed limits), based
on available map data. It is assumed that the vehicle drives on a single-lane road
without other traffic participants. The route is already available trough navigation
system. The vehicle can be represented by a mass-point longitudinal dynamic model
considering resistive forces like air-drag, roll and road slope. A typical scenario of
automated driving use-case is driving over hilly, empty road while considering long-
term benefits of velocity adaptations to minimize energy consumption. An extension
to multi-lane driving in traffic is tackled in Automated Driving use-case.

4.2.3 Problem 2: Automated Driving

The other concern is to fully free human drivers and improve traffic safety, efficiency
and comfort by automating driving task. In this use-case we assume that vehicle
can operate in full velocity range, fully independently, and do all dynamic driving
tasks (DDT) without any input from a human (Level 5 AD). The goal is to achieve
acceptable behavior while driving among other traffic in everyday driving situations
and satisfying traffic rules (i.e. driving on multilane roads, highway, intersection, etc).
While executing driving task, vehicle should aim to minimize energy consumption. It
is assumed that the vehicle is equipped with a robust perception system providing
information about the environment (i.e. position and velocity of all vehicles around).
Also, it is assumed that this kind of driving does not require extreme maneuvers that
would push vehicle dynamics to the limits. Additionally, it is assumed that motion of
the other vehicles can be predicted and all eventual deviations (including deviations
due to ego-vehicle actions) can be compensated by frequent replanning. An typical
scenario of automated driving use-case is multi-lane urban driving in the presence of
traffic lights. In this scenario, vehicle is driving on multi-lane road, multiple vehicles
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are driving around ego vehicle and traffic lights are present. Autonomous Vehicle
drives in this situation while minimizing energy consumption as it can use information
about traffic light timings.

4.2.4 Problem 3: Performance autonomous driving

The tackled problem in this use-case is to achieve a minimum lap time driving on
an empty track in low friction conditions, i.e. gravel road. It is assumed that the
vehicle is equipped with a map of the road and a localization system. Therefore, the
vehicle has the information about the road ahead, as well as left/right boundaries and
exact position and orientation. Moreover, the full vehicle state feedback information
is available. In particular, besides dynamic states, the low-level controller (that is
not covered in this work) for state tracking requires measurements and estimates of
several quantities, including wheel forces and wheel slips, both longitudinal and lateral.
Finally, the combined longitudinal/lateral tire-road contact forces characteristics are
assumed to be known and constant. The road, on the other hand, is assumed to
be empty, flat, with static road-tire characteristic and can have arbitrary shape with
constant width. In this use-case, the typical scenario could be driving in sharp curves
(i.e. with radius 15m) and entering high side slip angle states (drifting).

4.3 Vehicle dynamics

Vehicle dynamics can be challenging to model, especially in highly dynamical condi-
tions such as performance driving. Although some aspects of vehicle dynamics can
be analytically expressed, some can not (i.e. lookup tables for energy-efficiency).
However, even analytical aspects represent a challenge for some methods as they are
nonlinear (i.e. air drag resistance is proportional to the square of the velocity, road
slope can have arbitrary shape, etc.). Including the motor efficiency introduces dis-
continuity, as there is a sign function in motor torque calculation. Vehicle kinematics
introduces non-holonomic constraints that can also influence feasibility of some tra-
jectories, requiring so-called kinodynamic motion planning. Additionally, adequate
modeling of tire-road interaction forces is also challenging. Upon everything, the sys-
tem is controlled by only two inputs (steering and acceleration/braking), making it
underactuated system which is additional challenge.

4.4 Environment

The vehicle does not operate in isolation. Rather, it is operating in an environment
which is complex and dynamic, with many other traffic participants. The vehicle
has to avoid collisions with surrounding entities, therefore, the environment imposes
dynamic constraints on the motion of ego vehicle (that are not known in advance).
The incorporation of the dynamic constraints increases the problem complexity and
causes some method that do not build trajectory from start to fail. Further, to do
predictive planning, future trajectories of other entities have to be predicted. In some
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cases, future trajectories of other traffic participants are affected by the actions of
ego-vehicle, making it also a multi-agent problem.
Beside pure collision avoidance, the vehicle should posses a certain level of situation-
awareness and behave appropriately for a given situation, and tend to comply with
traffic rules at all times. Driving behaviors acceptable in one situation might not be
acceptable in another. The problem is that driving situations vary a lot, so a general
solution is hard to formulate. As shown in Figure 4.1 and Section 4.2.1, scenarios
are mainly represented by at least 5 factors, each of them having multiple variants,
causing combinatorial explosion. Also, representing traffic rules as such that they
can be processed by an algorithm to validate motion plan might be challenging, and
integrating it with other tasks of planning (i.e. avoiding collision) might be extremely
challenging.

4.4.1 External constraints

External constraints can be classified according to the dependence on two variables
relevant for the optimization problem. These are space and time. This means that
external constraints can be grouped into four different groups summarized in Table
4.2.

Table 4.2: External constraints classification.

Time variant Time invariant
Space variant other traffic participants resting time (e.g. every 2h)

Space invariant traffic lights
traffic signs (e.g. speed limits),
road curvature, lane markings,

etc.

Generally speaking, invariant constraints are easier to integrate into the optimization
problem than varying constraints. In some cases integration of time/space variant
constraints can lead to tremendous efforts.
Time-and-space-invariant constraints are straight forward to integrate as they do not
change neither in time nor in space. Examples are traffic signs that limit maximum
speed on some road segments or road curvature that limits maximum speed due to
the risk of loosing the track due to under-steering. On curved segments, a minimum
longitudinal acceleration limit can also be imposed. The resulting acceleration would
generate an inertial force pushing back the driver and improving the drivability feeling
since it may partly compensate the uncomfortable centrifugal forces. Constraints
of this type are also lane markings. An example of a time-invariant-space-variant
constraint could be resting time. Usually the driver has to make resting stops after
continuously driving for longer periods. This generally does not explicitly depend
on space as there are more resting spots along the road. With some approximation,
charging (or fueling) of the vehicle could be considered as a constraint of this type.
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Time-variant-space-invariant constraints do not change in space but change with time.
A typical example of this is traffic light, which sets the maximum speed limit to zero
when the red light is active. This happens in that time intervals at a fixed location in
space.
Time-and-space-variant constraints are usually hardest to consider, sometimes even
impossible with reasonable effort. Typical examples of a constraint of this type are
other vehicles moving in the surrounding traffic. Constraints are on the speed and
position of the controlled vehicle. Time and space of such constraints are not fixed,
since the velocity of the controlled vehicle itself influences the constraint. For example,
if the controlled vehicle is moving faster, it will reach a leading vehicle sooner in time
and space. Things get even more complicated when considering the possibility of
overtaking. In this case, the speed of the controlled vehicle has to be significantly
higher than the speed of the leading vehicle, providing a speed difference to safely
overtake.

4.4.2 Observability

Generally, AV does not have the full information about the environment and self-
state. There are two major ways how AV can get information about the environment,
by communicating with environment or on-board sensors.

Vehicle to Infrastructure communication (V2X)

Vehicle communication is a wide topic. In this work, it is of interest to utilize com-
munication with infrastructure and to utilize Traffic Light Signal Phase and Timing
(SPaT) to better predict future states of traffic lights. Systems like this are already
available is some vehicles, i.e. Audi announced the first vehicle-to-infrastructure (V2I)
service, where state of the traffic light and duration until the next change is available
to the driver in some cities [222].
Besides traffic light SPaT signal, it is useful to a acquire map of the road with elevation
profile of the road ahead for predictive velocity planning with aim to reduce energy
consumption. Imminent road structure (i.e. lane reduction) can be provided by the
map as well.

Environment perception

Reliable prerception of the environment is a challenging task as it was addressed in sec-
tion 2.3.2. In this work, it is assumed that AV is equipped with appropriate on-board
perception system capable of providing adequate information about the environment,
mainly position and velocity of all surrounding vehicles. Even though, real-time envi-
ronment perception systems with high degree of reliability are still being developed,
it is reasonable to assume that they will be available soon.
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Future behavior of other agents

Even if the perfect information about other vehicles operating in the environment was
available to the AV, the future movement is generally unknown, and some assumptions
must be made. Furthermore, future trajectories of other vehicles can also be affected
by actions of ego vehicle. Behavior prediction is a complex topic. In this work, it is
assumed that a valid behavior prediction of other vehicles is available and discrepancies
can be compensated with frequent replanning.

Vehicle state information

As it was mentioned earlier, vehicle dynamics is complex to express. Additionally, not
all vehicle states can be directly measured (i.e. side slip angle). However, it is reason-
able to assume that appropriate state estimators, that complete missing measurements
and provide information about all vehicle states, are available.

4.5 Performance Measure

SuperHuman driving performance is manifested in improved safety, efficiency and com-
fort, compared to human drivers. Safety improvements are manifested in reduced
number of collisions with vulnerable road users and other traffic participants, while
satisfying traffic rules (e.g. speed limits, traffic lights, lane availability). Efficiency
improvements are manifested in energy consumption reduction. Finally, improved
comfort should manifest in better human acceptance. A cost function can be used
to measure quality of a given solution trajectory. It should be possible to evaluate
multiple goals, such as short travel time, comfort, safety, energy-efficiency, or some
combination. Generally, it is a multi-objective optimization problem. The design of
the cost function is particularly important as it influences vehicle behavior and defines
the optimal solution. Human preferred driving behavior might be hard to express
using cost function.

4.6 Problem complexity

Driving in traffic is generally a combinatorial optimization problem. For example, if
there are two lanes and ego vehicle is in the right lane, with a slow vehicle in front
and other vehicle approaching in other direction, there are two possibilities to overtake
the slow vehicle. The first option is to slow down and wait until vehicle in the left
lane passes and then overtake the slow vehicle. The second option is to speed up and
overtake slow vehicle before the vehicle on the left lane approaches. In more complex
environments, number of variants grows exponentially. Also, for performance driving
problem, driving along the full track generally requires driving trough multiple curves,
with variable curvature radius and a mix of right and left curves. When different
modes are possible (i.e. drifting, straight exiting/entering, etc.), deciding the mode
for a segment affects subsequent segments, as transitions between modes are not trivial.
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Assigning the modes to the segments arises as a problem, which can be viewed as a
combinatorial optimization problem. Due to the combinatorial nature, many methods
cannot be used to solve this problem (i.e. convex optimization).
If the optimization is solved numerically, dynamical system state discretization is nec-
essary. Increasing the order of dynamical system (problem dimensions) considered in
optimization problem, the number of possible discrete state combinations increases
exponentially. For example, if each dynamical state has 100 distinct values, a 2 di-
mensional system has 10.000 possible state combinations and introducing the third
dimension it becomes 1.000.000. This requires also the number of samples to raise
exponentially to avoid sparse sampling. Bellman called this problem the “curse of
dimensionality” [43]. This problem becomes even more challenging when consider-
ing multi-stage optimization problems, i.e. optimal control, where the state trajectory
evolves over the time. For example, if a branching factor, representing the number of
possible state transitions at each stage, is 100, on the second stage it is already 10.000
different trajectories and on the 12th stage it will reach the 1024, that is an order of
magnitude as the number of stars in the Universe. In practice, it is very challenging to
apply Dynamic Programming for problems with more than 4 dimensions, and some of
these problems (i.e performance driving) require at least 6 dimensions to describe all
the states. “Curse of dimensionality” directly affects computational complexity. As
the focus is on the real-time applications within a vehicle, the general trade-off between
computation time and precision (sampling factor) has to be taken into account, which
will have an impact on the choice of the methods. In general, long planning horizons
are necessary in order to achieve long-term benefits, such as energy-efficiency.

4.7 Challenges

Based on all mentioned aspects of this problem, major challenges can be summarized
as follows.

• Human-level safety driving performance is high.
• Vehicle dynamics is complicated.
• Environment is complex.
• Performance measure that express human preferred driving is hard to formulate.
• Real-time performance is challenging as the problem is Combinatorial Optimiza-

tion Problem with high dimensionality and long horizons.

4.8 Problem summary

In this section, the goal is to summarize the general problem and three use-cases by
defining clear assumptions and requirements based on previous discussion. Firstly,
general assumptions and requirements are stated, then additional assumptions and
requirements for each of the use-cases are defined, and in the end, some requirements
that should support future extensions are stated.
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4.8.1 General problem

Assumptions and requirements common for all use-cases are defined as follows.
Assumptions:
A0.1 The AV is equipped with the system that provides estimate of the full vehicle

state.
A0.2 The AV is equipped with the system that provides information about the road

ahead including elevation, speed limits and road/lane boundaries.
A0.3 The AV is equipped with the system that provides appropriate route for the

whole trip.
A0.4 The AV is equipped with the low-level controller that assures the plan is executed.
A0.5 The AV is equipped with the appropriate vehicle model, including vehicle con-

sumption model.
Requirements:
R0.1 The AV planning system shall provide dynamically feasible trajectories.
R0.2 The AV planning system shall have close-to real-time performance.

4.8.2 Problem 1: Energy-efficient Driving

Assumptions and requirements for Energy-efficient Driving use-case are defined as
follows.
Assumptions:
A1.1 The AV drives on an empty road with a single lane.
Requirements:
R1.1 The AV planning system shall provide a solution that minimizes energy con-

sumption of the vehicle.
R1.2 The AV planning system shall provide a solution for the full trip.
R1.3 The AV shall obey existing traffic rules (i.e. speed limits).

4.8.3 Problem 2: Automated Driving (Level 5)

Assumptions and requirements for Automated Driving use-case are defined as follows.
Assumptions:
A2.1 The AV is equipped with perception system that provides positions and velocity

of surrounding vehicles.
A2.2 The AV is equipped with prediction system that provides prediction about be-

havior of other participants including their estimated state trajectory.
A2.3 The AV can drive in all available lanes.
A2.4 The AV does not operate in extreme maneuvers, so some vehicle dynamics sim-

plifications are possible.
A2.5 The AV drives in the traffic (other vehicles are present).
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A2.6 The AV drives in the presence of traffic lights.
Requirements:
R2.1 The AV shall be capable to drive in all scenarios on structured roads (urban,

suburban and highway).
R2.2 The AV shall obey existing traffic rules.
R2.3 The AV shall drive along required route using the least energy.
R2.4 The AV shall be capable to drive in full velocity range, including the full stop.
R2.5 The AV shall use all available information from communication, however do not

critically rely on them.

4.8.4 Problem 3: Performance Autonomous Driving

Assumptions and requirements for Performance Autonomous Driving use-case are de-
fined as follows.
Assumptions:
A3.1 The AV drives on the slippery road (i.e. gravel road) with known, constant

road-tire characteristic.
A3.2 The AV drives on the empty track.
Requirements:
R3.1 The AV should drive safely on the road while aiming for the minimum lap time.
R3.2 The AV should be capable to drive in arbitrary planar road geometry (i.e. varying

curvature radius, mixed right and left curves) without need for adjustments.

4.8.5 Future extensions

There are several requirement that should enable future extension of the planning
system:
R4.1 The AV planning system shall be expendable to consider use-cases beside struc-

tured road (i.e. parking).
R4.2 The AV planning system shall be expendable to consider different behavior pre-

diction algorithms.
R4.3 The AV planning system shall be expendable to consider non-deterministic ef-

fects.
R4.4 The AV planning system shall be expendable to consider limitations of perception

system (i.e. blind spots).
R4.5 The AV planning system shall be expendable to consider interaction with other

participants (i.e. multi-agent problem).
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All models are wrong, but some are useful.
George E. P. Box

Since Isaac Newton’s invention of differential and integral calculus, his discovery of laws
of motion and explanation of planetary motion, it is clear that in many cases motion of
physical systems can be well described using analytical equations. Selecting a model
that represents physical system realistically enough yet simple enough is sometimes
challenging. Simplistic models enable better computational performances and wider
range of methods that can be applied. However, they might not represent the real
system precisely enough and thus cause poor operational performance when used in
predictive control setup. They can even provide solution trajectories infeasible for the
real system.
For autonomous vehicles, there are several aspects which should be modelled properly.
These include vehicle dynamics, environment (including road, traffic rules, other traffic
participants, etc.) and driving objective. These can serve to model different scenarios.
Each of these aspects is covered in more details in the following sections.

5.1 Vehicle model

Depending on the specific use-case problem, different levels of details are needed to
properly model the vehicle and use models for a predictive control. For example,
Energy-efficient Driving requires a vehicle consumption model, but the vehicle dy-
namics model can be much simpler than in the case of Performance Driving. On the
other hand, Performance Driving requires detailed tire-road friction model and simple
model will not suffice. For Automated Driving and Performance Driving use-case,
Motion Planning algorithm constructs vehicle trajectories by concatenating smaller
segments of trajectories, the so-called “motion primitives”, that are generated based
on the vehicle model. Therefore, the feasibility of these trajectory depends on the
quality of vehicle model approximations.
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Figure 5.1: Vehicle on a slope, the force balance.

5.1.1 Longitudinal motion model

Assuming that the vehicle orientation does not deviate much from the road direction
and the road is close to straight, vehicle motion can be modelled using longitudinal
motion model [223]. This is generally the case for energy efficient driving scenarios.
Several resistive forces can be modelled including air drag resistance, roll resistance
and gravity component. Figure 5.1 illustrates the force balance for vehicle on a slope.
The resulting force is the force accelerating the vehicle. Gravity has two projections,
one on s-axis along the road representing the direct resistive force and other on z-axis
contributing to roll resistance. The longitudinal motion is given by:

vptq “BsptqBt , (5.1)

aptq “BvptqBt “ Fmptq ´ Frptq
m

, (5.2)

Frptq “ 1
2ρacdAfvptq2
loooooomoooooon

air-drag

` crmg cos pα psptqqq
loooooooooomoooooooooon

roll resistance

`mg sin pα psptqqq
loooooooomoooooooon

gravity resistance

, (5.3)

where vptq and aptq are velocity and acceleration along s, and Fmptq and Frptq are
forces generated by the motor and total resistive force respectively. Other parameters
represent vehicle aerodynamic shape (cd - drag coefficient, Af - front surface area), air
density (ρa) and roll coefficient (cr).

5.1.2 Planar motion model

Modelling planar motion of the vehicle is very challenging. As mentioned in Chapter
4 (Problem Definition), there are multiple aspects to be considered, including longitu-
dinal, lateral and yaw dynamics, tire-road forces, load transfer, etc.
For vehicle motions that do not stress vehicle dynamics, several simplifications can
be used to effectively reduce the problem complexity. For example, for small side
slip angle motions, linearized model can be used. Moreover, for driving in structured
environments with defined lanes, lane change model can be used to avoid full kinematic
motion in a plane.
For vehicle motions that push vehicle dynamics to the limits, more detailed vehicle
models are required. Deep insight in vehicle dynamics modelling is provided in [180],
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that is used in Performance Driving use-case. In this work, only Equilibrium State
Manifold concept is presented, as it is required to understand further generation of
motion primitives in the Chapter 6 (Motion Planning).

Kinematic vehicle model

A kinematic model defines the state evolution based on pure geometry, without con-
sidering forces and evolution of higher order dynamics, which are treated as inputs.
These states are considered in the full dynamics model. Such a model is comprised
of six states rx, y, ψ, v, β, 9ψsT , where x, y and ψ represent kinematic states (position
and yaw angle), and v, β are vehicle velocity and side-slip angle respectively. The
evolution of x and y is given by:

9x “ v ¨ cospψ ` βq, (5.4a)
9y “ v ¨ sinpψ ` βq, (5.4b)

where v, β, 9ψ are given by the selected vehicle model.
In regular driving situations, i.e. for small values of β, the trajectory identified by
(5.4) is mostly determined by v and 9ψ, and therefore can be planned by means of
linearized vehicle models, valid for small variations of β and 9ψ. When driving on
slippery surfaces, such solution is not suitable anymore, due to the effect of β in (5.4)
and to the complexity of the model which describes the vehicle motion for larger
values of β. A major limitation which stems from using a full nonlinear vehicle model
is the so-called “curse of dimensionality”, and related computational explosion when
introducing new states. In fact, if motion primitives were generated with the full
nonlinear vehicle model, the computational burden would increase excessively, thus
making it a non-viable option for an online implementation.
To overcome unnecessary increase in computational burden, we generate motion prim-
itives by using following simplifications:

• for Automated Driving use-case:
– we neglect side slip and use vehicle longitudinal motion model and lane
change approximation.

• for Performance Driving use-case we use:
– the so-called “bicycle model” [224] for straight-driving/mild-turning ma-

neuvers, and
– a convenient approximation of the full nonlinear model, based on the the-

oretical vehicle equilibrium-states for steady-state cornering maneuvers.

Lane change model

Since urban driving includes lane changes as well, modelling the lateral motion is of
particular importance. This is not straightforward, because of the vehicle kinematics
and dynamics. For planning purposes, it is important that the model is conservative,
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Figure 5.2: Lateral motion model.

so that the resulting trajectory is feasible for the lower level controller, yet not too
conservative to prohibit many, otherwise feasible, solutions. For planning in structured
environment, such as highway driving or urban driving on designated lanes, lateral
motion can be simplified to three modes: driving in a lane and lane changing (right
and left) as introduced in [7]. To provide feasibility to lower level controller, it is
modelled with maximum time TLC needed for the vehicle to execute the lane change.
This is consistent with [225], where the authors stated that most of the lane-changes are
executed in 3´ 8 seconds. This simplification works well for larger velocities (approx.
greater than 2m{s). For smaller velocities, time for lane change is generally larger,
but this can be considered by the planner dealing with unstructured environment
(i.e. parking maneuver). Alternatively, the clearance for the lane change on smaller
velocities can be provided with a greater safety buffer around the obstacles.
Equation (5.5) describes the lateral motion for these three modes. Variable l represents
the lane in which vehicle is driving as it is describe in more details in section 5.2.1.
As it can be seen in Figure 5.2, we can effectively reduce one degree of freedom (yaw
angle ψ), and still provide kinematic feasibility of the solution trajectories (as the
rate of lateral change is conservative). Additionally, this approximation is not too
conservative as it is still possible to provide solution in very tight maneuvers.

Blptq
Bt “

$

’

&

’

%

´ 1
TLC

, lane change right,
0, stay in lane,

1
TLC

, lane change left.
(5.5)

Equilibrium States Manifold

For cornering maneuvers in performance driving, the motion primitives are generated
based on previously computed Equilibrium State Manifold. When generating target
reference states, one of the main issues is ensuring that the reference values can be
actually reached in a sufficiently short time. This problem is made harder by the
slow dynamics of the vehicle longitudinal and lateral accelerations, due to the slippery
surface considered. Two actions are taken to counter this problem:

• “slow varying” reference set-points are used, in order to allow the low level ac-
tuator to bring the actual state in proximity of the desired one,
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Figure 5.3: Bicycle model.

• only reference states belonging to a specific “Equilibrium States Manifold”
(ESM) are considered.

To obtain such manifold, that requires a reliable model for vehicle and tire-road contact
forces, an off-line computation is performed, that provides the steady-state solutions
of the vehicle cornering at different curvature radii [226]. These solutions include the
vehicle control inputs (steering wheel angle and rear wheels slip) as well as the vehicle
states v, β, 9ψ. For the offline computation of the equilibrium points, the full-vehicle
nonlinear model is exploited, where the tire-road forces Fx, Fy for each axle (Fx,f “ 0
due to the Rear Wheel Drive (RWD) configuration) are obtained from the normal
forces Fz and the combined longitudinal/lateral friction model (see [227]):

Fx,i “ Fz,iµxpλi, αiq, Fy,i “ Fz,iµypλi, αiq, (5.6)

where µ is the friction coefficient, λ and α the longitudinal and lateral slips respectively.
The nonlinear friction functions take the form of the Magic Formula (MF) tire friction
model [227], with an isotropic friction model being used for simplicity. This requires the
computation of the theoretical slip quantities (σj, j P tx, yu), which can be obtained
from α, λ as follows:

σx “ λ

1` λ, σy “ tanα
1` λ, σ “

b

σ2
x ` σ2

y. (5.7)

Then, the one-directional friction coefficients are given by:

µi “ σi
σ
D sin

´

Cλ arctan
`

σB ´ EpσB ´ arctan σBq˘
¯

, (5.8)

for i P tx, yu, with B “ 1.5289, C “ 1.0901, D “ 0.6, E “ ´0.95084 being the Pacejka
parameters corresponding to gravel.
The vehicle responses can be obtained from the following system of nonlinear equa-
tions, which considers the lateral, longitudinal and rotating balance equilibrium equa-
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Figure 5.4: Equilibrium points sets Sss (and linear interpolation) in the v, β, 9ψ space
for counter-clockwise cornering maneuvers with different curvature radii
Rc.

tions around the vehicle center of gravity:

9v “ 9ψvβ ` Fx,r
m

, (5.9a)

mvp 9β ` 9ψq “ Fy,f ` Fy,r, (5.9b)
Jz :ψ “ lfFy,f ´ lrFy,r, (5.9c)

where Jz is the vehicle inertia around the z-axis, m the vehicle mass and lf , lr are the
distances of the vehicle COG from the front and rear axles respectively. Moreover, the
longitudinal weight transfer is also considered. Assuming a rear-wheel drive (RWD)
drivetrain configuration, and given different sets of values of the constant control
inputs (steering wheel angle δ, driving wheels slip λ), the equilibrium points Sss “
rvss, βss, 9ψsssT can be computed, in order to achieve different constant curvature radii
Rc, by considering the uniform circular-motion relation 9ψ “ v

Rc
, and imposing in (5.9)

the steady-state condition:

9v “ 9β “ :ψ “ 0. (5.10)

In Figure 5.4, these sets are graphically displayed in the 3-dimensional latent state-
space, for different values of Rc.
A race track is composed of different sections, with varying curvature radii, as well
as straight segments. Therefore, in order to determine the sequence of vehicle states
to be tracked by the vehicle, a continuous transition between different equilibrium
points would be required (by deviating from condition (5.10)). For this reason, the
sets SsspRci

q, i “ 1, .., r in Figure 5.4 have been interpolated into a map v “ fpβ, 9ψq,
that represents the ESM.
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Let us assume that the tire-road contact model and the vehicle model are correct, and
that a trajectory of any curvature radius Rc is given, for which at least one reference
state SsspRcq exists. Then, if a locally stable feedback controller for the tracking of
the state is designed, such trajectory can be tracked, given an initial condition close
enough to the target state.

Semi-linearized bicycle model approximation

When driving conditions are close enough to the origin of the β ´ 9ψ plane, i.e. close-
to-straight driving, a nonlinear bicycle model can be simplified. Forces in (5.9) can be
replaced with their linearized approximations as:

Fy,f “ ´Cf
´

β ` lf
9ψ

v
´ δ

¯

, Fy,r “ ´Cr
´

β ´ lr
9ψ

v

¯

, Fx,r “ ´Cxλ. (5.11)

In (5.11), the longitudinal and lateral stiffness coefficients Cx, Cf , Cr are consistent
with the full characteristics given by (5.8). This model is valid for range defined by
|β| ă βlin and | 9ψ| ă 9ψlin.

5.1.3 Powertrain model

Internal constraints

Internal constraints in the optimization problem originate from constrained system
dynamics, constraints on states, initial and final conditions. As internal system con-
straints, vehicle speed and acceleration limits are:

vmin ď v ď vmax, (5.12)
amin ď a ď amax. (5.13)

The complete behavior of the electric motor such as maximum available torque, rota-
tional speed and efficiency is modelled within the efficiency map.

Energy consumption model

The propulsion element, an electric motor, with inner torque Tm can be modelled
statically by:

Fmptq “ kTmptqηsgnpTmptqq

rw
, k “ 2rwπωmptq

vptq , (5.14)

where η is an efficiency coefficient scheduled by a map, k is a combined transmission
ratio of the powertrain, and rw is the radius of the wheels. The ratio between rotational
speed ωm of the motor and vehicle speed v is defined by k.
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Figure 5.5: Curvilinear road representation (Cartesian and Frenet-frame).

5.2 Environment

Autonomous vehicles operate in complex environments. In this section, different as-
pects of vehicle environment are modelled in detail, so they can be used for motion
planning.

5.2.1 Road modelling

As road geometries vary a lot, they can introduce unnecessary complications for mo-
tion planing to generate trajectory that keeps the vehicle on the street. To simplify
planning, the drivable road is modelled using a Frenet frame [228]. Instead of using
x and y coordinates, in Frenet frame, one dimension represents the distance traveled
along the road s, and other represents orthogonal motion. Two different variants are
used for orthogonal motion: the deviation from the road centerline d in Performance
Driving use-case and lane l in Automated Driving use-case. By using Frenet frame,
some operations become trivial. For example, to determine whether the vehicle is on
the road, it is sufficient to check if the lateral deviation d in Frenet frame is exceeding
half of the road width wroad. The Frenet frame also ensures that the planning proce-
dure remains the same for each segment of the road. Operations in Frenet frame are
used for trajectory evaluation during planning (i.e. distance traveled, collision check-
ing is trajectory on the road, etc.) and grid forming for underlining data structure in
planning. For motion primitive generation, vehicle dynamic model in Cartesian coor-
dinate system is used. Efficient transformations between frames are necessary as they
are used in each step. Figure 5.5 illustrates the procedure of this transformation. Road
geometry from Cartesian coordinate system (left) is represented as straight road in the
Frenet frame (right). For Automated Driving use-case, we can additionally abstract
it even further, so dimension l is defined as such that the middle of the rightmost lane
has value 1, while the middle of the left-most lane has value Nl (number of lanes).
The value 1.5 means that the vehicle is halfway between lane 1 and 2.
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5.2.2 Dynamic Environment

To plan in dynamic environments, there are two major approaches, path-velocity de-
composition (PDV) [229] and space-time augmentation [167]. Path represents con-
nected sequence of positions in the space. If it is parametrized by time (has associated
velocity) it is a trajectory. Path-velocity decomposition first solves one problem (plans
either path or velocity trajectory along the path) and then finds solution for other one.
It is generally computationally less complex method than space-time augmentation,
but it is suboptimal and might get stuck by finding paths for which collision-free tra-
jectory can not be provided, and vice-versa. This is especially critical in cluttered
environments (i.e. urban driving) and long planing horizons. To avoid the risk of
losing quality solutions, in this work, the space-time augmentation method is used.
The 3D space-time configuration space Ω (SLT space) is constructed via Cartesian
product of 2D configuration space (s ˆ l) and 1D time dimension t. By introducing
time augmentation, dynamic environment becomes static configuration space (with
increased dimensionality) defined as:

Ω “
!

q ” “

t, s, l
‰T | t P R`, s P R`, l P r1, Nls

)

. (5.15)

Here, t is time, s is the longitudinal position along the road and l is the lateral position
on a road. It is important to note that trajectories are restricted to evolve in positive
time direction.

5.2.3 Traffic rules

Expressing traffic rules as such that they can be processed by an algorithm is challeng-
ing. In this work, traffic rules are expressed geometrically, in the defined configuration
space. They can depend directly on configuration variables t, s and l or on their
derivatives. Several types of constraints/obstacles are considered, such as speed lim-
its, forbidden lane-change, lane-availability, traffic lights and other traffic participants.

Speed limits

Speed limits may originate from speed limit signs, road curvature or some other factors.
They are defined on certain segment of the road, or in the following region of Ω:

OSL
k “ tq P Ω | s P rsk, sk `∆sksu . (5.16)

Speed limit violation can be evaluated by collision check mechanism:

τ

ˆ

q P OSL
k | BsptqBt ě vk,max

˙

, (5.17)

where τ pSq denotes the logical value (1 or 0) of the statement S. On this segment,
the vehicle velocity represented by a gradient in direction of t, must not exceed the
defined value vk,max. Similar limits can be defined for minimum velocity limit (i.e. for
left lanes on the highway).
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Figure 5.6: Forbidden lane-change.

Forbidden lane-change (solid lane line)

Lane-change prohibition can also be defined on certain segments of the road, for specific
lane and lane-change direction. It is usually marked with the solid lane line as shown
in Figure 5.6. The obstacle representation is given as:

OLC
k “ tq P Ω | s P rsk, sk `∆sks, lptq P plk, lk ` 1qu . (5.18)

Prohibition may be applicable to both directions, where the collision check is performed
by:

τ
`

q XOLC
k ‰ ∅

˘

. (5.19)

Alternatively, the prohibition can hold for single direction. Left-wise lane change pro-
hibition is defined via collision test (5.20), while the right-wise is defined via negative
partial derivative.

τ

ˆ

q P OLC
k | BlptqBt ą 0

˙

. (5.20)

Traffic light obstacle

The traffic light is a traffic control device which prohibits passing the defined line,
during specific periods in time. Figure 5.7 shows obstacles created by two traffic
lights. The obstacle can be active on one or several lanes. The obstacle is defined as:

OTL
ki “ tq P Ω | s “ sk, t P rtki, tki `∆tkisu . (5.21)

Each traffic light represents infinitely many obstacles, periodic in t, with the constant
or variable period depending on the traffic light control system. The collision check is
performed by evaluating:

τ
`

q XOTL
ki ‰ ∅

˘

. (5.22)

The vehicle trajectory should not pass trough the region of the traffic light at the time
when the red light is on.
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Figure 5.7: Obstacles created by two traffic lights.

Figure 5.8: Obstacle created by vehicle which is speeding up and slowing down.

Other vehicles

One of the most crucial rules is that the vehicle should avoid collision with other traffic
participants. Other vehicles on the road represent obstacles for ego vehicle and clearly
constrain its motion. The violation of these constraints can be manifested not only as
a direct collision with other vehicles, but also as a violation of driving rules, such as
overtaking from right or slow overtaking from the left side. For a certain vehicle Vk,
the trajectory of its center is described with skptq and lkptq, while suitable lower and
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upper bounds can be defined as:

LS “Lk{2` Lego{2, (5.23)
skptq “skptq ´ LS, (5.24)
skptq “skptq ` LS, (5.25)

where Lk is the length of vehicle Vk and Lego is the length of ego vehicle. Thus,
the length Lego is practically incorporated within the obstacle. Based on this, the
corresponding obstacle can be defined as:

OV
k “ tq P Ω | sptq P rskptq, skptqsu . (5.26)

A collision check for a given q, or the condition for which collision occurs can be
validated by:

τ
`

q P OV
k | lptq P plkptq ´ 1, lkptq ` 1q˘ . (5.27)

The assumption made here is that each vehicle occupies the whole lane, so if the ego
vehicle center deviates from the middle of the lane, it is colliding with a vehicle in the
adjacent lane. It is important to note that this is different from driving in a lane when
executing the plan, as the control is not ideal and the vehicle can deviate from the
middle of the lane, as long as it is within the lane. Figure 5.8 shows an example of
geometric representation of the vehicle obstacle within a defined search space Ω. The
presented vehicle speeds up and then slows down.
Apart from collision, it is sometimes also forbidden to overtake the vehicle from the
right side. This can be expressed by a collision-test given in (5.28). This is modelled
by prohibiting velocities greater than the velocity of a vehicle on the left. Beside
using the velocity limit, acceleration is used so that in the case when a vehicle tries to
overtake the ego vehicle, and ceases overtaking for some reason, the ego vehicle does
not slow down as well. The corresponding collision test is formulated via:

τ

ˆ

q P OV
k | lptq P r1, lkptq ´ 1s, BsptqBt ě BskptqBt ,

B2skptq
Bt2 ě 0

˙

. (5.28)

Practically, overtaking a vehicle requires only a velocity greater than the velocity of
a vehicle. However, to limit the time of overtaking maneuver, in several countries
(e.g. Austria), there is also a limit on the minimum velocity difference ∆vOV, when
overtaking other vehicles. The corresponding collision test can be formulated as:

τ

ˆ

q P OV
k | lptq P rlkptq ` 1, Nls, BsptqBt ď BskptqBt `∆vOV

˙

. (5.29)

In multilane urban driving scenarios, rules for overtaking are not applicable.
The formulated obstacles represent the most common constraints in everyday driving,
and almost all situations can be described by the combination of these. Clearly,
multiple obstacles can be active at the same time.
It is worth pointing out that the collision checking with respect to such defined obsta-
cles appears to be rather trivial, since it is usually reduced to a closed-form analysis
whether some elementary, analytically defined curves intersect or not, or if the gradi-
ents of these curves attain certain values.
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5.3 Objective

As mentioned several times, SuperHuman driving performance is defined as improved
safety, efficiency and comfort compared to human drivers. This is natively multi-
objective optimization problem. Objective can be formulated as a cost function, so it
can be used to evaluate the quality of a given trajectory. It can reflect different goals
such as: short travel time, comfort [230], safety [231], energy-efficiency [5], traffic rules
(driving on the rightmost lane [232]) or a combination of some of these [135]. The
design of the cost function is particularly important as it influences vehicle behavior
and defines the optimal solution. Here, I provide two cost functions that are used
throughout this work; one for energy-optimal driving, and the other for minimum
lap-time driving .

5.3.1 Energy-optimal driving

For Energy-efficient Driving, the cost function has to reflect the initial requirement of
minimal energy consumption. When considering only the propulsion power in the cost
function, energy-efficient behavior results in a zero velocity trajectory. To avoid this,
some authors introduced a term to the cost function to weight the traveling time [1].
The weighting coefficient is then tuned as such that the travel time is comparable to
times achieved by human drivers. However, energy consumption includes energy used
for auxiliaries Paux (e.g. infotainment, air conditioning, etc.), which can be approxi-
mated with a constant load. It is important to include auxiliary power as during some
periods large heating and air conditioning loads can significantly influence the vehicle
energy consumption and driving range of electric vehicles. This load corresponds to
a weighting coefficient presented in other works, but it is experimentally determined
and not tuned. Paux can include also some economic costs such as hourly rate (khr)
of the operator, vehicle renting, etc. These are then divided by the current electricity
price (kep) to get the power equivalent:

Ptot “ Paux ` khr

kep
. (5.30)

The total power consumption of the vehicle is then the sum of auxiliary power con-
sumption Ptot and power consumption of the motor, which is calculated from the
product of the rotational speed of the motor ωm and motor torque Tm. Consequently,
the energy used starting from initial time tI to final time tG is equal to the integral of
the power over time, represented as:

E “
ż tG

tI

pωmptqTmptq ` Ptotq dt. (5.31)

Instead of using time as a variable for integration, the distance can be used as well
([116]). This offers some advantages when solving the problem where the final time tG
is not known, while the final distance sG is, and road slope appears as a function of
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distance. Therefore:

E “
ż sG

sI

ˆ

kTmpsq
2rwπ

` Ptot

vpsq
˙

ds. (5.32)

Same cost function can also be used for Automated Driving use-case.

5.3.2 Minimum lap-time driving

In the Performance Driving use-case, the goal is to minimize time T necessary to
drive the full lap. As path and velocity are solved together, this differs from pure
maximizing velocity along some path. The criteria can be formulated as in (5.33),
where ψpsq ` βpsq ´ ψroadpsq represents the angle between vehicle velocity and the
road tangent. The whole determinant represents the velocity component along the
road.

T “
ż sG

sI

ds

vpsq ¨ cos
`

ψpsq ` βpsq ´ ψroadpsq
˘ . (5.33)

As it can be seen, this equation also uses the distance as bound variable as it is easier to
relate it to the lap start and lap end. The cost function formulated like this can be used
to find the global optimal solution. However, in MPC approach with fixed horizon, a
different formulation will be used with the same goal to achieve minimum-lap time.

5.4 Scenario

As described in Section 4.2.1, scenario is defined by 5 factors: “Dynamic elements”,
“Scenery”, “Self representation” (which build up a “Scene”), “Actions and events” and
“Goals and values”. Figure 5.9 presents one scene in defined configuration space, using
models presented in this chapter, to demonstrate versatility of the proposed solution.
All mentioned aspects for this scenario are defined as follows.

• Actions and events: vehicle in front driving in the same lane, traffic light is
about to turn into red.

• Goals and values: maintain safety, drive energy-efficiently (catch the green
light).

• Scene:
– Dynamic elements: 1 vehicle (besides ego vehicle) in the same lane ap-

prox one vehicle length in front and 1 traffic light, approx. 5 vehicle length
in front.

– Scenery: 3 lanes, dashed lane marking, speed limit at 60 km/h etc.
– Self representation: Ego vehicle is a level 5 AV (full velocity range, ca-

pable of changing lanes), equipped with a complete perception and capable
of communicating SPaT with TL.
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5.5 Summary of Motion Planning problems

After all aspects of the driving problem are modelled, it is possible to define the motion
planning problem. As mentioned earlier, SuperHuman driving performance is defined
as improved safety, efficiency and comfort compared to human drivers, which is na-
tively multi-objective optimization problem. To overcome that, in this work, safety
and comfort are introduced as eliminatory requirements and formulated as constraints,
so trajectories which do not satisfy minimum requirements for safety and comfort
are removed and the rest of trajectories is optimized based on energy-efficiency (in
Automated Driving and Energy-efficient Driving use-cases) or minimum lap-time (in
Performance Driving use-case). Safety is provided by enforcing constraints from envi-
ronment definitions (section 5.2) and comfort is provided by enforcing constraints by
vehicle model (i.e. defining maximum acceleration and time of lane-change). Lower-
level controller is assumed to assure that trajectories also have limited jerk. Each of
the use-cases has specific setup of a problem. The problems are complementary and
lead toward achieving SuperHuman Autonomous Vehicle. The problems of finding
appropriate vehicle trajectory can be considered as an optimal motion planning prob-
lem. This problem has differential constraints defined by a vehicle dynamic model,
state-dependent constraints introduced by environment (which have to be satisfied)
and a cost function (which has to be minimized).

5.5.1 Problem 1: Energy-efficient Driving

For Energy-efficient Driving use-case, the task is planning longitudinal velocity tra-
jectory of the vehicle, driving on the single lane road with hils while satisfying static
constraints, as illustrated on the Figure 5.10. To provide completeness of the solu-

Figure 5.9: Example urban driving scenario with a vehicle in front and traffic light
about to turn red.
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Figure 5.10: Energy-efficient Driving Problem.

tion, configuration space defined by environment Ω has to be augmented with velocity
state v due to kinodynamic constraints on acceleration. Additionally, the lane is fixed,
which reduces configuration space. The final search-space is defined as:

XED “
!

x ” “

q, v
‰T | q P Ω, v P pvmin, vmaxq, l “ 1

)

. (5.34)

Motion planning problem for Energy-efficient Driving can be formulated as follows.
Given:

• search space: XED, (sˆ v),
• vehicle model: longitudinal (section 5.1.1) + powertrain (section 5.1.3),
• constraints:

– internal: acceleration and velocity (section 5.1.3),
– external: speed limits (section 5.2.3),

• objective: energy-efficiency (section 5.3.1),
• a query: initial state x0 and the final state xG.

Compute continuous path γp¨q that moves the vehicle from initial to final state while
satisfying all the constraints (γ : r0, 1s ÞÑ XED

free such that τp0q “ x0, τp1q “ xG) and
objective is minimized.

5.5.2 Problem 2: Automated Driving

For Automated Driving use-case, the task is to plan vehicle trajectory in the complex
environment, while satisfying all the constraints and minimizing energy consumption.
Motion planning problem for Automated driving is illustrated at Figure 5.11.
To provide completeness, configuration space Ω has to be augmented with velocity
state v and lane-change direction 9l due to kinodynamic constraints on acceleration
and lane-change direction. The final search-space is defined as:

XAD “
!

x ” “

q, v, 9l
‰T | q P Ω, v P pvmin, vmaxq, 9l P t´1, 0, 1u

)

. (5.35)
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Figure 5.11: Automated Driving behavior and motion planning problem.

As planning is executed in moving horizon fashion with time and distance horizons,
the goal region is defined as:

XAD
G “ tx | x P XAD, s ě Shor _ t ě Thoru. (5.36)

Automated Driving motion planning problem can be formulated as follows.
Given:

• search space: XAD,(sˆ l ˆ tˆ v ˆ 9l),
• vehicle model: longitudinal (section 5.1.1) + lane-change (section 5.1.2) +

powertrain (section 5.1.3),
• constraints:

– internal: acceleration and velocity (section 5.1.3), lane-change time (sec-
tion 5.1.2),

– external: driving environment (section 5.2),
• objective: energy-efficiency (section 5.3.1),
• a query: initial state x0 and the final state region XAD

G .
Compute continuous path γp¨q that moves the vehicle from initial to final state while
satisfying all the constraints (γ : r0, 1s ÞÑ XAD

free such that τp0q “ x0, τp1q P XAD
G ) and

minimizing the objective.

5.5.3 Problem 3: Performance Autonomous Driving

For Performance Driving use-case, the task is to plan vehicle trajectory that keeps
vehicle on the road and achieves minimum lap-time. Motion planning problem for
Performance driving is illustrated at Figure 5.12.
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Figure 5.12: Performance Driving Problem.

To provide completeness, configuration space Ω has to be augmented with higher
dynamical states, due to kinodynamic constraints by vehicle dynamics. The final
search-space is defined as:

X PD “
!

x ” “

q, ψ, v, β, 9ψ
‰T | q P Ω, ψ P p0, 2πq, . . . , 9ψ P p 9ψmin, 9ψmaxq

)

. (5.37)

As planning is executed in a moving horizon fashion with time horizon, the goal region
is defined as:

X PD
G “ tx | x P X PD, t ě Thoru. (5.38)

Performance Driving motion planning problem can be formulated as follows.
Given:

• search space: X PD, (sˆ l ˆ ψ ˆ v ˆ β ˆ 9ψ ˆ t),
• vehicle model: Equilibrium State Manifold (section 5.1.2), semi-linearized bi-

cycle model (section 5.1.2),
• constraints:

– internal: acceleration and velocity (section 5.1.3), surface (section 5.1.2),
steering and slip (section 5.1.2),

– external: vehicle is on the road |l| ď wroad
2 with is slightly more complex

extension [233] for the full vehicle geometry,
• objective: minimum lap-time (section 5.3.2),
• a query: initial state x0 and the final state region X PD

G .
Compute continuous path γp¨q that moves the vehicle from initial to final state while
satisfying all the constraints (γ : r0, 1s ÞÑ X PD

free such that τp0q “ x0, τp1q P X PD
G ) and

minimizing the objective.

5.6 Chapter Conclusion

This chapter provided models for different foreseeable aspects that should be mod-
elled properly for autonomous vehicles. These include vehicle dynamics, environment

72



5.6 Chapter Conclusion

(including road, traffic rules, other traffic participants, etc.) and objective. Regarding
vehicle dynamic different models are presented, suitable for different problem vari-
ants. For Energy-efficient Driving, longitudinal motion model is sufficient together
with powertrain consumption model. However, for Automated Driving and Perfor-
mance Driving, lateral motion has to be considered as well. For driving on structured
roads lateral motion can be conservatively approximated by lane-change model, but
for Performance Driving, even more detailed model is necessary. Environment is mod-
elled geometrically, in augmented state-time space to deal with dynamic obstacles. In
such space, constraints imposed by environment can be elegantly expressed. Objective
is modelled as a scalar-valued functional representing energy-efficient and minimum
lap-time driving.
These aspects can serve to model different scenarios and to formalize general planning
problem for automated driving. The formalization approach is scalable to wide range of
scenarios and facilitates efficient solving of the problem by motion planning approaches.
Three problems are summarized for three tackled use-cases, Energy-efficient Driving,
Automated Driving and Performance Driving.
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6
Motion Planning

He who fails to plan is planning to fail.
Winston Churchill

This chapter aims to provide insight into specific Motion Planning solutions developed
for three tackled use-cases. Motion planning solutions in this work are mainly based
on Graph search methods, Dynamic Programming and A* search. Efficient custom
implementations, frameworks based on effective combinations of different variants, as
well as several custom developed heuristics help to solve the problem more efficiently.
Planning trajectories that satisfy continuous kinodynamic motions is achieved by em-
ploying motion primitives and hybrid A* search-based solution. As it was shown when
discussed about problem complexity (Section 4.6), it easily explodes, therefore a good
trade-off is crucial for achieving real-time performance.
There are four main sections in this chapter, three sections dedicated for each of the
use-cases and one section dedicated to combining planning and learning. Figure 6.1
illustrates the work presented in the chapter. As mentioned in the introduction, mo-
tivating use-case was Energy-efficient Driving (section 6.1). The first solution for this
use-case is based on Dynamic Programming (section 6.1.1), which was approx. 100
times faster than the other state-of-the-art solution. Additionally, the same prob-
lem was solved using A* search and model-based heuristic based on a novel concept
called Optimal Cruising Velocity (OCV) (Section 6.1.2). However, planning an energy-

SuperHuman
Autonomous
Vehicles

Energy-
Efficient
Driving

Preformance
Autonomous

Driving
Automated
Driving

Planning
and Learning

Dynamic
ProgrammingA* search FDPSBOMP SBOMP

Figure 6.1: Motion planning work overview.
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efficient velocity trajectory without considering other traffic participants is impracti-
cal in real traffic. It was noted that even in the automated driving community, a
general solution for planning in different situations was missing. Therefore, further
work was focused on the practical solution for automated driving in full complexity of
driving situations, while keeping energy-efficiency as objective when choosing among
collision-free trajectories (safety objective). Considering time-varying constraints (i.e.
other vehicles, traffic lights, etc.) requires forward planning with frequent replanning.
Additionally, time-varying constraints and multilane driving (considering overtaking
possibility) require to increase search space from sˆ v, and include lane l and time t
dimensions. An even larger issue is that as space is multidimensional, it is not straight-
forward to form a regular grid for a graph search. The first solution for this problem
was the Forward Dynamic programming (Section 6.2.3). However, this was abandoned
as it showed to be very impractical due to the fact that Dynamic Programming explores
the whole search-space. Therefore, SBOMP (Section 6.2.2) framework was developed,
using the solution from the relaxed problem, solved with discrete Dynamic Program-
ming, as a heuristic to guide the search. The SBOMP showed to be very efficient as it
does not search the whole space and deals well with continuous dynamics due to motion
primitives and hybrid A* approach. The SBOMP framework was further extended to
consider Performance Driving use-case, where even higher dimensional search-space
(7D) was explored, employing two different models for a combined generation of mo-
tion primitives (section 6.3). To improve computational performance, an approach
using Machine Learning to learn heuristic function from previous searches, was in-
troduced. This approach was further extended and generalized to a novel prolonged
heuristic search (PHS)-based method for model (or simulator) exploration, based on
prolonged backward heuristic search.

6.1 Energy-efficient Driving (classic eco-driving) problem

The problem of finding an energy efficient vehicle velocity trajectory can be considered
as an optimal motion planning problem. This problem has differential constraints
defined by a vehicle dynamic model, state-dependent constraints (which have to be
satisfied) and a cost function (which has to be minimized). As the planning task
for Energy-efficient Driving use-case is solved by discrete graph search methods, state
discretization is necessary and an appropriate graph has to be constructed. There
are two usual approaches to represent this problem, we can use time or distance as a
basis for discretization. In this work, the graph is constructed by discretizing distance
(s) and velocity (v) states by discretization steps ∆s and ∆v respectively. Thus,
nodes n represent unique states from s ˆ v space as it is illustrated in Figure 6.2.
Choosing distance is useful when the final time is not fixed and the system is space-
dependent (i.e. speed limits, road slope). This choice brings several disadvantages
e.g. if a trajectory passes zero velocity, it is impossible to calculate the time spent
in that state (we always assume 0 seconds). An additional disadvantage is that on
high velocities times of transitions shorten (as distance step ∆s is fixed), so with fixed
velocity discretization step ∆v the number of possible transitions (which satisfy the
maximum acceleration constraints) decreases. Nevertheless, an appropriate selection
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Figure 6.2: Search space for Energy-efficient Driving problem constructed as a graph.

of discretization steps leads to a valid solution. By assuming positive velocities only,
the graph is directed. The vehicle model provides energy consumption of transitions
between nodes. Transition from a node with initial velocity vi at si to a node with final
velocity vf at si`1, using current road slope αpsiq and other vehicle model parameters
is computed as MEpvi, vf , αpsiq,∆sq. Solving the eco-driving problem is equivalent to
finding the shortest path in this graph and minimizing (6.1).

Emin “ min
Tmp¨q

Ns
ÿ

i

MEpvi, vi`1, αpsiq,∆sq. (6.1)

Several methods can be applied to solve this problem. In this work, Dynamic
Programming-based and A* search-based solutions are provided.

6.1.1 Dynamic Programming

Dynamic programming is a very common method used for solving the optimal control
problem discussed in this work. The main advantages are its flexibility and possibil-
ity to incorporate different models and constraints. It is based on the Principle of
Optimality, and it was introduced by R. Bellman [43].
Principle of Optimality: “An optimal policy has the property that whatever the initial
state and initial decisions are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decisions.”
This principle enables an iterative search for the optimal solution starting from the
goal state and building an optimal trajectory towards the start, solving only one tran-
sition each step. In each step, transitions from all possible current states to all states
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from the previous step are computed and transitions with minimum total costs (costs
of transition and accumulated cost-to-go values) are chosen. Thus, going backwards
from the final step, the space is systematically searched by computing each time only
one step transition and reusing computation results from the previous steps. For fur-
ther details about Dynamic Programming, the interested reader is referred to [186].
Dynamic Programming represents also a problem solving paradigm in Computer Sci-
ence.
For eco-driving problem, in each stage of Dynamic Programming backward transitions
are made from position si`1 to position si with the step ∆s. It is assumed that
the acceleration is constant during this transition. Vehicle model provides energy
consumption of transitions from initial velocity vi at si to final velocity vf at si`1,
using current road slope αpsiq and other vehicle model parameters (Mpvi, vf , αq).
Dynamic Programming solution can be improved if some computations are already
prepared for reuse and transitions are computed in a matrix form (for 2D case). For
example, all transitions can be organized as matrices where rows represent initial
velocities and columns represent final velocities. Several matrices can be precomputed
i.e. Vi - matrix of initial velocities, Vf - matrix of final velocities, Vav - matrix of
average velocities, T∆ - matrix of time for transition, Aacc - matrix of acceleration
during transition. These matrices can be used in model M for faster computations.
Equations 6.2 and 6.3 are used forthe mentioned precomputation. Operation “m” and
“˝;; denote element-wise division and multiplication. Vehicle model M contains also
internal constraints, cost function, etc. For reconstruction of the optimal solution,
child node matrix - N˚ contains optimal transitions for each node. Besides that,
optimal cost-to-go matrix (V ˚) contains the optimal cost-to-go values for each node.
At each stage, based on Bellman’s equation, optimal transitions are chosen as the
lowest of all transitions based on cost of transition and cost-to-go value of the new
state.

Vi “

»

—

–

vmin vmin . . . vmin
... ... . . . ...

vmax vmax . . . vmax

fi

ffi

fl

,Vf “

»

—

—

—

–

vmin . . . vmax
vmin . . . vmax
... . . . ...

vmin . . . vmax

fi

ffi

ffi

ffi

fl

,Vav “ Vi `Vf

2 , (6.2)

T∆ “ ∆smVav, Aacc “ 2
∆s ¨Vav ˝Vav ´ 2

∆s ¨Vi ˝Vav. (6.3)

For this work, as presented in [5], a tailored and computationally optimized solution
for optimal velocity trajectory planning based on Dynamic Programming. It was
developed in MATLAB, making intensive use of matrix calculus, as mentioned before.
To validate the implementation, both forward and backward dynamic programming
schemes were implemented. The achieved results are identical, as it was expected.
The advantage of the backward computation is that the computed results can be
reused during the trip by taking the branch of the tree based on current position and
velocity. This is possible as Backward Dynamic Programming problem only depends
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Algorithm 1: BDP for eco-driving
input : vG, sG, αpsq, Mpvi, vf , αq
output: N˚, V ˚

1 begin
2 vÐvmin : ∆v : vmax // possible velocities
3 Vi,Vf ,Vav,Aacc,T∆ Ð Precompute() // precomputed matrices for matrix computation
4 V ˚pend, :q Ð 8,
5 V ˚pend, vGq Ð 0; // define goal
6 for iÐ Ns ´ 1 to 0 do
7 C Ð meshgridpV ˚pi` 1, :q1q // reshape cost-to-go
8 Cpvąvlimpiq, :q Ð 8 // maximum velocity limits
9 C Ð C `Mpv,v,αpsqq // cost with transition

10 V ˚pi, :q Ð minpC, rs, 2q // minimum from each row
11 N˚pi, :q Ð arg minpC, rs, 2q // minimum argument from each row

12 return N˚, V ˚

on the final state. This is not the case with the Forward Dynamic Programming
computation, where results are related to the specific initial state. On the other hand,
the advantage of the forward computation is that other states such as the position of
other vehicles can be computed as the initial time is always known.
In order to deeply understand the optimal control discussed in this work we introduce
two helpful concepts: the optimal trajectory tree and the cost-to-go map.

Optimal velocity trajectory tree

The optimal velocity trajectory tree is a tree-like structure formed by connecting all
optimal transitions. Together with a cost-to-go map, it gives insight into the optimal
driving behavior when only static constraints are present. It can be noted generally,
that if two different trajectories have a common node they will continue on the same
trajectory towards the goal state nG. This implies that when planning a trajectory
with the forward approach, if constraints introduced by other traffic participants are
not active any more, a trajectory from a backward planning starting from that state
towards the goal can be reused. This is a consequence of the Bellman’s principle
of optimality. This property of the optimal trajectory tree will be used to reduce
the computational effort needed in Automated Driving use-case. An optimal velocity
trajectory tree for a problem considered in this work with discretization steps of 5 m
for distance and 0.5 m{s for velocity is shown in Figure 6.3. This map is generated from
the goal state towards the start using backward DP. Besides the optimal trajectory for
the given initial condition, multiple other trajectories (branches) for different initial
conditions are available.

Cost-to-go map

The cost-to-go map provides complementary information to the optimal trajectory
tree. It represents the minimum energy needed to finish a trip from that state. It
can be achieved by following the optimal trajectory, represented as a branch on the
optimal trajectory tree, starting from that state. In Figure 6.4 the cost-to-go map for
the same problem as in Figure 6.3 is shown.
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Figure 6.3: Optimal velocity trajectory tree from Backward Dynamic Programming.

Figure 6.4: Cost-to-go map.

The shape of the cost-to-go map is closely related to the cost function and problem
instance. It can be noted that cost value increases as distance is further from the goal.
Additionally, cost value is smaller on higher velocities because of the larger kinetic
energy stored in a moving vehicle. Cost value is also smaller on a hill and higher in
the valley, because of the potential energy.
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Figure 6.5: Optimal velocity trajectory tree from Forward Dynamic Programming.

Forward Dynamic Programming

Similar to Backward Dynamic Programming, Forward Dynamic Programming Solu-
tion can be developed. The difference here is that in each stage of Dynamic Program-
ming, backward transition is made from position si to position si`1 with the step ∆s.
The Figure 6.5 shows the optimal trajectory tree obtained by forward DP.

6.1.2 A* search

Although significantly less popular, A* search can also be used for solving eco-driving
problem. A* search is one of the earliest, yet one of the most used methods for
path planning problem ([48]). It is based on the well-known Dijkstra’s algorithm,
but instead of exploring the whole space it uses heuristics to guide exploration to the
nodes, that lead to the solution more quickly. Therefore, it generally has a better
performance compared to Dijkstra’s algorithm. A* is an optimal method for finding
the optimal path for some admissible heuristic function.
Starting from the initial node nI, which is chosen as the initial current node n, all
neighbors n1 are determined and added to the Open list. From the Open list, the
node with the lowest cost is chosen to be the next current node. This is repeated until
the goal node is reached or the whole graph is explored. The cost fpnq is computed
using (6.4). Function gpnq represents the cost to travel from initial node nI to current
node n (cost-to-come), and function hpnq represents the cost to travel from current
node n to goal node nG (cost-to-go), estimated using some heuristic function based on
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prior knowledge about the problem.

fpnq “ gpnq ` hpnq. (6.4)

There can be several issues when implementing A*. To accelerate accessing the mini-
mum of all open nodes, the Open list is usually organized as some kind of a priority
queue. In this work, the Open list is implemented as a binary heap with a hash table.
A binary heap is a structure which keeps the minimum element at the top. Therefore,
it is easy to access the next current node. The hash table keeps a position of every
node on the heap, for an easier accessing when comparing with newly expanded nodes.
Besides, the hash table keeps information if a node is already in the Closed list.

Cost-to-come

Cost-to-come gpnq is the minimum cost necessary to come from the initial node nI to
the current node n. It is exact as it is computed cumulatively as nodes are explored.
One step transition cost is added to the parent node’s cost-to-come. To compute
transition costs, the vehicle model (5.1) and (5.14) is used along with the cost function
(5.32).

Heuristic function for cost-to-go estimation

As the path to the goal is not known, the cost of travel has to be estimated. The
heuristic function hpnq is used to estimate the cost needed to travel from any node
n based on some prior knowledge about the problem. As it is shown in [48], if the
heuristic function is admissible (underestimates the cost-to-go), the result of A* search
is the optimal trajectory. For the Shortest Path planning problem, the usual heuristic
function is the Euclidean distance. The distance between any two points is always
greater or equal to the Euclidean distance. However, it is also important that heuristic
function is precise, as the precision influences the size of the explored space, and
therefore the efficiency of the search. In general, as the heuristic function tends to the
exact cost-to-go, the explored space shrinks and the search time shortens. In the ideal
case, if the heuristic function gives the exact cost-to-go, only nodes which belong to
the optimal trajectory would be explored.
To find the energy-optimal velocity trajectory, the heuristic function must always
underestimate the energy needed to drive from any node n (vi and si) to the goal node
nG, defined by the initial velocity and position (vf and sf ). The energy needed to
drive based on model (5.1),(5.14) and the cost function (5.32), can be presented as the
sum of the work needed for acceleration, overcoming air drag, rolling resistance, road
slope and the energy used by the auxiliaries (or operational costs).

W “ Wacc `Wα `Wroll `Wair ` Eaux. (6.5)
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Assuming no energy is needed to drive to the final state would provide admissible
heuristic if recuperation would not be allowed, as the work is always positive. Since
recuperation is allowed, under certain conditions, the work can be negative as well.
So, assuming a value of zero could lead to a suboptimal solution. Air drag, rolling
resistance, and auxiliary-related works are always positive and therefore can be un-
derestimated by zero. Nevertheless, this is an imprecise estimation, far from the real
value, leading to the loss of A* efficiency as informed search.

Heuristic function for acceleration-related work If no efficiency losses are consid-
ered, the work needed to accelerate the vehicle moving in the horizontal plane results
in a change of kinetic energy. Therefore, the work needed for acceleration can be de-
scribed only by the initial and the final velocity states, vi and vf as in (6.6). If losses
are present, the needed energy will only be higher.

Wacc ě ∆Ek “ m
v2
f ´ v2

i

2 . (6.6)

If the vehicle is driving on the horizontal plane, without slopes, this work alone ex-
presses admissible heuristic. If this is not the case, the influence of road slope has to
be included additionally.

Including slope related work Overcoming road slope results in climbing up or down
a hill and therefore increases or decreases the potential energy of the vehicle. In this
case, the work can be described as:

Wα `Wacc ě ∆Ek `∆Ep “ ∆Ek `mgphpsf q ´ hpsiqq, (6.7)

where hpsq is the road elevation profile dependent on the distance traveled (s).

Rolling resistance related work As the rolling resistance force is modeled as a con-
stant, it does not depend on vehicle driving trajectory. It can be exactly computed
for the specific road segment and included in the heuristics. Assuming the rolling re-
sistance work as a constant provides a more precise, and still admissible heuristic, but
cannot be used alone, apart from ∆Ek ` ∆Ep. The expression for rolling resistance
related work is given as:

Wroll “ crmg

ż sf

si

cos pα psqq ds. (6.8)

Heuristic function with air-drag and auxiliary power Above mentioned components
are used for constructing the state-of-the-art admissible heuristic function. So far,
based on the authors best knowledge, none of the heuristics successfully incorporated
air-drag resistance and auxiliary power to provide admissible heuristic.
As opposed to Wacc, Wα and Wroll, which can be expressed by the initial and the final
states only, Wair and Eaux depend on velocity trajectory between the initial and the

83



6 Motion Planning

final state. We have that:

Wair ` Eaux “
ż sf

si

ˆ

1
2ρacdAfvpsq2
loooooomoooooon

Fair

`Paux

vpsq
˙

loooooooooooooomoooooooooooooon

Fv

ds, (6.9)

Wair ` Eaux “
ż sf

si

Fv pvpsqq ds, (6.10)

Fv “1
2ρacdAfvpsq2 ` Paux

vpsq . (6.11)

Fv can be considered as a virtual force consisting of air drag force and virtual force
by Paux. As it can be seen in Figure 6.6 based on the convex shape of Fv, we can
conclude that there exists one optimal velocity for which Fv is minimized, noted by
v˚ and named Optimal Cruising Velocity (OCV).

Optimal Cruising Velocity (OCV) Optimal Cruising Velocity v˚ is the velocity
which minimizes energy consumption for driving on a flat, horizontal, empty road. It
finds optimal balance between air drag influence and time-proportional cost influence.
Optimal Cruising Velocity v˚ achieves minimum energy consumption by minimizing
the virtual force Fv:

Fv,min “ Fvpv˚q. (6.12)
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Figure 6.6: Velocity-dependent virtual force Fv, generated by combined air drag resis-
tance and auxiliary power.
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Figure 6.7: Some of possible trajectories for driving from initial to final state, and
lower bound trajectory for WA computation.

To calculate v˚, the derivative of Fv at v˚ should be zero:

BFvpv˚q
Bv “ 0 ñ v˚ “ 3

d

Paux

ρacdAf
. (6.13)

The optimal cruising velocity is unique for the vehicle (and it’s hourly rate khr). It
depends on vehicle aerodynamic shape, air density and Paux (eventually, motor effi-
ciency can be included). The minimum virtual force Fv,min, can be used to estimate
the lower bound of Wair ` Eaux, defined only with the initial and the final states.

Wair ` Eaux ě WA “
ż sf

si

Fv,minds “ Fv,minpsf ´ siq. (6.14)

As it was shown in (6.14), air drag and auxiliary-related work, Wair ` Eaux for any
trajectory, is always greater or equal to the work when driving with constant velocity
v˚ (Figure 6.7). This work is computed as a product of the minimum virtual force
Fv,min and the distance traveled.
A tendency to drive with optimal cruising velocity can be noticed in [129], where au-
thors analyzed a conventional vehicle using approximated engine fuel injection rate
map. Since in a conventional vehicle auxiliary power comes from the alternator, which
represents an additional constant load on the engine, the results are similar. In this
work, a theoretical explanation of this phenomenon (optimal cruising velocity), rea-
soning and influencing factors and relations are provided.

Improved heuristic function with air-drag and auxiliary power For situations
where the initial or the final velocity is not equal to the optimal cruising velocity
v˚, the air drag influence can be more precisely estimated by including acceleration
periods to reach v˚. As acceleration is limited, this transition is not instantaneous. It
is important to note that work needed for acceleration is not computed in this trajec-
tory, as it is included in kinetic and potential energy. Only energy related to air-drag
and auxiliary power (Wair`Eaux), as if the vehicle drives this trajectory is considered.
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Figure 6.8: Velocity trajectory for WAI computation.

A general trajectory with acceleration and deceleration phases is depicted on picture
Figure 6.8. For a simpler visualization, time t is used as the axis instead of distance s.
While driving with uniform acceleration, from some velocity v1 to some velocity v2,
the distance traveled can be computed as:

s “ v2
2 ´ v2

1
2 ¨ a . (6.15)

For computing s1 from Figure 6.8, general formula (6.15) is used, with v1 “ vi, v2 “ v˚

and a “ a1. For computing s2, the same formula is used, with v1 “ v˚, v2 “ vf , and
a “ a2. Depending on the initial and the final velocity, accelerations a1 and a2 are
determined as:

a1 “
#

amin, vi ą v˚,
amax, vi ă v˚,

and a2 “
#

amin, vf ă v˚,
amax, vf ą v˚.

(6.16)

The work WAT “ Wair ` Eaux, when driving with uniform acceleration, for time T ,
from velocity v1 to v2 is:

WAT “
ż T

0

ˆ

1
2ρacdAfvptq3 ` Paux

˙

dt, (6.17)

with

vptq “ v1 ` at, and T “ v2 ´ v1

a
. (6.18)

Therefore:

WAT “ 1
2ρacdAf

ˆ

v3
1T `

3v2
1aT

2

2 ` a3T 4

4

˙

` PauxT. (6.19)

Using relations (6.18) and (6.19), the cost of driving with uniform acceleration between
two velocities can be computed. The total work WAI, in this case, can be computed as
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Figure 6.9: Special cases of velocity trajectories for WAI computation.

the sum of two works (corresponding to acceleration and deceleration) and the driving
with constant velocity v˚:

WAI “ WAT1 ` Fv,min ¨ psf ´ si ´ s1 ´ s2q `WAT2. (6.20)

If s1 ` s2 ą sf ´ si, the optimal velocity cannot be reached, as shown in Figure 6.9.
There are two sub-cases in this case.

• When vi and vf are on opposite sides of v˚. This is a trivial case, as the final
state is not reachable for limited acceleration, and therefore the cost is infinite.
This case is marked with dashed red line in Figure 6.9.

• When both vi and vf are either smaller or greater than v˚. There will be no
constant velocity driving part as v˚ will not be reached, it will accelerate until
it reaches vx and then decelerate, or vice-versa. This is depicted with a solid red
line in Figure 6.9.

By using the s1 ` s2 “ sf ´ si, the velocity at which acceleration changes sign can be
determined as:

vx “
d

2a1a2s` a2v2
i ´ a1v2

f

a2 ´ a1
. (6.21)

Velocity vx is then used instead of v˚ for computing WAT1 and WAT2. The work WAI,
in this case, can be computed as the sum of two works (acceleration and deceleration):

WAI “ WAT1 `WAT2. (6.22)

Motor efficiency The motor efficiency certainly influences the energy used. It does
not have to be considered to have admissible heuristics, but it improves precision and
therefore search efficiency. Applying the maximum motor efficiency ηmax as a constant
efficiency for any operating point will result in underestimating heuristic, that is more
precise than when omitting efficiency. The motor efficiency can be applied only to
power which flows through the motor. Therefore, it should not be applied to Paux as
this energy does not flow through the motor.
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Remarks on model-based heuristics Combining all relevant work elaborated in the
introduction, the best state-of-the-art, admissible heuristic, can be constructed as a
sum of kinetic and potential energy, rolling resistance loss with applied motor efficiency
as in (6.23) - (6.24).

Wtot “∆Ek `∆Ep `Wroll, (6.23)
hSoA “Wtot ¨ η´ sgnpWtotq

max . (6.24)

The proposed heuristic, however improves this state-of-the-art heuristic by additional
work for air drag resistance and auxiliary energy (and operation costs) as shown in the
sections 6.1.2 and 6.1.2. The efficiency cannot be applied to the proposed heuristic as
auxiliary power does not flow trough motor. The proposed heuristic is computed as:

hpro “ hSoA `WAI. (6.25)

6.1.3 Remarks on Energy-efficient Driving

Two different solutions for planning motion in Energy-efficient Driving use-case were
presented. Solutions are efficient for providing long-term motion plan for tens of
kilometers. However, they assume empty roads without considering other traffic par-
ticipants. That is impractical in real traffic as there are rare occasions where other
participants can be neglected (i.e. highway driving with very low traffic). Generally,
in eco-driving community, some works consider other traffic participant but only par-
tially (i.e. only vehicle following possibility) and no work was done on general multilane
energy-efficient driving in different situations. It was noticed that even in automated
driving community, general solution for planning in different situations was missing.
Therefore, further work was focused on practical solution for automated driving in full
complexity of driving situations, while keeping energy-efficiency as driving objective
for choosing among collision-free trajectories (safety objective).

6.2 Automated Driving

The second use-case focuses on automating the driving task. In this use-case, we
assume that the vehicle can operate in full velocity range, fully independently, and
perform all dynamic driving tasks (DDT) without any input from a human (level 5
AD). The goal is to develop general Motion Planning solution for autonomous vehicles,
applicable to all driving scenarios, achieving SuperHuman performance.
Planning methods used in this work (Dynamic Programming and A* search) can be
executed starting from the goal state nG towards the initial state nI (backward plan-
ning) or vice-versa (forward planning). The advantage of the backward planning is
that the computed results can be reused during the trip as long as the final state does
not change, as they only depend on the final state. This is not the case with the
forward planning, where results are related to specific initial states and the results is
not much useful if the situation deviates from planned. On the other hand, forward
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Figure 6.10: Optimal motion planner flowchart.

planning can tackle constraints which backward cannot (time-varying constraints, in-
teractive driving, etc.). Furthermore, due to curse of dimensionality, planning in higher
dimensional spaces in infeasible for longer horizons.
Considering time-varying constraints (i.e. other vehicles, traffic lights, etc.) requires
to employ forward planning with frequent replanning. Moreover, time-varying con-
straints and multilane driving (overtaking possibility) requires to increase search space
from s ˆ v, and include lane l and time t. Even larger issue is that, as the space is
multidimensional, it is not straightforward to form a regular grid for a graph search.

6.2.1 Framework

The main approach adopted here is to use benefits of both backward and forward plan-
ning. Mainly, using backward planning for long-term planning with relaxed problem
and using frequent forward replanning with shorter horizon (10s) for correcting plans
with higher dimensional space. The flowchart in Figure 6.10 illustrates this approach.
First, route data is acquired including road slope, street geometry, speed limits, etc.
Then, backward planning is employed to compute optimal velocity trajectory tree on
relaxed problem assuming empty streets. Optimal trajectory is tracked by lower level
controller until replanning is initiated and forward planning in MPC-manner provides
adapted trajectory. Tracking continues until the goal is reached.
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Strategic Planning

The strategic planning phase is executed only once at the beginning of a trip, or if
the target location changes. It is based on backward dynamic programming starting
from the goal state, backward in space along the route provided by route planner.
In this phase, only time-invariant constraints (e.g. velocity limits), topological road
profile and vehicle model are considered. The results of this phase are the optimal
trajectory tree and the cost-to-go map. The initial optimal velocity trajectory can be
constructed as well, by choosing a branch of the optimal trajectory tree which starts
from the initial state.

Replanning triggering

The replanning procedure is repeated during the entire trip. It can be triggered by
either time period, spatial length traveled, an event (e.g. detecting of other traffic
participants, detecting a significant deviation from predicted situation) or some com-
bination of these. Generally MPC approach considers defined replanning frequency
(time period).

Replanning

During the replanning phase, the optimal trajectory is adjusted by considering dy-
namic environment, traffic rules and current driving situation. Two different methods
were developed for replanning. The first method was based on Forward Dynamic
Programming (section 6.2.3), but it turned out not to be very practical. The second
method, which appeared to be remarkably practical, is based on hybrid A* search and
motion primitives (SBOMP in section 6.2.2).

6.2.2 Search-Based Optimal Motion Planning (SBOMP)

In this section, we elaborate on the proposed Search Based Optimal Motion Planing
(SBOMP) framework (presented in [7]) for fast and robust motion planning designed
to facilitate automated driving. The framework allows for real-time computation even
for horizons of several hundred meters and thus enabling automated driving in urban
conditions. This is achieved through several features. Firstly, a convenient geometrical
representation of both the search space and driving constraints from Section 5.2 enables
the use of classical path planning approach. Thus, a wide variety of constraints can
be tackled simultaneously (other vehicles, traffic lights, etc.). Secondly, an exact cost-
to-go map, obtained by solving a relaxed problem (as shown in Section 6.1.1), is
then used by A*-based algorithm with model predictive flavour (moving horizon) in
order to compute the optimal motion trajectory. The algorithm takes into account
both distance and time horizons. Non-holonomic motion constraints are handled by
conservatively approximating lateral motion with effective hybrid discrete-linear lateral
motion model of lane-change behavior (as in Section 5.1.2), so that planned lane-
changes are always feasible.
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Algorithm 2: A* search for horizon
input : nstart, Obstacles data pOq, hps, vq
output: vref , lref , tref trajectory for horizon

1 begin
2 n, nr Ð nI // Start pose
3 Closed Ð ∅ // list of closed nodes
4 Open Ð n // list of opened nodes
5 while n P r0, Shors ˆ r0, Thors and Open ‰ ∅ and !timeout do
6 Closed Ð ClosedY n
7 Open Ð Openzn
8 foreach n1 P Expand(n,O, hps, vq) do
9 if n1 P Closed then

10 continue
11 else if n1 P Open then
12 if new n1 is better then
13 n1.parentÐ n // update parent
14 else
15 continue

16 else
17 Open Ð OpenY n1 // add to list
18 if n1closer to horizons than nr then
19 nr Ð n1

20 nÐ arg minn.f P Open
21 reconstruct trajectory starting from nr backwards
22 return nI, . . . , nru // trajectory

This section is organized as follows. First, some general aspects of the framework are
described, followed by the clarification of individual features like motion primitives
generation, heuristic function, search horizons and other vehicle behavior prediction.

Framework

The proposed framework is based on A* search method [48], guided by an exact
cost-to-go map from a relaxed problem in an MPC-like replanning scheme. Each
Trep seconds, replanning is triggered with the current measurement of positions and
velocities of other vehicles, traffic lights timing data together with the map data. Based
on measurements, the motion of other vehicles is predicted and collision-free trajectory
for a defined horizon is generated.
In each replanning step, the ego vehicle trajectory is generated by concatenating mo-
tion primitives guided by a grid-like search using A*. The grid is constructed by the
discretization of s, l and t from the original continuous search space definition (section
5.2.2). The search space is augmented by velocity v to provide completeness because
of the longitudinal dynamics. Starting from the initial configuration, defined as the
initial node, chosen as the first current node, all neighbors are determined by expand-
ing the current node. The resulting child nodes are added to the Open list. If the
child node is already in the Open list, and new child node has a lower cost, the parent
of that node is updated, otherwise it is ignored. From the Open list, the node with
the lowest cost is chosen to be the next current node. The procedure is repeated until
one of the limits of horizons is reached, the whole graph is explored or the time limit
for planning is reached. Finally, the node closest to the horizons is used to reconstruct
the trajectory. The pseudocode for this procedure is presented in Algorithm 2.
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To avoid rounding errors, as the expansion of node creates multiple transitions which
in general do not end at grid points, the hybrid A*-inspired approach [75] is used for
planning. Hybrid A* also uses the grid, but it does not round the values to the grid as
it saves continuous value for the next expansion. Thus preventing the accumulation
of rounding errors.
As v belongs to the discrete set of values as defined in the expansion (Algorithm 3),
the hybrid A* approach is used only for t, s, l. Therefore, each node n contains 14
values: four indices for v, s, l, t (n.vk, n.sk, n.lk, n.tk), four indices for the parent
node (to reconstruct trajectory), three remainders from the discretization of s, l and t
( n.sr, n.lr, n.tr), the direction of the lane-change n.ldir, the exact cost-to-come to the
node (n.g), and the estimated total cost of traveling from the initial node to the goal
region (n.f). The value n.f is computed as n.g ` hpnq, where hpnq is the heuristic
function.
The planning clearly requires processing time. The compensation of the planning time
can be achieved by introducing Tplan, a guaranteed upper bound on planning time. The
planning is then initiated from a position where the vehicle would be after the Tplan.
The old trajectory is executed while the new one is being prepared. Thus, the new
trajectory is already planed when Tplan arrives. This approach has been widely used
in MP for automated vehicles [155].

Motion Primitives

Algorithm 3: Expand function
input : n, Obstacles data pOq, hps, vq
output: n1 array

1 begin
/* generate array nlon of longit. variants */

2 vi Ð n.vk ¨∆v
3 vf Ð r0 : ∆v : vmaxs
4 nlon Ðtransitions from vi to vf

5 nlon.g Ð n.g ` costtranspvi, vf, ttq
6 nlon.f Ð nlon.g ` hps, vf q
7 n1 Ð nlon

/* generate lateral variants and add to n1 */
8 if modpn.lk, 1q ‰ 1 then
9 progress n1.lk // lane change in progress

10 increase n1.f and n1.g

11 else
12 if n.lk ą 1 then
13 nr Ð nlon // lane change right
14 increase nr.lk
15 increase nr.f and nr.g
16 n1 Ð n1 Y nr

17 if n.lk ă Nl then
18 nl Ð nlon // lane change left
19 decrease nl.lk
20 increase nl.f and nl.g
21 n1 Ð n1 Y nl

22 no Ð tx P n1 | τpx,Oq “ 1u // collision check
23 n1 Ð n1zno

24 return n1
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Figure 6.11: Expanding parent node n to different child nodes n1 by piecewise constant
acceleration, from initial velocity v “ 0 (left), 0 ă v ă vmax (right).

Figure 6.12: Expanding parent node n to different child nodes n1 by piecewise constant
acceleration.

To build trajectories iteratively, nodes are expanded and child nodes are generated,
progressing toward the goal. From each node n, only dynamically feasible and collision-
free child nodes n1 should be generated. A single child node is generated for each
possible combination of longitudinal and lateral motion variants. The procedure is
presented in Algorithm 3. First, longitudinal motion variant are generated and then
based on the state of the node n combination with lateral variants generate all possible
motion primitives. On the end of each feasible motion primitive one child node n1
is generated.

Longitudinal motion variants The longitudinal motion variants are generated by
assuming constant accelerations from the inherited parent velocity, so that the discrete
final velocities (represented by the array vmin : ∆v : vmax) are reached at the boundaries
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Figure 6.13: Motion primitives for lane-change left (left) and stay in the lane (right).

of expansion horizons. Expansion boundaries are defined by ∆sexp for distance s and
∆texp for time t (Figure 6.11). Expansion like this enables better coverage of state space
by sampled trajectories. Figure 6.11 shows expansions from different initial velocities.
Since trajectories reflect the motion with the uniform acceleration, the average velocity
of a specific motion variant equals v “ pvi ` vf q {2. If v ă ∆sexp{∆texp, the trajectory
will end on time expansion horizon t “ ∆texp. Otherwise, it will end on the distance
expansion horizon s “ ∆sexp. Position and time values for each variant are added
to the parent node remainders n.sr and n.tr. Indices n.sk and n.tk are increased by
the quotient of division of resulting values with discretization steps of the grid ∆sgrid
and ∆tgrid, and the new remainders are computed (Figure 6.12). For each child node
from the array n1, costs are computed as well. Cost-to-come is inherited from the
parent and then increased by the cost of transition. Cost-to-go is provided by the
heuristic function explained in the following subsection. The compliance with the
vehicle’s internal constraints (e.g. maximum acceleration) is checked and the nodes
that violate these constraints are removed.

Lateral motion variants Generated longitudinal motion variants are then used for
lateral motion expansion. If the parent node is in the middle of the lane (l is the
integer), variants for possible lane change right and left, beside staying in the lane are
generated. Generated variants are tripled, one set of longitudinal variants for each.
The values n1.lk and n1.lr are increased or decreased for the lane changes left or right
respectively. They are modified by the value texp{TLC based on the travel time of the
particular variant, and the desired lane change time TLC . If the parent node is already
in the process of lane change, only the progress is increased without generating other
lateral motion variants (ln 9, Alg. 3). Figure 6.13 illustrates final motion primitives
generated based on longitudinal and lateral motion variants. On the left side motion
primitives for lane-change left are shown,a and on the right for keeping the lane. As it
can be seen, final states have different longitudinal and lateral positions. Longitudinal
position is determined based on distance traveled in longitudinal motion variant and
lateral position based on travel time of longitudinal motion variant and TLC .

Collision check Finally, compliance with obstacles such as other vehicles, traffic
lights, etc. (section 5.2) is checked and all child nodes and motion variants that are
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not collision-free are removed (ln 22, 23, Alg. 2).

Heuristic function

As it was mentioned earlier, the heuristic function hpnq (cost-to-go) is used to estimate
the cost needed to travel from some node n to the goal state nG. As it is shown in [48],
if the heuristic function is underestimating the real cost-to-go, A* search provides
the optimal trajectory. In this framework, the exact cost-to-go map resulting from
the backward search solving relaxed problem is used as a heuristic function. The
backward cost-to-go computation phase is executed only once at the beginning of the
trip, or if the goal is changed. The computation is performed by using backward DP,
starting from the goal state (s and v), backward in s, as it was shown in section 6.1.1.
In this phase, only time invariant constraints are considered (e.g. velocity limits)
with topological road profile and the vehicle model. Time-varying constraints are not
considered. The resulting cost-to-go map is an admissible heuristic, as other vehicles
can prohibit certain regions of the state space, which may only increase the cost to
travel from the initial state to the goal region. This is valid if platooning effects are
neglected, as platooning can potentially reduce the airdrag effect (which is considered
in the initial cost-to-go computation), and decrease the cost of travel. For compact
vehicles, this effect is usually negligible. Cost-to-go map hps, vq depends only on s
and v. Using a similar approach as in Forward Dynamic Programming (section 6.2.3),
the resulting cost-to-go map is applied based on child node’s s and v values, while
neglecting t and l values.

Search horizons

As it was noted in Algorithm 2, the planing is performed until any of the trajectories
reaches time (Thor) or distance (Shor) search horizon. Slower driving trajectories will
reach the time, while faster trajectories will reach the distance horizon. Thus, the
unnecessary planning can be avoided. If only one is chosen (e.g., Thor) other one could
adopt a large value (s for fast trajectories and vice versa). The search horizons should
not be confused with local expansion horizons, which uses a similar principle, but
represents atomic motion segments when building the whole trajectory.

Other vehicle motion prediction

Though it is required for prediction of potential collisions, the perfect knowledge of the
future motion of other vehicles is not available, in principle. A naive way to predict the
motion is to assume that the vehicles will continue to drive with their current velocity
and stay in the current lane. On the other hand, a motion planning framework should
provide collision-free plans even if trajectories deviate from the predicted one and the
environment perception system introduces estimation errors. Therefore, safety buffers
are used to increase obstacle regions, and frequent replanning is executed to adapt to
changes. The approach introduced in this framework is an additional safety mechanism
that ensures a collision-free plan even for the worst case error regarding the relative
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Figure 6.14: Predicting movement of other vehicle - linearization.

distance estimation. This is provided by adding a step-like safety buffer to the obstacle
prediction. The lower and upper bound of the vehicle obstacle can be defined as:

ŝkptq “ ŝkpt0q ` v̂kpt0qpt´ t0q ´ LS ´ sbptq, (6.26a)
ŝkptq “ ŝkpt0q ` v̂kpt0qpt´ t0q ` LS ` sbptq, (6.26b)

sbptq “
#

∆smax, t0 ď t ă t0 ` Trep,

3 ¨∆smax, t0 ` Trep ď t ď t0 ` Thor,
(6.26c)

where ∆smax is the maximum error of the vehicle relative position estimation. The
safety buffer sb is increased after Trep (the next replanning instance) to maintain ro-
bustness, so that in the next re-planning instance, the vehicle always starts from the
position that is collision-free according to a new safety buffer. This is visualized in
the Figure 6.14, showing the worst case scenario. The estimation error is such that
in the first planning instance, ∆smax is positive, while in the second instance, it is
negative. It can be seen that the safety buffer from the first planning instance ensures
that the trajectory is outside of obstacle area for the time interval rt0, t0 ` Trepq and
the trajectory is outside of the safety buffer from the second planning instance for the
time interval rt0`Trep, t0`2 ¨Trepq. This safety buffer provides a partial robustness for
deviations from the predicted trajectory as well, but no guarantees can be provided.

6.2.3 Forward Dynamic Programming

The other approach for replanning is based on Forward Dynamic Programming. The
main idea here, as introduced in [4], is based on the combination of the advantages of
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forward and backward Dynamic Programming. The planning problem is addressed by
splitting into strategic planning and situation dependent replanning. The results once
computed by backward programming, in strategic planning phase, are continuously
reused for the ongoing replanning during driving. Replanning is done using forward
planning from the current state, for a certain prediction horizon into the future, and
merged with previously obtained results from backward planning. During replanning,
dynamic constraints and additional states (e.g. lanes, travel time) are considered.
Thus, the whole trip is taken into consideration along with dynamic constraints, but
only a planning for a defined horizon is performed. This promises benefits of both,
forward planning the entire trip (globally optimal solution) and adaptability of MPC
with significant reduction in computational effort.

Situation-dependent replanning

During the replanning phase, the optimal trajectory is adjusted by taking into con-
sideration dynamic constraints. The adjustment is done by replanning the optimal
trajectory in an efficient way by reusing the cost-to-go map and optimal velocity
trajectory tree. The replanning is performed with forward Dynamic Programming
starting from the current state for a defined prediction horizon in the future. Several
safety factors such as maximum time of overtaking execution (constraint on minimum
velocity difference), minimum distance from the leading vehicle and clearance needed
for lane changing are considered as constraints in this phase, as defined in section 5.2.
The future movement of other vehicles is estimated using a simple prediction model,
that assumes that the leading vehicle will continue moving with constant velocity and
that it will slow down (to avoid collision) if it is behind ego vehicle (after being over-
taken). More sophisticated models of the leading vehicle velocity that may depend on
space, time and the controlled vehicle can be also included.
An illustrative example is shown in Figure 6.15. Blue lines represent the optimal
trajectory tree, constructed in the strategic planning phase. The green line is the
initial optimal trajectory, which also results from the strategic planning phase. The
vehicle tracks the optimal trajectory until situation-dependent replanning is triggered.
By using forward planning, a forward optimal trajectory tree starting from the current
state is constructed (red lines) considering dynamic constraints such as other traffic
participants, traffic lights, etc.
The merging of two trajectory trees (forward and backward) is performed at the end
of the horizon. Cost-to-come values at the possible joining nodes are summed with
cost-to-go values at these nodes from backward planning. Thus, combined costs of
trajectories, partially planned forward and partially planned backward, are computed.
The minimum among these costs is chosen, defining an optimal joining node, and the
new optimal trajectory (solid black node) passing trough that node. Starting from this
node backwards, towards the actual state, a new optimal trajectory can be constructed
iteratively. The new optimal trajectory does not have to be constructed forward to
the final state, if replanning is frequent. Therefore, unnecessary computations can
be avoided. In Figure 6.15, additional state dimensions (e.g. time t, lane l) are not
shown for forward planning, although they are considered. This is only to keep figure
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Figure 6.15: Forward Dynamic Programming-based replanning.

simple and focus on the working principle. During merging, for choosing the optimal
joining node, an appropriate node from cost-to-go is chosen based on the velocity v
and position s values only. So it is shared for all time t and lane l variants.

Replanning triggering

In this Forward Dynamic Programming implementation, the replanning triggering is
determined by the distance traveled. This means that the replanning frequency is
not constant, as it depends on driving velocity. For applications such as driving on
highway, this might not be a problem as there are no large fluctuations of velocity and
velocity is generally high. However, it is problematic for low velocity driving. Frequent
replanning is important if the environment is highly dynamic and the prediction of
other traffic participant motion is not precise.

Prediction horizon

As spatial discretization is used as a basis for motion planning, the prediction horizon is
defined by the length at which a forward planning is executed. It is important to choose
a proper horizon length as a so-called short sightedness can appear otherwise. Several
constraints such as clearance needed for changing a lane can block lane changing if
horizon length is too short. In general, the horizon should be as long as computational
resources enable it, but keeping in mind that accuracy of motion prediction of other
traffic participants decreases with time.

6.2.4 Remarks on Automated Driving

To solve Automated Driving use-case and enable driving in all driving scenarios,
achieving SuperHuman performance, two different solutions were developed. The first
solution was based on Forward Dynamic programming (Section 6.2.3). However, this

98



6.3 Performance Autonomous Driving

was abandoned as it showed to be very impractical. The other solution , SBOMP
(Section 6.2.2), was based on hybrid A* equipped with motion primitives. An efficient
framework was developed using solution from the relaxed problem solved with discrete
Dynamic Programming as a heuristic to guide the search. Search like this showed to
be very efficient as it does not search the whole space and deals well with continuous
dynamics due to motion primitives and hybrid A* approach. The SBOMP frame-
work showed to be scalable to consider more detailed vehicle model and applicable to
Performance Driving use-case.

6.3 Performance Autonomous Driving

The tackled problem in this use-case is minimum lap-time driving on empty tracks
in low friction conditions, i.e. gravel road. The road, on the other hand, is assumed
to be flat, with static road-tire characteristic and can have arbitrary shape (varying
curvature radius, mixed right and left curves, etc.) with constant width. As planning
motion trajectories for continuous driving in this kind of conditions can be consid-
ered as a combinatorial optimization problem, heuristic search methods like A* can
be effectively used for automated optimal trajectory generation. In this work, an A*
search-based approach was used, that is a novel approach in this field. The presented
A* search-based planner is a modified version of the one illustrated in Section 6.2.2,
where a rather simple vehicle model was used to generate vehicle trajectories in com-
plex urban driving scenarios. Here, more complex vehicle model was used. The space
of the possible trajectories is explored by expanding different combinations of motion
primitives in a systematic way, guided by a heuristic function. Motion primitives are
generated using two different vehicle models. A bicycle model is used for small side-
slip angle operations (i.e. entry and exit maneuvers and close-to-straight driving) and
a full nonlinear vehicle model for steady state cornering maneuvers. Such automated
motion primitives generation enables to generate arbitrary trajectories, not limited to
just one curve as in other approaches in this field.

6.3.1 Framework

The proposed Motion planning framework , as presented in [10], is based on the A*
search method [48], guided by an heuristic function in an MPC-like replanning scheme.
After each time interval Trep, replanning is triggered from the current vehicle state,
together with the information about the drivable road ahead.
The trajectory is generated by a grid-like search using A* search (see Algorithm 4),
in the same way as in SBOMP from section 6.2.2. Each node n contains 20 values: 6
indexes for each state in x (n.xk, n.yk, n.ψk, etc.), 6 indexes for the parent node (to
reconstruct the trajectory), six remainders from the discretization of states (n.xr, n.yr,
n.ψr, etc.), the exact cost-to-come to the node (n.g), and the estimated total cost of
traveling from the initial node to the goal region (n.f). The value n.f is computed as
n.g ` hpnq, where hpnq is the heuristic function.
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Algorithm 4: A* Heuristic Search for a horizon
input : nI, Obstacles data pOq, hpnq

1 begin
2 nÐ nI,Closed Ð ∅,Open Ð n // initialization

3 while n.k ď khor and Open ‰ ∅ and Open.sizepq ď Ntimeout do
4 nÐ SelectpOpenq
5 pn1, nCq Ð Expand(n, Children, ColCheck)
6 Closed Ð ClosedY nY nC,Open Ð OpenznY n1
7 return Path ()
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Figure 6.16: β ´ 9ψ map representing the expansion modes depending on initial states.

v v

Figure 6.17: Motion primitives for performance driving using semi-linearized bicycle
model (left) and ESM (right).

6.3.2 Motion Primitives

To build trajectories iteratively, nodes are expanded and child nodes (final states on
the motion primitives) are generated, progressing towards the goal. From each node
n, only dynamically feasible and collision-free child nodes n1 should be generated. As
mentioned before, child nodes (motion primitives) are generated based on two models,
semi-linearized bicycle model for a close-to-straight driving and vehicle-equilibrium-
states during cornering as illustrated in Figure 6.17 (Section 5.1.2).
During cornering, the child nodes (motion primitives) are generated based on the
steady state dynamic states Sss, as explained in Section 5.1.2. Based on the cur-
rent steady state Sss, several reachable steady states are sampled, and model (5.4) is
used to simulate the evolution of other states (x, y, ψ) during the linear transition to
sampled new steady states. New steady states are obtained by sampling the β ´ 9ψ
space around the current value pβ0, 9ψ0q, with the density of the samples decreasing as
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Figure 6.18: Expanding parent node n to different child nodes n1 on the ESM.

the distance from the current position increases (see Figure 6.18). Different sampling
approaches can be also employed. The number of evaluated samples is a tuning para-
meter, that impacts considerably the performance of the search, as a trade-off between
computation time and sufficient space exploration is needed. Since (5.10) assumes that
the rate of change of states is equal to zero, in order to generate trajectories which
keep the vehicle on the road by moving to other steady states, this constraint must be
“softened”.
In order to avoid generating and propagating an excessive amount of branches, before
the nodes which are in collision are removed, the following rules are considered:

• only equilibrium points defined within the surface in Figure 5.4 are considered,
so that the minimum reachable curvature radius is Rc,min “ 10m;

• the (small) portion of curve such that β ¨ 9ψ ą 0 is neglected, since in general
equilibrium points in which β and 9ψ share the same sign are associated with low
velocity conditions;

• a maximum velocity deviation ∆v between two successive nodes is defined, such
that ∆v

Ts
ă amax, where amax is the estimated maximum deceleration allowed on

the given road surface.
Nodes are always expanded by “exploring” the neighboring states of the ESM. How-
ever, as illustrated in Figure 6.16, when the current conditions are close enough to
the origin of the β ´ 9ψ plane, i.e. for |β| ă βlin and | 9ψ| ă 9ψlin, also dynamic states
and trajectories generated according to a semi-linearized bicycle model are considered
(Section 5.1.2). In order to generate motion primitives, the steering wheel angle δ and
the rear wheels slip λ are varied within the defined ranges.
Figure 6.17 illustrated motion primitives for two models. On the left, motion prim-
itives are generated using semi-linearized bicycle model with 2 variations in the rear
wheels slip λ and 3 variations in steering wheel angle δ. In total 6 motion primitives
are generated. On the left, 4 motion primitives generated by sampling in ESM are
illustrated. In practice, many more motion primitives are generated (about 100).
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6.3.3 Heuristic function

The heuristic function hpnq is used to estimate the cost needed to travel from some
node n to the goal state (cost-to-go). As it is shown in [48], if the heuristic function is
underestimating the exact cost to go, the A* search provides the optimal trajectory.
For the shortest path search, the usual heuristic function is the Euclidean distance.
On the other hand, to find the minimum lap time, the heuristic should estimate
the distance which the vehicle can travel from the current node during the defined
time horizon. It is optimistic to assume that the vehicle accelerates (with maximum
acceleration) in the direction of the road central line until it reaches the maximum
velocity, and then maintains it for the rest of time horizon. Based on this velocity
trajectory, the maximum travel distance can be computed and used as heuristic.
Sacrificing optimality, in order to bias expansions towards the preferred motion and a
better robustness, the heuristic function is augmented considering, among others:

• a “dynamic states evolution” cost, which helps limiting the rate of change of
the references v, β, 9ψ, in order to obtain smooth trajectories and facilitate state
tracking;

• penalization for trajectories approaching the road boundary;
• penalization of the nodes with less siblings, thus biasing the search to avoid

regions where only few trajectories are feasible.

6.3.4 Remarks on Performance Driving

In this section, a novel application of SBOMP for performance driving is presented.
The proposed method extends drift-like driving from a steady state drifting on a single
curve to a continuous driving on the road, effectively entering and exiting drifting
maneuvers and switching between right and left turns. The proposed method assumes
that the vehicle parameters and the road surface properties are known to a certain
degree, which allows to define a set of steady-state cornering maneuvers.

6.4 Planning and Learning

Planning and Learning are complementary approaches. Planning relies on deliberative
reasoning about the current state and sequence of future reachable states to solve the
problem. Learning, on the other hand, is focused on improving system performance
based on experience or available data. Learning to improve the performance of plan-
ning based on experience in similar, previously solved problems, is ongoing research.
One approach is to learn Value function (cost-to-go), that can be used as heuristics
for speeding up search-based planning. Existing approaches in this direction use the
results of the previous search for learning the heuristics.
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Figure 6.19: MP for ego vehicle (yellow) in scenario with receding vehicle (purple) and
traffic light. Situation representation for 2 nodes.

6.4.1 ML-based heuristic function for Automated Driving

Previous work, presented in Section 6.2.2, used Search-Based Optimal Motion Plan-
ning framework (SBOMP) with numerical or model-based heuristics. Heuristics did
not consider dynamic obstacles. Optimal solution was still guaranteed since dynamic
obstacles can only increase the cost. However, significant variations in the search ef-
ficiency are observed depending whether dynamic obstacles are present or not. To
improve the performance consistency for achieving real-time implementation, machine
learning (ML)-based heuristic was introduced [8], which takes into account full driving
situation including dynamic obstacles.

The original SBOMP for optimal motion planning is enhanced by ML heuristic hML,
bounded by an admissible heuristic hadm for providing guarantees on sub-optimality.
Proposed hML takes as input discretized SLT 3D structure (dSLT) representing node n
and a driving situation (obstacles O) and returns as a result a scalar value representing
an estimated cost to reach horizon limits from that node. Using modified SBOMP and
admissible heuristic (hadm), dataset (D) of exact input-output data points is generated.
Dataset is then used for training of the ML heuristic. In principle, this approach differs
from reinforcement learning since it is supervised and from imitation learning since
the exact optimal solution is used instead of expert demonstrations.
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Situation representation

Node n and driving situation are represented by a discretized SLT (dSLT) 3D structure
with longitudinal distance s, lane l and time t dimensions (Figure 6.19). 3D structure
has NkshorˆNkthorˆNkdl cells. Each cell represents a part of the search space and can
be free or occupied by some obstacle or ego vehicle. Obstacles are uniquely marked
for several types: other vehicles, traffic lights, forbidden lane change, etc. (as shown
in Section 5.2). Parent node n is represented by virtual obstacle as if the vehicle is
continuing to move with velocity n.v from it’s initial position. The advantage of this
formulation is that the representation keeps a consistent 3D size for each driving situa-
tion regardless of the number of obstacles and it is computed only once per replanning
instance. This structure can be useful for other tasks that require as input full driving
situation with the temporal evolution (so-called time-series in ML). Such tasks might
be behavior prediction, scenario classification, etc. In those cases, it is more useful to
keep trajectory history instead of prediction.

Dataset generation

For generation of dataset D, the SBOMP framework was modified to enable theoret-
ically inexhaustible generation from different scenarios and initial conditions as it is
shown in Algorithm 5. Contrary to the original SBOMP, where the goal was to find
only one collision-free trajectory, for dataset generation the goal is to generate as many
different data points as possible. Therefore, the search is executed not only until some
trajectory reaches horizon, but until all nodes in Open list are explored. Trajectory
branches are constructed backward from each node nh at the end of horizons, starting
from nodes which reached horizon first. For each node n on the branch, correspond-
ing 3D structure and cost are stored in dataset D. Cost is computed by subtracting
gpnq value from the cost of the final node gpnhq. It can be noted that computed cost
represents cost-to-horizon and not cost-to-go anymore, but this should not affect the
results of the search. The remaining nodes, not belonging to the branches that reach
horizons, lead to the collision, and thus are assigned with infinite cost. These nodes
partially resemble inevitable collision state [234].

Using ML heuristic function

Proposed ML heuristic hML is bounded by an admissible heuristic hadm as shown in
(6.27), so that guarantees on sub-optimality can be provided. In this way, heuristic
is ε-admissible so the solution is always maximum ε times greater than the optimal
solution [216]. Values of ε closer to 1 guarantee smaller deviation from optimal solution
but reduce computational performance. Alternative approach would be to use Multi-
Heuristic A* Search (MHA*) [235].

hadm ď hML ď ε ¨ hadm, ε ě 1. (6.27)
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Algorithm 5: modified SBOMP for dataset generation
input : kscen // Number of initial poses
output: D // Dataset

1 begin
2 D Ð ∅ // Dataset
3 foreach k P r1, kscens do
4 n,O Ð ScenarioGenpq // generated driving scenario
5 Closed Ð ∅ // list of closed nodes
6 Open Ð n // list of opened nodes
7 while Open ‰ ∅ do
8 Closed Ð ClosedY n // Exploring
9 Open Ð Openzn

10 foreach n1 P Expand(n,O, hps, vq) do
11 if n1 P Closed then
12 continue
13 else if n1 P Open then
14 if new n1 is better then
15 n1.parentÐ n // update parent
16 else
17 continue

18 else
19 Open Ð OpenY n1 // add to list

20 nÐ arg minn.f P Open
21 foreach nh P Closed | nh.s “ Shor _ nh.t “ Thor do
22 nÐ nh // end of one traj. branch
23 while n P Closed do
24 D Ð D Y tn,Opnq, pnh.g ´ n.gqu
25 Closed Ð Closedzn
26 nÐ n.parent

27 foreach n P Closed do
28 D Ð D Y tn,Opnq, infu // dead-end trajectoriess

29 return D

Appropriate ML architecture for this problem have yet to be developed and learnability
validated. However, a more general approach for model exploration and value function
learning was proposed and successfully trained on Grid World domain and Shortest
Path Planning problem.

6.4.2 Prolonged Heuristic Search-based model exploration

This section presents a search-inspired approach to systematic model exploration for
value function learning, introduced in [9]. It is based on prolonged and backward
heuristic search that does not stop when a plan is available, but rather continues such
that wider region around the optimal path is explored (not only resulting optimal
path). The search is flipped backward so that all explored nodes can be used as they
all are connected to the goal. The presented approach uses an existing admissible
heuristic function (hadm) and a known model (or simulator) M of the system to a
generate dataset D of exact state-cost data points. The dataset can be used for
supervised learning of the value function. The learned value function is then used as
heuristic function hML in the search, bounded by the admissible heuristic to provide
guarantees on sub-optimality.
This approach to exploration can be also used within Model Based Reinforcement
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Figure 6.20: Nodes explored for Vanilla Shortest Path problem (left) and Prolonged
Heuristic Search (right).

Learning framework. When model or simulator is available, it enables systematic,
theoretically inexhaustible data generation from different scenarios and initial condi-
tions, therefore using computational resources offline to have faster planning online
(when it is more critical). In Reinforcement Learning setup, this approach can be also
used in cases when it is important to focus the exploration to certain parts of the state
space to reduce uncertainty in value function approximation.

Dataset generation

The dataset D is similar to dataset in Section 6.4.1, but it is extended also with
the goal state. It consists of data points which carry information about the scenario
(obstacles, initial and goal state) and current state together with the corresponding
cost-to-go (i.e. from current state to the goal state). For the generation of dataset D,
planning algorithms can be used to generate data points with the exact cost-to-go. In
the vanilla Shortest Path Planning problem (SP), the goal is to find only one collision-
free path (i.e. from initial to the goal state), so planning is stopped when the goal
state is reached. As the goal state is reached only from one node (and each node has
only one parent), the exact cost-to-go can be computed only for nodes on the optimal
path. Contrary to SP, in the dataset generation, the objective is to generate as many
different paths toward the goal (data points) as it is possible. One approach is to
use Backward Dynamic Programming (or Dijkstra’s algorithm). However, this would
explore the whole search space which is not practical in higher dimensional problems.
We proposed a novel exploration approach based on Prolonged Heuristic Search (PHS),
to generate the dataset D, as it is shown in Algorithm 6. In this approach, search is
done backwards from nG so that all explored nodes can be used in dataset as they
contain exact cost to nG. Additionally, as the region of higher interest is in the
neighborhood of optimal path, the search is not stopped when the initial node nI is
reached by some path (as in the SP problem), but prolonged until Closed list gets kexpl
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Algorithm 6: Prolonged Heuristic Search (PHS) for dataset generation
input : kscen, kexpl,M, hadmp¨q
output: D // Dataset

1 begin
2 D Ð ∅ // Dataset
3 foreach k P r1, kscens do
4 xnI, nG,Oy Ð NewScenariopq // New scenario

// Search-based Exploration
5 xOpen,Closedy Ð PHSpxnI, nG,Oy, kexpl,M, hadmp¨qq

// Extracting data from the search
6 foreach n P ClosedYOpen do
7 D Ð D Y pn,O, gpnqq // Data points
8 ClosedYOpen Ð ClosedYOpenzn
9 return D

times more nodes. This prolongation assures that more nodes in the neighborhood
of the optimal path are explored. Data points are constructed such that, for each
node n in the Open and Closed lists, the corresponding scenario structure (grid)
and cost-to-go are stored in dataset D. Cost-to-go from node n to goal node nG is
actually cost-to-come gpnq in backward search. In this way, paths do not have to be
reconstructed and all expanded nodes are used in the dataset.

Value Function Learning

Learning of the Value Function hML, in this approach, is a supervised learning problem
(regression). The proposed hML takes as input an image representing the current and
the goal nodes (nI, nG) and a situation (obstacles O), as can be seen in Figure 6.20.
(grayscale part), and returns as a result a scalar value representing an estimated cost
to reach the goal from that node.
As it is preferred that the heuristic function underestimates the exact cost (admissi-
bility), a non-symmetric loss function can be used. Asymmetry can be introduced by
augmenting Mean Square Error Loss function as:

ei “ yi ´ ŷi, (6.28)

L “ 1
N

N
ÿ

i“1
e2
i ¨ psignpeiq ` aq2, (6.29)

with parameter a ă 0 to emphasize the penalty for positive errors e.

6.4.3 Remarks on Planning and Learning

The presented approach offers the possibility to effectively include Machine Learning
into a deterministic planning framework, promising significant performance improve-
ments manifested in a reduced number of explored nodes compared to those obtained
using admissible heuristic (hadm) while keeping guarantees on sub-optimality of the
solution. The proposed Prolonged Heuristic Search (PHS) approach to exploration
uses the maximum of invested computational resources in planning as all expanded
nodes in planning are used for learning.
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6.5 Chapter Conclusion

It this chapter, Motion Planning solutions developed in the framework of this PhD
work are presented. As it is shown, solutions are based on graph search methods
(Dynamic Programming and A* search). First, different custom solutions for specific
problems (i.e. energy efficient driving) were presented. Later, forward and backward
planning solutions were combined into effective framework SBOMP, that can deal with
complex problems (i.e. Automated Driving, Performance Driving). As a highlight,
Search-based Optimal Motion Planning (SBOMP) was presented. It is an resolution
complete optimal kinodynamic motion planning algorithm based on heuristic search.
It relies on motion primitives and hybrid A* search-based solution.
Developed methods were applied to three targeted use-cases. In Energy-efficient Driv-
ing use-case, Dynamic Programming and A* search-based custom solutions were pro-
vided to facilitate planning of trajectories for the full trip spanning even to tens of
kilometers. To improve search efficiency, some theoretical results were developed,
such as the concept of Optimal Cruising Velocity together with analytical expression
for its computation. It was then used in heuristic function to improve the search.
The developed SBOMP framework was used for Automated Driving use-case together
with scalable environment representation (as shown in section 5.2) and effective vehi-
cle model (section 5.1.2). This approach can be applied all foreseeable scenarios on
structured roads (urban, suburban and highway). It can incorporate traffic rules, for-
bidden lanes, other vehicles and complex dynamic environment in general. Trajectory
is planned such that both fast and slow trajectories are generated making it capable
to drive in full velocity range, including the full stop. If there is information about the
traffic light timing, it can also be incorporated. The driving aims at using the least
energy, effectively extending eco-driving approaches to multi-lane automated driving
in complex environments. SBOMP was further extended with more complex model
and used for performance driving. The developed solution is capable of driving on
roads with arbitrary planar geometry (i.e. varying curvature radius, mixed right and
left curves).
Finally, an approach of integrating ML into heuristic search was presented and method
for using previous heuristic search results to improve future planning. That approach
was further extended and generalized to a novel approach to model exploration (PHS)
for value function learning, that can be also used in Model-based Reinforcement Learn-
ing setups.
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Simulation

Imagination will often carry us to worlds that never were. But
without it we go nowhere.

Carl Sagan

This chapter presents the results of the simulation study performed to verify the
applicability of developed methods to targeted use-cases and benchmark benefits of
developed planners compared to the other state-of-the-art approaches. For each use-
case, appropriate scenarios are created and solved using proposed methods to verify
important aspects of the method. For benchmarking, several comparisons to related
state-of-the-art approaches are performed, mainly based on energy-efficiency and travel
time or computational efficiency. The main benefits come from extending Energy-
efficient Driving (eco-driving) to Automated Driving, that considers energy-efficiency
and utilizes connectivity. This extends usability of eco-driving to a wide range of
scenarios, including multi-lane driving in the presence of traffic lights.
The first section presents the applicability of proposed method to three use-cases. The
second section presents the benchmarks with different approaches. The third section
presents the results of experimental analysis of computational complexity. Finally, the
fourth section presents the results on the planning and learning approach, including
dataset generation, value function learning and verifying example.

7.1 Use cases

In this section, proposed planners are verified in several scenarios, including driving on
the open road with speed limits for Energy-efficient Driving use-case; several urban,
rural and highway scenarios for Automated Driving use-case; and driving on the circuit
in slippery road conditions for Performance Driving use-case.

7.1.1 Energy-efficient Driving (eco-driving)

The proposed planners for Energy-efficient Driving use-case, as described in section
6.1, are based on Dynamic Programming and A* search. They are implemented in
Matlab and used in Simulink as a Matlab compiled function. This planner enables the
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Figure 7.1: Energy efficient driving with speed limits.

ecoCC function, meaning it considers energy-efficiency while controlling velocity, but
does not consider other traffic. The velocity trajectory is planned for the whole trip.
For the purpose of verifying the ecoCC planner, driving on an empty, hilly road with
speed limits is considered. An artificial road segment, 500 m long, with a hill and a
valley, is used. The hill is 1.6 m high, with a maximum slope of 6% and the valley has
a symmetrical shape. There is one speed limit on the segment (from 200 m to 250 m),
limiting maximum speed to 7 m{s. No other vehicles are present on the segment.
Initial and final velocity for ego-vehicle is set as standstill (vi “ 0 m{s, vf “ 0 m{s).
Planners consider road slope, air resistance, roll coefficient, auxiliary power, power-
train efficiency and speed limits to find an optimal velocity trajectory (in the sense of
energy consumption) for the given trip. The grid is formed by discretizing the space
with discretization step size for distance ∆s “ 1 m and for velocity ∆v “ 0.03 m{s.

Table 7.1: Driving and planning performance for Energy-efficient Driving.

method energy used
[kJ] travel time[s] nodes expl. comp. time [s]

DP 210.75 66.66 15251 0.067
A* 210.75 66.66 7683 10.21

Figure 7.1 visualizes the optimal velocity trajectory for this trip without considering
speed limit (green) and when considering speed limit (blue). The same trajectories
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are obtained by both approaches, Dynamic Programming and A* search. As it can
be observed, when the speed limit is not considered, resulting trajectory consists of
a constant speed driving at about 15 m{s (Optimal Cruising Velocity (OCV) for this
vehicle and air drag resistance), on a flat road, slowing down uphill, and speeding
up downhill. The trip starts with maximum acceleration to reach OCV and finishes
with coasting down and maximum braking at the end. When the speed limit is con-
sidered, trajectory is modified to satisfy the limit. Table 7.1 presents the results of
the experiment. As it can be observed, the number of nodes explored is smaller when
A* search is used, compared to Dynamic Programming. While Dynamic Programing
explores the whole search-space, A* search is guided by heuristic to a more promising
region. The benefit is not drastic in this problem (2D problem with limited state-
space), but it becomes drastically larger in higher dimensional problems that are not
limited, i.e. Performance Driving use-case. Although the number of explored nodes
is smaller, the computation time is higher. This is due to efficient exploitation of
parallel matrix computations in Dynamic Programming (possible in 2D problem) and
interpreted language use for this A* search implementation. More efficient A* search
implementation is used in SBOMP. In further work, for Optimal Velocity trajectory
tree, Dynamic Programing is used.

7.1.2 Automated Driving

The proposed planner for Automated Driving use-case, as described in section 6.2.2,
is based on SBOMP framework. The SBOMP framework was implemented in Matlab
and used in Simulink as a Matlab compiled function together with PreScan, where
a detailed vehicle model is simulated. Even though this implementation is not opti-
mal, the results meet real-time requirements. For example, the proposed framework
computes the plan with a horizons of Shor “ 100 m and Thor “ 10 s, discretization of
∆v “ 1 m{s and ∆s “ 10 m, in 116 ms in average. The computation time limits the
maximum frequency of replanning to approx. 10 Hz. For verification purposes, several
scenarios are presented, ranging from urban, rural and highway driving. The SBOMP
enables ecoAD function, indicating that energy-efficiency is used as an objective and
it performs fully Automated Driving (Level 5).
The planner uses same planning parameters setup for all scenarios. Only the para-
meter for Ptot is changed to facilitate appropriate cruising velocity, depending on the
environment (highway, rural, urban). Presented computation time is based on Mat-
lab implementation without compilation, as it allows a better handling of different
scenarios and runtime analysis.

Full stop

To verify full velocity range operation and ability of ecoAD to provide slow trajectories,
the full stop scenario is simulated. Ego-vehicle has to fully stop, due to the road
blockage by other stopped vehicle. In the scenario, single lane, 500 m long road, is
used. The speed limit of 60 km{h « 16.67 m{s is active on the road. There is a
leading vehicle VLV stopped at the distance of 300 m. The ego-vehicle drives with an
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Figure 7.2: Results from full stop scenario.

initial velocity of 15 m{s, approaching the vehicle which is at standstill. Planner uses
ecoAD’s setting for urban driving, where optimal cruising velocity is 16.87 m{s.

Table 7.2: Driving and planning performance for full stop scenario.

energy used [kJ] travel time[s] nodes expl. comp. time [s]
´38.41 21.95 438.54˘ 238.51 0.143˘ 0.076

Figure 7.2 visualizes the resulting vehicle trajectory. On the right t ˆ s projection,
red area represents the region occupied by the other vehicle VLV, green line represents
ego-vehicle driving trajectory. The ego-vehicle manages to fully stop without colliding
with the vehicle or violating traffic rules. Table 7.2 presents the planner performance
in terms of planning time and explored nodes, and driving performance in terms of
energy consumption and travel time. As it can be observed in the table, energy used
is negative, since the vehicle is braking from some initial velocity and kinetic energy
can be recuperated.

Vehicle following

This scenario considers driving behind the other vehicle. As energy-efficiency is con-
sidered, this provides so-called ecoACC function, indicating that the function is per-
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Figure 7.3: Results from vehicle following scenario.

forming Adaptive Cruise Control (ACC). In the scenario, the same single lane road,
500 m long, is used. There is a leading vehicle VLV driving in front, at the initial dis-
tance of 50 m, with velocity of 12 m{s. The ego-vehicle drives with an initial velocity
of 16.87 m{s approaching the vehicle and continuing to drive behind it.

Table 7.3: Driving and planning performance for vehicle following scenario.

energy used [kJ] travel time[s] nodes expl. comp. time [s]
27.29 21.95 141.54˘ 83.96 0.049˘ 0.028

Figure 7.3 visualizes the driving trajectory from the scenario execution. On the right
tˆs projection, red area represents the region occupied by the other vehicle, green line
represents ego-vehicle driving trajectory. The ego-vehicle manages to smoothly follow
the leading vehicle VLV without colliding or violating traffic rules. Table 7.3 presents
the planner performance in terms of planning time and explored nodes, and driving
performance in terms of energy consumption and travel time. It can be observed that
the computational performance is better as this is generally easier problem than the
full stop.
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Figure 7.4: Results from rural overtaking scenario.

Rural Overtaking with oncoming traffic

This scenario deals with rural driving on roads with traffic in both directions. The
scenario is focused on overtaking while there is an oncoming traffic from the other
direction, which is considered to be a challenging task. The ego-vehicle is driving on
a two-lane road with traffic in both directions, with one leading vehicle VLV driving in
front, and other vehicle VOV approaching in other lane, from the opposite direction.
Speed limit of the road is 80 km{h « 22.22 m{s. The leading vehicle VLV is initially
located 75 m ahead of the ego-vehicle and it is driving with constant velocity of 10 m{s.
On the other lane, other vehicle VOV is driving in opposite direction with a constant
velocity of 10 m{s. There are two scenario variants, variant 1 with the initial position of
vehicle VOV at 500 m and variant 2 with the initial position at 300 m. The ego-vehicle
is driving with an initial velocity of 16.87 m{s, using SBOMP, to achieve ecoAD. Same
planner settings are used as in previous scenarios, with ecoAD setup for rural road
(Optimal Cruising Velocity is 16.87 m{s).
Figure 7.4 visualizes the results from the scenario execution. On the right t ˆ s
projection, red area represents the region occupied by the leading vehicle VLV, green
region starting from 300 m represents VOV in variant 2 and green region showing after
10 s represents VOV in variant 1. It can be observed that in variant 2, two other
vehicles meet around 200 m at about 11 s. The ego-vehicle manages to safely drive
without colliding with the vehicle or violating traffic rules in both variants. In the
variant 1, ego-vehicle decides to overtake VLV before VOV approaches (blue line). In
the second variant, ego-vehicle decides to wait until VOV passes, as there is not enough
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Table 7.4: Driving and planning performance for rural overtaking scenario.

energy used
[kJ] travel time[s] nodes expl. comp. time [s]

Var 1 125.6 23.5 249.67˘286.85 0.56˘ 0.55

Var 2 36.87 34.15 1133.08˘
1305.55
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Figure 7.5: Results from urban scenario with traffic light.

room or the energy lost for accelerating to overtake is too large, so there is no benefit
compared to waiting (green line). Table 7.5 presents the planner performance in terms
of planning time and explored nodes, and the driving performance in terms of energy
consumption and travel time. Direct comparison based on energy consumption cannot
be made, as the final velocity is different. However, it can be observed that in variant
2 travel time is higher, as the vehicle is stuck behind the other vehicle. Additionally,
large variations in computation time can be observed in variant 2, as slowly driving
leading vehicle VLV motivates planner to look for a possible overtaking, that eventually
shows to be not feasible, and represents an dead-end in the search space.

Urban multi-lane driving with Traffic Lights

This scenario deals with the urban driving on multi-lane roads with the traffic in
same direction. Scenario is focused on utilizing the communication with traffic lights,
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and knowledge about traffic light signal phase and timing (SPaT). The ego-vehicle is
driving on the road, 1000 m long, with three lanes. There is a leading vehicle VLV
diving in the middle lane and a traffic light in front of the ego-vehicle. There are two
variants of the scenario. At the beginning of the scenario, the traffic light is 200 m
(variant 1) and 300 m (variant 2) in front of the ego-vehicle. The leading vehicle VLV
drives with velocity of 12 m{s and traffic light turns red just after VLV passes it. The
same scenario is visualized earlier in Figure 5.9. Speed limit of 60 km{h is active on
the track. The ego-vehicle starts the scenario in the middle lane behind VLV, with an
initial velocity 16.87 m{s. Same planner settings are used as in the previous scenarios,
with ecoAD setup for urban road (Optimal Cruising Velocity is 16.87 m{s).

Table 7.5: Driving and planning performance for urban scenario with traffic light.

energy used
[kJ] travel time[s] nodes expl. comp. time [s]

Var 1 ´78.28 19.95 2462˘ 169.05 9.42˘ 0.52
Var 2 94.07 17.6 597.56˘594.58 2.63˘ 2.55

Figure 7.5 visualizes vehicle driving trajectory from the scenario execution. The ego-
vehicle manages to safely drive without colliding with the vehicle or violating traffic
rules. In the variant 2, the ego-vehicle decides to overtake VLV to catch the green light
(blue line). In the variant 1, ego-vehicle decides to stop at the red light, as there is not
enough room or the energy lost for accelerating to overtake is too large, so there is no
benefit compared to waiting, (green line). In the figure blue line seems as if the vehicle
passes trough the yellow light at 200 m, but blue line actually represents variant 2
where the traffic light is located at 300 m and this is the traffic light from variant 1.
Table 7.5 presents the planner performance in terms of planning time and explored
nodes, and driving performance in terms of energy consumption and travel time. As
it can be observed in the table, energy used is negative for variant 1, as the vehicle is
braking from some initial velocity and energy can be recuperated. Additionally, large
variations in computation time can be observed as traffic light is blocking the optimal
driving. The planner has to find a trajectory that ends at time horizon, which requires
to explore a large part of search space.

Conclusion on Automated Driving use-case

Presented scenarios in Automated Driving use-case cover wide situations, from urban,
rural and highway driving. Planner based on SBOMP managed to provide appropriate
vehicle trajectories, and to control the vehicle achieving the ecoAD function. Even
several challenging scenarios (i.e. overtaking with oncoming traffic) are successfully
executed. Planner successfully considers speed limits, other vehicles, forbidden lane-
change, blocked lanes and traffic lights.

116



7.1 Use cases

-130 -120 -110 -100 -90 -80 -70 -60 -50
x

-290

-285

-280

-275

-270

-265

-260

-255

-250

-245
y

70 80 90 100 110 120 130 140
x

-285

-280

-275

-270

-265

-260

-255

-250

-245

-240

y

Figure 7.6: Graphical representation of the trajectories exploration in U-turn (left) and
wide turn (right).

7.1.3 Performance Autonomous Driving

Presented SBOMP framework was adapted for Performance Driving use-case and also
implemented in the Matlab/SIMULINK environment. As the focus is on efficient
trajectory generation, the planner is verified assuming perfect actuation, i.e. the actual
vehicle dynamical states/positions match the ones planned at the previous iteration.

For verification purpose, an artificial mixed circuit was used, characterized by slippery
conditions (gravel), which contains several road sections of varying curvature radii, as
it can be seen in Figure 7.9.

Proposed planner manages to find the appropriate vehicle trajectory for driving on the
track. Figure 7.6 visualizes state exploration for finding the optimal trajectory in case
of a U-turn and of a wider curve. The explored branches are represented by the red
links, and the closed nodes are marked as green. The light-blue car frames represent
the optimal vehicle states.

In Figure 7.7, several frames of the same maneuver are shown (the top left turn in
the track illustrated in Figure 7.9). From these, it is possible to grasp how at each
iteration the optimal trajectory is re-computed based on the current position. Given
the nature of the receding horizon approach, it is not guaranteed (nor preferred) that
all or part of the previously computed trajectory are kept in the next iteration. In
fact, while in the first step the trajectory “dangerously” approaches the side of the
road, in the next two steps, the trajectory is incrementally improved, thanks to the
fact that the exploration of such portion of the track is now being evaluated.

The dynamical states, which represent the output of the trajectory generation, are
visualized in Figure 7.8. One can see how the generated references are varied smoothly,
in particular in terms of v and β, which are the quantities characterized by slower
actuation dynamics. Moreover, it is possible to clearly distinguish 4 intervals in which
the optimal generated maneuver is a “drift” one with β ą 0.4 rad. These same intervals
can be recognized in Figure 7.9, where the overall trajectory on the considered 10 m-
wide track can be evaluated.
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Figure 7.7: U-turn maneuver: consecutive frames.

Figure 7.8: Reference dynamical states over the full test-circuit.

Conclusion on Performance Driving

In this section, SBOMP is used to generate dynamically feasible trajectories for perfor-
mance driving on a slippery surface. The proposed method extends drift-like driving
from a steady state drifting on single curve to a continuous driving on the road ef-
fectively entering and exiting drifting maneuvers and switching between right and left
turns. The proposed method assumes that the vehicle parameters and the road surface
properties are known to a certain degree, which allows to define a set of steady-state
cornering maneuvers. The method is evaluated on a mixed circuit characterized by
slippery conditions (gravel), which contains several road sections of varying curva-
ture radii Rc. In several instances, due to the particular road surface considered,
the optimal selected trajectory involves drifting, which in certain conditions ensures
the maximum lateral acceleration. Such a result demonstrates the capability of the
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Figure 7.9: Obtained driving trajectory over the full test-circuit.

proposed SBOMP to generate feasible sub-optimal trajectories on slippery conditions,
while considering a limited prediction horizon. Moreover, when considering U-turns
with curvature radius as tight as 15 m, such trajectories are comparable in shape to
the ones obtained when the full segment is optimized in order to find the minimum
time optimal maneuver, as in e.g. [180].

7.2 Benchmarking

In this section, comparisons to other state-of-the-art approaches are presented in order
to highlight the fundamental contributions and advantages of the proposed approach.
Discussion of the resulting driving behavior is based on the vehicle trajectories pre-
sented in distance-velocity s ´ v, time-distance t ´ s and distance-lane s ´ l plots.
Appropriate tables show the differences in energy usage and travel time (for driving
performance), and computation time and numbers of node explored (for computational
performance).

7.2.1 Energy-efficient Driving

Benchmarks in Energy-efficient Driving are focused on benchmarking driving perfor-
mance benefits of using ecoCC compared to constant velocity driving and compu-
tational benefits of using introduced heuristic function based on Optimal Cruising
Velocity.
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Energy consumption: Constant velocity (CC) vs. optimized velocity trajectory
(ecoCC)

To highlight the benefits of eco-driving, driving with optimal velocity trajectory using
ecoCC is compared with constant velocity driving (i.e. using Cruise Control (CC)).
The example simulation is setup as follows. The road as in section 7.1.1 is used.
Three different velocity set points (7 m{s, 9 m{s, 11 m{s) are used. Vehicle starts
and finishes with zero velocity, standstill. In contrast to the constant velocity driving,
optimal driving using ecoCC, as described in section 6.1, considers road slope, air
resistance, roll coefficient, auxiliary power consumption, and powertrain efficiency. An
(in the sense of energy usage) optimal velocity trajectory is generated for the given
travel.

Table 7.6: Comparison of ecoCC with CC regarding energy consumption and travel
time.

Ego velocity
[m{s]

energy used
[kJ] diff. [%] travel time [s] diff. [%]

ecoCC 213.87 0 59.25 0
const 9 m{s 231.68 +8.3 58.49 -1.28
const 11 m{s 237.98 +11.3 49.06 -17.20
const 7 m{s 237.97 +11.3 73.75 +24.47

As it can be observed from Figure 7.10, ecoCC adapts velocity (shown in green) to
the oncoming road geometry. Other trajectories keep constant velocity. Table 7.6
summarizes the results from Figure 7.10. It reveals that ecoCC planner had better
performance in regards to the energy consumption, compared to the constant velocity
approaches approach. Concluding this example, an improvement in energy consump-
tion above 8% can be observed, while prolongation of the trip is only about 1.3%.
Interestingly, for lower velocity driving, improvements in both energy and travel time
can be observed. This is due to the considered auxiliary power, which is usually
omitted or included in fuel-map in combustion engines.

Search efficiency: Novel MB heuristic vs. State-of-the-art heuristic function

For a computational performance benchmark of A* search for Energy-efficient Driving
use-case, three methods are compared: DP, A* search with state-of-the-art heuristic
and A* search with the proposed heuristic. Methods are used to plan the optimal
velocity trajectory for driving on a 1 km long segment of the A9 highway, in the
vicinity of Graz, Austria. All methods result in the exact same optimal velocity
trajectory (Figure 7.11), which verifies implementations of both algorithms (DP and
A*), and the admissibility of both heuristics. Total energy needed for this trip was
computed as 422, 8 kJ. A comparison between state-of-the-art heuristic and proposed
heuristic is made based on the error of the estimation and search efficiency represented
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Figure 7.10: Benchmarking ecoCC and constant speed driving.

by the number of explored nodes. DP provides the exact cost-to-go computation, that
is used as a reference for computation of the estimation error.

Table 7.7: Comparison of different heuristic functions regarding computational perfor-
mance.

DP A* with hSoA A* with hpro
nodes expl. 50200 41125 25052

average error [kJ] 0 -84,2 -15,2
minimum error [kJ] 0 -173,5 -37,6
maximum error [kJ] 0 0 0

The results are shown in Table 7.7 along with the results from DP. The first column
contains the results of using DP. As DP provides the exact cost-to-go errors are zero.
The second and the third column contain results of A* search with state-of-the-art
heuristics (6.24) and the proposed heuristics (6.25) respectively. As it is shown in
Table 7.7, the average error improved almost 5 times and number of explored nodes
almost 2 times when the proposed heuristic (hpro) is used, compared to the state-of-
the-art heuristic (hSoA). As it can be seen, the error is always negative, which means
that the heuristics always underestimates the cost-to-go. A*, in general, examines a
smaller number of nodes than DP, and it further decreases as the precision of the
heuristics increases. Figure 7.11 presents the optimal trajectory and space searched
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Figure 7.11: Space searched by using different heuristics.

by state-of-the-art and proposed heuristics from the same simulation. It is important
to note that, the number of explored nodes for DP depends on the maximum velocity
used; and for A* it does not.

7.2.2 Automated Driving

Benchmarks in Automated Driving mainly focus on quantifying the benefit of extend-
ing eco-driving to automated driving and considering multilane driving and traffic
light in optimal motion planning. The planner used for automated driving enables
ecoAD functionality but can also be reduced to other functionalities such as ecoCC,
ecoACC and Traffic Light Assistant (TLA). In this section, ecoAD is compared to
other variant.

Proposed ecoAD vs. state-of-the-art overtaking approach

In this subsection, the proposed approach (ecoAD) is compared to the existing optimal
overtaking approach, that exists in the literature. As mentioned in the introduction,
optimal overtaking is usually incorporated as a least quadratic (LQ) deviation from
the desired vehicle trajectory. This means that an unconstrained optimal velocity
trajectory is generated (or i.e. desired velocity is set). Then overtaking is executed
so that it satisfies safety requirements and avoids collisions, with the least quadratic
deviation from desired trajectory. The LQ approach does not have proper decision
making, so it cannot decide should the vehicle overtake the other vehicle or not. One
approach shown in literature is to set a threshold velocity so when the ego-vehicle
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desired velocity is higher than other vehicle’s velocity by some threshold, the overtaking
is executed. In this work this threshold is set to 3 m{s.
In the following simulated scenario, it is assumed that a leading vehicle (VLV) is moving
with a constant velocity of 12 m{s, located initially 75 m ahead of the ego-vehicle. The
ego-vehicle starts from the initial velocity v “ 16.87 m{s. In the case of ecoAD, it uses
SBOMP for planning optimal driving in a moving horizon fashion, that also considers
long-term benefits from strategic planning.

Table 7.8: Benefits of ecoAD compared to least quadratic (LQ) optimal overtaking plan-
ner.

energy used travel time
LV

velocity
ecoAD
[kJ] LQ [kJ] diff. [%] ecoAD [s] LQ [s] diff. [%]

empty
road 157.13 157.13 0 29.4 29.4 0

12 157.13 165.36 -4.97 29.4 28.55 +2.97

In the Figure 7.12, variant with leading vehicle driving at 12 m{s is shown. Optimal
Cruising Velocity is used as a reference for generating a collision free trajectory with
the least quadratic (LQ) deviation (shown in green color), as proposed in literature.
Contrary to this, the blue trajectory is the optimal velocity trajectory resulting from
directly incorporating the constraint into the optimization problem and jointly plan-
ning velocity and overtaking by SBOMP. As it can be observed from Figure 7.13,
SoA approach (LQ) speeds up to overtake the vehicle and then introduces unneces-
sary braking after other vehicle has passed. This is due to formulated optimization
problem, to minimize the difference between desired and actual velocity. This is not
the case in SBOMP, as there is no energy-efficiency related benefit in braking. This
behavior of SBOMP can also be interpreted from the optimal trajectory tree. As the
vehicle accelerated, due to the need to overtake, it is now in other state and it should
follow the branch from the optimal trajectory tree from that state, and not the initial
optimal trajectory anymore. This is based on Bellman’s principle of optimality.

Table 7.8 reveals that the proposed ecoAD planner has better performance in regards
to the energy consumption, compared to LQ approach. The ecoAD constrained op-
timization does not increase the energy consumption compared to the unconstrained
case as vehicle does not accelerate to overtake the other vehicle. The LQ approach,
on the other hand, leads to a larger difference (`4.97%). This implies that integra-
tion of the leading vehicle as a constraint into the optimization problem may play a
considerable role in reducing the energy consumption. There is even a potential to
additionally save the traveling time.
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Figure 7.12: Comparison of ecoAD overtaking and state-of-the-art optimal overtaking
(LQ deviation).
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Figure 7.13: Comparison of ecoAD overtaking and state-of-the-art optimal overtaking
(LQ deviation).
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Figure 7.14: Comparison of ecoAD and state-of-the-art single-lane ecoACC.

Single lane ecoACC vs. multilane ecoAD

This scenario aims to benchmark the benefits of the proposed ecoAD system (that con-
siders energy-efficiency and multilane driving) compared to state-of-the-art ecoACC
approach (which consider only energy-efficient vehicle following). The same scenario
variants as in previous experiment are repeated. To achieve ecoACC, SBOMP is used
with prohibited lane-changing .

Table 7.9: Benefits of ecoAD compared to ecoACC.

energy used travel time
LV

velocity
ecoAD
[kJ]

ecoACC
[kJ] diff. [%] ecoAD [s] ecoACC

[s] diff. [%]

Empty
road 156.54 156.54 0 62 62 0

8 156.54 241.99 -35.31 62 119 -47.89
10 156.54 178.79 -12.45 62 96 -35.42
12 164.15 163.55 +0.36 64 80 -20

Figure 7.14 presents driving trajectories for both variants. Blue line represents trajec-
tory driven by ecoACC and green trajectory represent trajectory driven by ecoAD. To
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make a valid comparison in regards to energy consumption, final velocity limit is set
at 8 m{s. It can be observed that in the case of ecoAD, vehicle overtakes the slower
moving vehicle. Table 7.9 reveals that proposed ecoAD planner had better perfor-
mance in regards to the energy consumption, as well as the traveling time, compared
to ecoACC approach. For the leading vehicle velocity of 8 m{s, it can be observed
that energy saving exceed 35% and time saving is almost 50%, when overtaking is
considered. This is highly affected by the velocity of the leading vehicle and ecoACC
can fully fail if the other vehicle fully stops, making the ecoAD dominant approach.

Single lane Traffic Light Assistant (TLA) vs. multilane ecoAD

In this scenario, the performance of proposed ecoAD approach is compared to the
performance of the Traffic Light Assistant (TLA) that considers single lane driving
for optimal passing through traffic lights. As mentioned in the related work, this
is the state-of-the-art approach and it considers only single lane driving and vehicle
following. The tackled scenario is the same as in the previous experiment except that
there is now a traffic light located at 250 m, that turns red after 20 s and stays red
for 40 s.

Table 7.10: Benefits of ecoAD compared to TLA.

energy used travel time
LV

velocity
ecoAD
[kJ] TLA [kJ] diff. [%] ecoAD [s] TLA [s] diff. [%]

7 8.0169 118.4584 -93.23 25.75 98.05 -73.73
9 23.4897 92.25 -74.54 24 78.8 -69.54
12 9.8052 9.9784 -1.73 25 28 -10.71

Figure 7.15 presents the driving trajectories for both variants. Blue line represents the
trajectory driven by TLA and green line represent the trajectory driven by ecoAD.
To make a valid comparison in regards to the energy consumption, final velocity limit
is set at 10 m{s. Figure shows the variant with VOV driving at 7 m{s so it cannot
catch the green light and stops at the red light. It can be observed that in the case of
ecoAD, vehicle overtakes slower moving vehicle and catches the green light, while TLA
follows the other vehicle and stops at the red light. Table 7.10 reveals that proposed
ecoAD planner had better performance regarding the energy consumption, as well as
the traveling time, compared to TLA approach. This scenario shows that the benefit
of TLA can be totally lost in the traffic, if the vehicle in front does not catch the
green light. Using ecoAD is robust to this, in scenarios where overtaking is possible,
achieving the savings that can range up to 93% less energy used and 73.73% less time
spent, when looking at the segment with one traffic light.
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Figure 7.15: Comparison of ecoAD and state-of-the-art single-lane TLA.

7.3 Computational Analysis

In this section, the results of experimental computational complexity analysis are
presented. Analysis is performed by varying several planner parameters to get an
insight into the computational complexity of the problem. Two planners, Discrete
Dynamic Programming and SBOMP, are analyzed in this section. The performance is
measured based on the solution quality (optimality) and computation time. Optimality
is measured as a difference compared to the best planner parameters. Computations
are executed on the PC with Intel Core i7 9700 processor, with frequency up to 4.7GHz
and 32GB of DDR4 memory.

7.3.1 Discrete Dynamic Programming

For analyzing the performance of Discrete Dynamic Programming solution for ecoCC,
sensitivity analysis to parameters ∆v and ∆s is performed by varying each parameter
individually. Prior to the analysis, empirically, an acceptable parameterization is used
as ∆v “ 0.1 m{s and ∆s “ 5 m. Therefore, during the analysis the other parameter is
set to the default value. It is important to note that there is a cross-influence of these
parameters. For example, if ∆s is too small on higher velocities, many transitions can
be unfeasible, due to maximum acceleration amax, requiring very small values of ∆v.
In the first experiment, ∆v is varied in the range from 0.5 to 0.01 m{s. As it can
be observed from table 7.11, computational time increases as discretization step ∆v
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Figure 7.16: Influence of the ∆v step (∆s “ 5 m, Shor “ 18000 m) on computation
time Dynamic Programming for Energy-efficient Driving.

decreases. On the other hand, energy consumption converges to the optimal value.
However, as it can be seen in Figure 7.16, after ∆v ă 0.1 m{s optimality improves
only about 2%, while the computation time increases significantly.

Table 7.11: Influence of the ∆v step (∆s “ 5 m, Shor “ 18000 m) on computation time
and optimality in Dynamic Programming for Energy-efficient Driving.

∆v [ m{s] energy used [kJ] travel time [s] comp. time [s]

0.5 8167.50 1903.32 0.8837
0.3 7344.90 1694.58 1.7647
0.1 6833.45 1573.22 12.18
0.05 6660.47 1556.70 34.04
0.03 6670.59 1561.09 76.25
0.01 6639.87 1559.68 730.40

Table 7.12: Influence of the horizon length Shor (with ∆s “ 5 m ∆v “ 0.03 m{s) on
computation time in Dynamic Programming for Energy-efficient Driving.

trip length computation time [s]
1000 4.96
2000 10.21
4000 19.76
8000 37.24
16000 76.25

As the final experiment from Energy-efficient Driving, length of the trip Shor is varied
from 1000 m to 18000 m. As it can be observed from table 7.12, computational time
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Figure 7.17: Influence of the ∆v step (∆s “ 10 m, ∆t “ 1 s, Thor “ 20 s) on compu-
tation time of SBOMP in Automated Driving.

increases as travel time increases, approximately linearly with the horizon.

7.3.2 SBOMP for Automated Driving

For automated driving use-case, SBOMP needs several parameters. The most critical
parameters are horizon lengths (Thor and Shor) and velocity discretization step ∆v. The
ratio between horizons is kept constant, so if Thor is defined, Shor can be computed as
Shor “ k ¨ Thor, k “ 1.5.

Table 7.13: Influence of the ∆v step (∆s “ 10 m, ∆t “ 1 s, Thor “ 20 s) on computa-
tion time and optimality of SBOMP in Automated Driving.

∆v [ m{s] energy used
[kJ] travel time [s] nodes expl comp. time [s]

2 collision 8 32.29˘ 26.36 0.026˘ 0.021
1 154.6 18.2 507.66˘388.85 0.74˘ 0.51
0.5 107.71 18.1 554.6˘ 758.61 1.59˘ 1.82
0.3 12.07 24.5 4855.3˘1416.2 33.76˘ 8.687

0.1 -6.6871 24.55 12080.8˘ 5616
303.057˘
159.4839

Table 7.13 presents planning results when different values of ∆v are used for plan-
ning. As it can be observed, the computational time increases as ∆v decreases, while
energy used and travel time decrease. There are some variations but this is due to
the rounding error and specific scenario. It can be observed that after ∆v “ 0.5 m{s
the improvement in travel time is smaller than 2% the computation time increases
excessively. It can be also observed that for too large values of ∆v (i.e. ∆v “ 2 m{s)
many solutions are lost due to limited acceleration so the solution lead to collision as
slowing down is not possible. Figure 7.17 visualizes the dependency of computation
time and energy used on ∆v.
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Table 7.14: Influence of the horizon length Thor (∆s “ 10 m, ∆v “ 1 m{s, and ∆t “
1 s) on computation time of SBOMP in Automated Driving.

Thor [s]
energy used

[kJ] travel time [s] nodes expl comp. time [s]

5 collision 8 10.4˘ 7.56
0.0065˘0.0034

10 25.94 24.2 105.7˘ 101.9 0.044˘ 0.037
20 154.6 18.2 507.66˘388.85 0.74˘ 0.51

30 24.55 24.15 6514.58˘
4479.75

28.96˘ 18.66
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Figure 7.18: Influence of the Thor step (∆s “ 10 m, ∆t “ 1 s, ∆v “ 1 m{s) on
computation time of SBOMP in Automated Driving.

Table 7.14 presents the results from different values of the horizons Thor. As it can be
observed, energy improvement increases as the horizon is longer. For the case when
Thor “ 20 s, AV decided to overtake, therefore energy used is higher but travel time
is shorter. As it can be observed on the Figure 7.18, computation time increases
excessively (resembling exponential increase) as horizon increases.

7.3.3 SBOMP for Performance Driving

As SBOMP for Performance Driving has many parameters and carefully adjusted set
of parameters, only horizon length is varied here. Horizon is defined as maximum
number of stages of ∆texp expansions. It is important to note here that the maximum
number of expanded nodes is Ntimeout “ 600.
Table 7.15 presents the results of planning with different horizon values. As it can be
seen, lap-time improves as horizon is longer. However, after more than 8 stages, the
improvement is around 6%, while the computational time increases 4 times.
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Table 7.15: Influence of the horizon length Thor (∆t “ 0.8 s) on computation time and
lap-time in Performance Driving.

Thor [s]
lap-time

[s] diff. [%] nodes
expl diff. [%] comp.

time [s]
diff. [%]

4 crashed N/A 30.78˘
40.45 0 2.98˘

3.48
0

6.4 58.8 +6.23 107.06˘
124.51 +256.6 10.28˘

10.79
+244.63

9.6 55.35 0 404.85˘
208.88 +1215.3 36.3˘

17.72
+1118.12

7.3.4 Conclusion on Computational Analysis

Several experiments were performed to provide an insight into the computational com-
plexity of developed planners. As usually, there is a trade-off between solution quality
and computational performance, so this analysis helps to justify choice of the appropri-
ate parameters. It is important to note, that the implementation of proposed planners
is still not the optimal, since it uses Matlab. A lot of benefit is already shown by
only compiling the function and using it in Simulink. However, the runtime analysis
in Simulink is hard to achieve.

7.4 Planning and Learning

For Planning and Learning experiment, we use grid world domain with 4-connected
neighbors and 33% of cells in average are covered with obstacles. In total, 531 different
random scenarios were used for dataset generation. From each scenario, multiple data
points are generated. For comparison, two datasets were created. One dataset (rep-
resenting the approach from [213]) is using only nodes from the optimal path ( DVAN,
12.007 data points) and the other (as proposed in this work) uses all nodes explored
in Backward Prolonged Heuristic Search (DPHS, 122.449 data points). Advantage of
Backward Prolonged Heuristic Search is already visible, as from the same number of
scenarios about 10 times more data points are generated, even in simple 2D problem.
This is expected to be even larger in higher dimensional problems.

Value Function approximation using Deep Learning

In this experiment, a fully Convolutional Neural Network (CNN) was used for the
value function approximation. The complete model architecture can be seen in Table
7.16. Each layer uses the SELU nonlinear activation [236]. The networks were trained
for 4096 steps using a batch size of 1024 images and a learning rate of 0.001. The
networks were initialized using the variance-scaling initializer [237] and optimized with
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the ADAM [238] optimizer. In the asymmetric loss function, the parameter a is set to
value ´2.5.

Using ML Value Function as Heuristic function

Three different heuristic functions are used in the experiment and compared based on
the solution quality (i.e. path length) and planning efficiency (i.e. number of explored
nodes). The first heuristic function is admissible heuristic function hadm based on the
Manhattan distance. The second heuristic function is value function hVAN trained
on dataset DVAN generated from the solution path only. The third function hPHS is
trained on DPHS from the proposed Prolonged Heuristic Search.

7.4.1 Results

Experimental results support the initial premise that generating dataset using Pro-
longed Heuristic Search improves the quality and learnability of the value function.
Figure 7.19 shows the training and test loss for both the DPHS and DVAN datasets. It
can be observed that the training on DVAN performs poorer than the training on DPHS,
with slower convergence and a larger difference between the training and test set, in-
dicating over-fitting. One reason might be the fact that DVAN is smaller than DPHS, as
the proposed approach manages to extract more data from the same scenarios. The
other reason might be that the DVAN was not diverse enough (i.e. many variations of
the same scenario) and the network was not able to learn to generalize well. Contrary
to that, the DPHS offers more diverse training data (with many similar scenarios as all
explored nodes are used), and the network is able to reduce the loss much further.
Additionally, the learned value functions were used as heuristic functions in the search.
In total, 100 random scenarios were created, and both hPHS and hVAN were used. Re-
sults were compared based on the number of explored nodes (for search efficiency) and
path length (for solution quality). Both were compared with the admissible heuristic
hadm while changing ε, which bounds the influence of ML heuristics hML. Figure 7.20
(left) shows that the path length does not increase significantly even for ε “ 3.5, which
means that both ML heuristics still provide the solutions close to the optimal. While

Table 7.16: ML-based model architecture.
layer kernel stride dilation avg pool output size

conv1 3ˆ 3 1ˆ 1 1ˆ 1 none 30ˆ 30ˆ 4
conv2 3ˆ 3 1ˆ 1 2ˆ 2 none 30ˆ 30ˆ 8
conv3 3ˆ 3 1ˆ 1 4ˆ 4 none 30ˆ 30ˆ 16
conv4 3ˆ 3 1ˆ 1 8ˆ 8 4ˆ 4 7ˆ 7ˆ 32
conv5 3ˆ 3 1ˆ 1 1ˆ 1 2ˆ 2 3ˆ 3ˆ 64
conv6 3ˆ 3 1ˆ 1 1ˆ 1 2ˆ 2 1ˆ 1ˆ 1
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Figure 7.19: Training and test loss for both the DPHS and DVAN.

Figure 7.20: Path length (left) and number of explored nodes (right) for hadm, hVAN
and hPHS heuristic based on ε value.

hVAN has slightly worse performance than hadm, hPHS has equal performance to hadm
in this aspect. On the other hand, Figure 7.20 (right) shows that both ML heuristics
hPHS expands less nodes than hadm. In this example, performance of hVAN and hPHS
varies slightly on ε, and further study on different domains and scenarios is necessary.
Figure 7.21 shows an example of hPHS use. It is clear from the figure that hPHS expands
less nodes.

7.4.2 Conclusion on Planning and Learning

The presented approach offers the possibility to effectively include Machine Learning
into a deterministic planning framework, promising a significant performance improve-
ments manifested in a reduced number of explored nodes compared to those obtained
using admissible heuristic (hadm), while keeping guarantees on sub-optimality of the so-
lution. The proposed approach uses the maximum of invested computational resources
in planning, as all expanded nodes in planning are used for learning. Experimental
results showed a significant improvement in search performance, while keeping bounds
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Figure 7.21: Nodes explored while planning using admissible heuristic hadm (left) and
trained ML heuristic hPHS (right).

on the sub-optimality of the solution.
Future steps would include studies of behavior in different scenarios (i.e. bug-traps
and tight passages), other domains (i.e. higher dimensional problems), kinodynamic
motion and extension of the approach to the end-to-end Model Based Reinforcement
Learning framework.

7.5 Chapter Conclusion

Proposed motion planning solutions based on the Dynamic Programming and A*
search are verified on multiple scenarios from all three use-cases. It was success-
fully demonstrated that DP and A* search-based planners for Energy-efficient Driv-
ing consider speed limits, road slope, etc. In multiple challenging scenarios, it was
demonstrated that the SBOMP planner enables Automated Driving in urban, rural
and highway environments. On an mixed-curvature circuit, it was demonstrated that
the SBOMP modified for performance driving extends drift-like driving from a steady
state drifting on a single curve to a continuous driving on the road, effectively entering
and exiting drifting maneuvers, and switching between right and left turns.
Benchmarking with the other approaches demonstrated benefits of the approaches
presented in this thesis. For Energy-efficient Driving, when ecoCC is compared to
the constant velocity driving, improvement in energy consumption above 8% can be
observed, while prolongation of the trip is only about 1.3%. Using novel heuristic based
on Optimal Cruising Velocity improved the average error of heuristic estimation almost
5 times and reduced the number of explored nodes almost 2 times, when compared
to the state-of-the-art heuristic. Extending Energy-efficient Driving to Automated
Driving use-case (ecoAD) provided exceptional advantages compared to the state-of-
the-art approaches. Comparing with the state-of-the-art optimal overtaking approach
based on the least quadratic deviation from desired velocity (LQ) showed almost 5%
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reduction in energy used with only about 3% extension of travel time. Comparing to
the state-of-the-art eco-driving solutions that consider only vehicle following (ecoACC)
showed exceptional 35% energy saving and almost 50% time saving when overtaking is
considered. This is highly affected by the velocity of the leading vehicle and ecoACC
can fully fail if other vehicle fully stops, making ecoAD the dominant approach. The
comparison with state-of-the-art traffic light assistant (TLA) solutions, which control
the velocity in order to catch the green light, showed that the benefit of TLA can be
totally lost in the traffic, if the vehicle in front does not catch the green light. Using
ecoAD showed to be robust to this, in scenarios where overtaking is possible, achieving
the savings that can range up to 93% less energy used and 73.73% less time spent,
when looking the segment with one traffic light.
Computational complexity analysis showed that the computation performance rapidly
drops as discretization step is decreased. This is expected due to curse of dimension-
ality and combinatorial optimization problem. However, many challenging scenarios
can be solved in a reasonable time, making a good basis for real-time implementation.
The chosen discretization step still has a very good resolution for behavior planning,
which usually has very reduced action space (i.e. 3 actions longitudinal and 3 actions
lateral).
Experimental results from learning of heuristics showed significant improvements in
search performance, while keeping bounds on the sub-optimality of the solution. These
results suggest that this approach is a good candidate for future improvement of com-
putational performance.
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Validation

It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment, it’s
wrong.

Richard P. Feynman

Autonomous Vehicles (AV) are promising to enable Automated Driving (AD) functions
with SuperHuman performance in terms of safety, efficiency, and comfort. However,
beside challenges related to development involving multi-objective goals, validation
and benchmarking of various AD on real vehicles, in realistic traffic situations, is one
of the main critical issues.

The mainstream approach is to provide the statistical validation by comparing perfor-
mance of Autonomous Vehicle fleet with regular human driving statistics. However,
this requires a large fleet of automated vehicles (Level 4-5). The fleet is not yet
available on the road, and requires some kind of validation in advance, making it
chicken-and-egg kind of a problem.

Besides the statistical validation, it is possible to validate benefits in a particular
scenario. The interest from society regarding the validation in particular scenarios may
be reflected via an infamous question, which is always asked when autonomous vehicles
are the topic: “Should an autonomous vehicle car kill the baby or the grandma?”
(trolley problem). In this problem, the vehicle has to choose which person should
it kill, if the killing is inevitable. This is an extreme scenario, yet, it should be
possible to compare human performance and AV performance in defined scenarios. To
quantify benefits of AD in a particular scenario, an approach could be to reconstruct
a particular driving scenario and measure the performance of human drivers and AVs.
The main challenge (which is practically unsolvable) in such approach is to accurately
reconstruct the real driving situations involving multiple traffic participants.

This chapter presents a novel approach to reproducible, scenario-based validation by
decoupling the problem into several sub-problems, without breaking the crucial cou-
plings.
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Figure 8.1: Validation work overview.

8.1 Autonomous Vehicle Validation Problem

Autonomous Vehicle validation is still an active research topic and many research
projects are dealing with it. In [239], Beglerovic et. al provide an overview of the
challenges for Autonomous Vehicle validation. That work focuses on the complete
Autonomous Vehicle validation including sensors, perception, decision making, etc.
For validation of the decision making and control system in particular, we can state
the following major challenges:

• It is practically impossible to realistically recreate the same traffic scenario with
many participants, for different experiment runs.

• The traffic is a multi-agent problem with closed loops, as actions of ego driver
influence other traffic. Therefore, replaying previously recorded real traffic sce-
narios is not realistic for validation of the decision making and control systems
(as compared to perception systems).

• Testing in-vehicle might be expensive, complicated for legal approval or danger-
ous.

Therefore, a decoupled methodology is presented here, that uses advantages of multiple
validation modalities.

8.2 Methodology

In this work, a novel approach to reproducible, scenario-based validation is presented.
Decoupling of the problem is performed by delicately choosing decoupling points, such
that the crucial couplings (closed-loops) are not broken, as illustrated in Figure 8.1.
First, a realistic scenario is generated from the real urban traffic. Second, human par-
ticipants, in a driving simulator, drive in a virtual scenario based on the real traffic.
Third, human and automated driving trajectories are reproduced and compared in
the real vehicle on an empty track with simulated traffic. Thus, benefits of automa-
tion with respect to safety, efficiency and comfort can be clearly benchmarked in a
reproducible manner. Decoupling makes the approach technically and economically
feasible. In this work, decoupling enabled experiments to be performed at several
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Table 8.1: Comparison of validation modalities.

Public
roads

Vehicle &
Traffic

simulator

Driving
simulator

Proving
ground

Human driver Real N/A Real Real
AI driver N/A Real N/A (Real) Real

Vehicle dynamics Real High
fidelity

High
fidelity Real

Infrastructure Real High
fidelity

High
fidelity

Real/High
fidelity

Other traffic participants Real High
fidelity

High
fidelity

Not
realistic

Reproducible No Yes Yes Yes

different locations across Europe, including Graz (Austria), Delft (The Netherlands),
Sarajevo (Bosnia and Herzegovina) and Gothenburg/Sandhult (Sweden), effectively,
utilizing available resources. In fact, in [239], Beglerovic et. al state that “A clever
combination of methods and validation environments (SiL, HiL, test-track, public road
etc.) is necessary”. This concurs with the approach presented here.
The assumptions made here are as follows.

• Traffic can be realistically simulated. This holds if scenario is not highly inter-
active, as it is the case.

• Simulated vehicle dynamics represents real vehicle dynamics.
• Driving simulator can be used to gather realistic human driving behavior.
• Vehicle dynamics and passenger comfort can be tested without other vehicles on

an empty proving ground.

Table 8.1 summarized advantages provided by the each validation modality. Decou-
pling of the problem in performed in a way that each modality provides validation
for some aspects of driving. Each aspect is real at some stage of the validation and
reproducibility is provided.
The real traffic scenario is generated from real traffic. The focus is on the road ge-
ometry, environment (traffic lights and timing) and traffic density. As the situation is
highly dynamic but not highly interactive, simple driver models can be used. There-
fore, from public roads infrastructure and other traffic participants were used. Vehicle
dynamics and traffic simulator were used for the development process of Automated
Driving functions, as well as for the initial validation. It provided high fidelity model
for vehicle dynamics, other traffic participants and perfect reproducibility.
To acquire referent human driving behavior, multiple human participants were tested
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Figure 8.2: Real traffic scenario.

in driving simulator, in the same traffic scenario. This modality satisfies coupling of
human driver and dynamic driving environment, with an appropriate vehicle model.
It serves overall validation with realistic human driving behavior.
Finally, driving trajectories from driving simulator and Automated Driving system
were executed using the real vehicle on an empty track on the proving ground. This
modality satisfies the coupling of vehicle dynamics and the passenger comfort. It
supports the overall validation by testing both vehicle dynamics and the comfort level.

8.3 The real traffic

For validation scenario, the traffic from a segment of the street “Zmaja od Bosne” in
Sarajevo, Bosnia and Herzegovina, was chosen. In particular, the 750 m long segment
from “Trg Bosne i Hercegovine” to the Campus of the University of Sarajevo was
used. Figure 8.2 shows the environment from the considered street. The segment
contains three traffic lights on a short distance and is relatively straight. Therefore,
interesting scenarios can be reproduced on the straight test track with limited length.
The timings of the traffic lights were experimentally obtained by observing a recorded
video. Traffic lights are located at 188 m, 361 m and 682 m after the segment starting
point. They turn yellow 12.7 s, 25.7 s and 47.7 s after the scenario start, respectively.
They turn red 3 s after yellow. They have a phase of red light of 45 s, 45 s and 24 s,
respectively.
Artificial traffic was created with the density of 30 veh{km{lane and the average veloc-
ity of 12 m{s. All traffic participants have implemented driver model to satisfy traffic
light signals, keep the current lane and keep appropriate spacing to others.
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Figure 8.3: Prescan Simulator.
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Figure 8.4: Urban driving in the presence of traffic light.

8.4 Validation in software simulator

The lane change feasibility within a sufficiently large time interval is validated using
a higher fidelity model, Figure 8.3. The used vehicle model has 10 degrees of freedom
(DoF) covering 6 DoF of the vehicle body and 4 DoF of vertical motion of unsprung
masses. The vehicle body motion in space has longitudinal, lateral, vertical, roll, pitch
and yaw motions. Assuming a smooth driving in high friction conditions results in
small wheel slip, the wheel rotational dynamics can be neglected. We assume the
linear lateral characteristic of the tire, with the relaxation behavior included. The
longitudinal motion of the vehicle body is modelled taking into account the applied
wheel torques (both traction and brake torques), air drag, road resistance and slope
forces.
Motion planning algorithm was also validated in custom developed traffic simulator.
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Test scenario was created based on a real traffic scenario as presented in section 8.3.
Figure 8.4 presents one situation from the scenario. In this situation, the ego vehicle
plans a lane change in order to pass the red vehicle in front and catch the green light.
To make the clearance for lane change, the ego vehicle speeds up to get close to the
preceding red vehicle (where the gap is), slows down during the lane change (to provide
enough time for lane change) and again speeds up (to pass the red vehicle) to catch the
green light. This situation truly demonstrates the importance of integrated planning
for longitudinal and lateral motion. The blue tree represents searched trajectories,
and the red trajectory represents the final solution. Projections of trajectories on the
s ˆ l and s ˆ t plane are shown on the left and middle plot respectively. Vehicles
shown on the left plot represent polygonal obstacles in the middle plot. The rightmost
image is the screenshot from PreScan software showing the part of the real street used
in the study. The resulting red trajectory shows the vehicle reaching just behind the
red vehicle, slowing down to provide enough time for changing to the left lane and
speeding up to passing the red vehicle, while catching the green light.

To demonstrate the robustness, stochastic variations of the scenario are created by
introducing randomized perturbations of initial positions and velocities. An uncom-
piled script version of the algorithm was used to facilitate the randomization of the
scenarios and subsequent processing of the results. This results in somewhat larger
runtimes than the previously shown. Nevertheless, this does not represent the culprit
for validation, since the cost and time of travel are the mayor indicators of the robust-
ness in perturbed situations, and computation time for compiled version is previously
stated. For comparison, two different heuristics were used. The first one is the result
of a DP approach from the relaxed problem [5], while the second one is a model-based
one (MB) from [6]. Some numerical results of the simulation are shown in Table 8.2.

Table 8.2: Variation of urban driving scenario.

hpnq comp. time rss nodes exp. energy used rkJs travel time rss
DP 1.39˘ 0.75 230˘ 134 405.8˘ 20.5 56.7˘ 0.7
MB 5.71˘ 3.93 1089˘ 688 416.3˘ 11.7 57.5˘ 0.9

The results indicate that the proposed approach is robust to variations in the scenario
and without significant deviations from the initial solution regarding the cost and
time of travel. Moreover, using the DP heuristic is more effective compared to the MB
heuristic, which is reflected in approx. 4 times shorter computation time and the
number of nodes explored. The variance of the computation time and the number
of nodes explored are caused by variations in the complexity of driving situations.
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8.5 Driving Simulator

8.5 Driving Simulator

Driving simulators are cost-effective tools for objective evaluation of the human driving
behavior in a controlled environment, that enable reproducibility of scenarios. In this
work, driving simulator was used to collect data for a comparison of AD system with
actual human driving performance in the same scenario. A study of human driving
behavior was performed with a support of colleagues from Human Factors group at
Virtual Vehicle Research GmbH.
Human participants were asked to drive along the road as they would normally do, in a
virtual environment created within the driving simulator to emulate traffic scenario as
presented in section 8.3. The scenario consisted of a straight road with multiple lanes,
passing through a city with relatively congested traffic. Two sessions of repetition were
performed for each participant, to acquire both “normal driving” and “energy-efficient
driving”. The complete study, for each participant, lasted approximately 30 minutes,
including small breaks after the familiarization and between the 2 driving sessions.

8.5.1 DriveLab driving simulator

For human driver study, DriveLab driving simulator located at Virtual Vehicle Re-
search, Graz (Austria) is used. DriveLab driving simulator is state-of-the-art 3-DOF
Driving Simulator. It has a mock-up vehicle cockpit that is fabricated from a small
sedan car body, resembling the real vehicle interior with some added features. Soft-
ware system is based on VI-DriveSim1 (VI-grade, Italy) and SCANeR Studio2 (AV
Simulation, France) running on Concurrent Real-time Workbench3. It enables vehi-
cle dynamics and environment simulations essential for this study. With the use of
three integrated visual projectors with circular screen, a horizontal Field of View of
215˝ is achieved. Together with three rear mirror screens, it gives a fully immersive
feeling to the driver. For acoustic support, a 7.1 surround sound system is used to
replicate the acoustics of the real vehicle. A digital dashboard provides a feedback to
the driver about the vehicle speeds and other attributes, including engine rpms and
engaged gear. Vehicle with automatic transmission is considered in the study, so only
two pedals (throttle and brake) are used, without gear shifting.

8.5.2 Virtual Environment

The virtual environment resembling an urban street was created within driving simula-
tor software, based on the real traffic scenario. A three-lane road with traffic lights and
lane-markings as described in section 8.3 is generated. To provide full urban environ-
ment feeling, architecture and urban design is also modelled. The traffic was created
by placing 17 vehicles on predefined positions. Vehicles are programmed to drive with
the target velocity of 12 m{s, but they react to the environment and slow down for
the traffic light and other vehicles. They follow their initial lane and do not change

1https://www.vi-grade.com/en/products/static-simulator/
2https://www.avsimulation.fr/solutions/
3https://www.concurrent-rt.com/products/redhawk-linux/
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Figure 8.5: Driving simulator.

the lane. The length of the road of interest is 1000 meter, ending with the finish line.
To provide the same scenario for all participants and enable further benchmarking of
the results, scenario trigger is used when participant reaches the segment of interest.
Additional 1000 m road was added in front of the segment of interest for a driver to
adjust velocity and approach the traffic. Participants start driving 1000 m before the
segment of interest (the trigger point) from standstill. They drive on an empty road
and approach traffic that is frozen. When they reach the trigger point, the scenario
starts, including other vehicles and traffic lights timing. Participants are instructed
to approach other traffic in the middle lane with approximately 50 km{h, without
slowing down. The real-time data was collected, including the driven trajectories with
a specific time stamp for later analysis.

8.5.3 Procedure

Each participant was assigned dedicated time-slot for the study. Participants were
welcomed and introduced to the driving simulator. They were then informed about
the driving task. First, they were instructed verbally, and then they were provided
with a written description of the scope of the experiment and instructions for their
task.
After the introduction, participants were escorted to the vehicle mock-up. Once they
adjusted the position of the seat and felt comfortable, familiarization phase of the
driving could start. In this phase, they were getting familiarized with the simulator,
vehicle dynamics and the road environment. Familiarization environment was different
then the environment used in the study. It consisted of more turns, intersections and
interactions with other vehicles. It was intentionally set as such to expose participants
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in order to gain more experience and develop the feeling of how the virtual vehicle
was responding to the input command and how the visual scene in driving simulator
behaves. Three participants showed discomfort with driving simulator at this stage.
After about 5 minutes of driving in the familiarization environment, participants were
asked about their confidence with the simulator, as well as their comfort inside the
cabin. If necessary, the familiarization was extended until the participant indicated
they felt sufficiently familiar with the vehicle and the environment.
After the familiarization phase, the actual experiment started, consisting of two ses-
sions, with each session having three repetitions. First, a driving task was briefly
rehearsed. Participants were then instructed to drive naturally as they would drive
in reality, and keep an appropriate driving behavior during the whole experiment,
respecting the following safety and legal considerations:

• respect the speed limit of 60 km{h,
• avoid collision with other vehicles,
• respect the traffic lights,
• it is possible to to use both sides to overtake other vehicles.

They were particularly advised to approach the trigger point with 50 km{h, so that
all participants have the same scenario start. When scenario is triggered they could
drive as they would normally drive in the traffic. Participant would start the scenario
from standstill, drive into the traffic and trigger the traffic an drive the full scenario
until the finish line. This was repeated three times for the first session. For the second
session and three more repetitions, they were advised to drive more energy efficiently,
to try to catch the green light but still keep smooth driving.
As a conclusion, a talk with the participants was used to inform them about future
steps of the study and to get feedback about the realism of the driving simulator
study. There were no objections of the participants. The complete procedure for each
participant lasted about 30 minutes.

8.5.4 Results

In total 28, volunteers (23 males, 5 females) were recruited for the study in the months
of May and August 2019. All of them had normal or corrected-to-normal vision. They
all had driving experience and were in a possession of valid driving license. The average
participant age was 28,5 years (std 4,3 years).
From 28 participants, 25 participant completed the study. Each participant provided
maximum 6 driving trajectories. In total, 113 driving trajectories were collected. From
113 trajectories, 103 trajectories were within 50 ˘ 10 km{h initial velocity and were
used for comparison. From 103 trajectories, 55 trajectories fall into category of normal
driving while 48 trajectories cosrrespond to energy-efficient driving.
Different driving trajectories are presented on the Figure 8.6 and 8.7. From t ˆ s
projection, it can be observed that there are four main clusters of trajectories. The
three clusters of vehicles that stop on some traffic light, and one cluster of trajectories
that manage to get the green wave. It can be observed that many drivers pass during
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Table 8.3: Instances of braking traffic rules by human drivers.

variant
number
of tra-
jectories

speed
limit

speed
limit

`5 km{h

speed
limit

`10 km{h
yellow
TL red TL

collision

normal 55 28 15 7 38 0 2
normal
[%] 100 50.91 27.27 12.73 69.09 0 3.64

energy-
efficient 48 27 9 5 35 0 0

energy-
efficient[%] 100 56.25 18.75 10.42 72.92 0 0

yellow and some even during red light. From lˆ s projection, it can be observed that
the lateral motion is not so distinct among drivers. What can be observed is that
vehicles start in the middle lane and start lane-changing relatively late. The stopping
on three traffic lights can also be seen on s ˆ v diagram from figure 8.7. From the
same diagram, it can be seen that many drivers violated the speed limit of 60 km{h.
Table 8.3 presents the results of the analysis of traffic rule violation in this scenario.
Clearly, drivers violated the speed limit in more than 50% of driving runs and more
than 10% of driving runs with a margin of 10 km{h. In more than 69% of driving runs,
drivers passed during the yellow light. Moreover, drivers caused 2 critical situations
which can be categorized as collisions. Table 8.4 presents the results of the driving
behavior based on energy consumption and travel time. First, results from “normal
driving” session are presented, followed by “energy-efficient driving session”. Addition-
ally, the single results of the best and the worst run based on energy-consumption and
travel time are presented. It can be observed that drivers generally improve perfor-
mance in terms of energy consumption and travel time in the second session (energy-
efficient driving). This might be caused by the advice, but might also be due to gained
experience about the scenario. Still, the average performance of human drivers is more
than 60% worse than AD. In fact, AD is about 20% more energy-efficient than the
best energy-efficient human driver, and faster than the fastest human driver (without
violating traffic rules). Presented results here include human-driven trajectories which
violate traffic rules, therefore the results would be even more in advantage of AD.

8.6 Proving Ground

Once all other stages are successfully completed, tests on the proving ground with the
real vehicle can be executed, as the final stage. Testing on the proving ground provides
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Table 8.4: Driving performance of human drivers based on energy and travel time.

driving energy used rkJs diff. [%] travel time rss diff. [%]
normal driving 815.42˘ 128.41 +95.87 106.11˘ 24.31 +84.53

energy-efficient driving 670.94˘ 104.09 +62.44 82.14˘ 20.47 +42.85
the most energy-efficient 510.79 +22.69 68.99 +19.98

the fastest 571.59 +37.3 60.0 +4.34
Automated Driving 416.3 0 57.5 0
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Figure 8.6: Results from human driver study in driving simulator.

reproducibility by the use of driving robots. Testing is performed with a goal to
verify simulation results and to validate passenger’s riding comfort. Verification of the
simulation should assess how well the models represent the real world. The expected
outcome is that the feasibility and human acceptance of the planned trajectories are
confirmed. Tests in a real vehicle are also important for passenger riding comfort
validation, as it cannot be validated otherwise. Driving simulators generally do not
provide the full driving dynamics of the real vehicle.
In this work, testing on the proving ground is performed in cooperation with Volvo
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Figure 8.7: Results from human driver study in driving simulator.

Cars and AstaZero4. Human-driven trajectories from driving simulator and automated
driving trajectories are executed on the empty test track by the vehicle instrumented
with a steering robot. Similar approach was presented in [228]. There, the authors
presented the test of an autonomous vehicle on an empty track with simulated dynamic
environment. However, the results were not benchmarked with human drivers and
in realistic urban traffic situation with traffic lights. On the other hand, this work
provides such an extension.

8.6.1 Demo Vehicle

Volvo S90 T5 was used as a demo vehicle. Figure 8.8 presents the demo vehicle used
for this work on the test-track. Demo vehicle is instrumented with the steering robot
ABDynamics. Figure 8.9 shows the steering robot setup in the vehicle. Steering robot
can actuate the steering wheel, gas and brake pedals. It has differential gps positioning
with RTK. To execute maneuvers, steering robot uses dedicated file format, so-called
PMC files, which can be recorded by driving to reproduce some tests. For this work, a
simple software tool was created that interprets human-driven trajectories from driving
simulator and generates appropriate PMC files, that can be further executed on the
real vehicle using steering robot. During experiments, data from the steering robot
and vehicle CAN signals were collected.

4http://www.astazero.com/
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Figure 8.8: Test vehicle Volvo S90.

8.6.2 Proving ground

As mentioned earlier, experiments were executed at AstaZero Hällered, Sandhult,
(Sweden) proving ground. In particular, multilane test track was used, as shown
in Figure 8.10. Some experiments were also performed on a rural road, but they are
not reported here. Multilane road is 700 m long. As some room is needed to accelerate
the vehicle in order to start scenario with 50 km{h, the segment of 550 m was used for
reproducing the driving trajectories. That was enough to reproduce the trajectories,
including first two traffic lights. Multilane road has four lanes, from which the left
three lanes are used in experiments. The cones were placed to mark the position of
traffic lights

8.6.3 Experiments

Experiments were performed for a duration of several days in the months of June
and August 2019. Human driven trajectories and automated driving trajectories were
executed for several times each, while the robot and vehicle data were collected. The
developed tools for interpreting trajectories for a robot showed to be very robust,
requiring minimal additional manual work. In total, 67 trials were executed and
recorded.

149



8 Validation

Figure 8.9: Steering robot used for executing driving trajectories.

Figure 8.10: AstaZero proving ground, multilane road.

The trajectories were successfully reproduced with a tracking error less than 1 cm and
2 m{s, as shown in Figure 8.11. It is worth pointing out that some trajectories were
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Figure 8.11: Results from executing Automated Driving trajectory by test vehicle.

very extreme, with accelerations exceeding 11 m{s2. Trajectory execution was robust,
so it was possible to reproduce same trajectories several months after the initial tests.
Unfortunately, vehicle consumption could not be extracted from recorded CAN data.
Therefore, vehicle consumption model from simulation cannot be verified. However,
such verification has already been reported in the literature [240]. The main contri-
bution of this work is to demonstrate the feasibility of the planned trajectories and
human acceptance.
To validate the perceived human safety and comfort, 8 participants were driven as
passengers in the vehicle. Vehicle executed three driving trajectories. Two driving
trajectories were human-driven from the driving simulator, and one corresponded to
AD. Participants were asked to rate the driving on the scale of 1 to 5 based on their
perceived safety and comfort. The ratings from 1 to 5 indicate driving as: “very bad”,
“bad”, “ok”, “good” and “very good” respectively. Table 8.5 presents the results of
the study. Average rating is presented along with the standard deviation.
Although the sample is not sufficiently large to make a general conclusion, the pre-
sented results show that automated driving was rated higher in average than two
human-driven trajectories. One human trajectory in particular was rated bad, as it
included a sudden stop on the second traffic light.
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Table 8.5: Passenger ratings of driving trajectories (2 human and one automated driv-
ing).

Comfort Safety
1st run 2nd run AD run 1st run 2nd run AD run

Rating 1.75˘
0.66

3.125˘
1.05

3.625˘
0.86

2.25˘
1.20

3.25˘
0.66

3.875˘
0.60

Successful execution of human-driven and AD trajectories on the proving ground pro-
vided the confirmation of the simulation study. The reproducibility of the testing on
the proving ground is demonstrated also by the fact that scenarios are reproduced
even a few months after their initial setup.

8.7 Chapter Conclusion

the presented approach to scenario-based validation of AD functions shows that the
problem of validation can be effectively decoupled. Modelling the realistic traffic
helped to get very interesting and useful traffic scenarios. Simulation tools helped
significantly during the development and the initial validation. Driving simulator was
an effective solution to get a wide variety of human responses to the same driving sce-
nario. The study confirmed that the scenario is challenging, as even the drivers with
experience from the scenario had some difficulties to again achieve the same perfor-
mance. Experiments on the proving ground confirmed simulation results, and enabled
to acquire useful feedback from participants about perceived safety and comfort.
Validation effort showed that developed AD function achieves SuperHuman driving
performance in terms of safety, efficiency and comfort. While many drivers violate
traffic rules (56% of drivers violate speed limit, 10% even with margin of 10 km{h)
and cause accidents, AD system does not. AD system has shown to have better energy
consumption, in particular 22% better than the best human driven trajectory, from
more than 100 trials and almost 30 participants. Finally, passengers rated AD better
than other two human-driven trajectories in terms of perceived safety and comfort. As
for now, this validation represents a proof of concept and is based on a single scenario.
For more general conclusions a deeper study is necessary, including more participants
and more scenarios.
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Conclusion

Part of the journey is the end.
Tony Stark

Autonomous Vehicles are one of the biggest technical challenges of our time, which
could disrupt our way of living by making our mobility safer, more efficient and com-
fortable. However, our state-of-the-art technology is still having difficulties even with
perceiving driving environments and effectively driving in the wide complexity of the
driving situations is yet to raise as an issue.
This thesis focused on three use-cases, that were sampled from a wide breadth of
autonomous vehicle applications. These use-cases are Energy-efficient Driving, Auto-
mated Driving and Performance Driving, each of which brings unique challenges, con-
tributing to the scalability and robustness of the overall solution. Developed planner
is scalable for all three use-cases and wide scenario variations in Automated Driving
use-case. The goal of reaching human-level performance is surpassed by providing
SuperHuman performance in terms of safety, efficiency and comfort.
As introduction, thesis provided extensive overview of the autonomous vehicle technol-
ogy and work related. Further on, the problem is defined, along with it’s requirements
and assumptions. As the first step in developing model-based solution, different as-
pects of driving problem are modelled, including the appropriate vehicle dynamics,
driving environment (including road, traffic rules, other traffic participants, etc.) and
driving objective. These models serve to formalize general planning problem for auto-
mated driving, scalable to wide range of scenarios. Appropriate modelling facilitated
efficient solving using motion planning approaches. It was noticed that even in au-
tomated driving community, a general solution for planning in various scenarios was
missing. Therefore, the work was focused on practical solution for automated driv-
ing in full complexity of driving situations, while keeping energy-efficiency as driving
objective when choosing among collision-free trajectories (safety objective). As it was
shown, solutions are based on the graph search methods (Dynamic Programming and
A* search), that are combined into effective framework Search-Based Optimal Motion
Planning (SBOMP). It relies on motion primitives and hybrid A* search-based solu-
tion, enabling it to deal well with complex problems (i.e. Energy-efficient Driving,
Automated Driving and Performance Driving).
Energy-efficiency showed to be a very practical objective, as it provided naturally
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looking trajectories much better than if otherwise desired velocity was used, as it is
the case in most of other work. The proposed MP framework showed to be an efficient
and robust planning solution for automated driving, even in very complex scenarios,
such as multilane driving with traffic lights. The framework is capable of finding
the velocity trajectory, as such that enough clearance for lane-change is provided in
tight situations, due to integrated longitudinal and lateral motion planning. SBOMP
demonstrated the capability to provide slow and fast trajectories, which is particularly
important for treating different constraints in urban driving. Moreover, using the exact
DP cost-to-go as a heuristic significantly improved efficiency of the search, compared
to model-based heuristics. SBOMP was then further extended for performance driving
on a slippery surface. It extends drift-like driving from a steady state drifting on a
single curve (as it is done in state-of-the-art work) to a continuous driving on the road,
effectively entering and exiting drifting maneuvers and switching between right and
left turns.
Still, computational performance is not satisfactory for use on embedded hardware
in vehicle. Computational requirements raise even more when non-deterministic and
interaction-aware problem extensions are considered. To improve computational per-
formance, previous planning experience can be used to learn better planning in future.
Experimental results showed a significant improvement in search performance, while
keeping bounds on the sub-optimality of the solution for a simple grid-world problem.
Benchmarking with other approaches demonstrated benefits of the approaches pre-
sented in this thesis. Most notably, In Energy-efficient Driving, using a novel heuristic
based on Optimal Cruising Velocity improved the average error of heuristic estimation
almost 5 times and reduced the number of explored nodes almost 2 times, compared
to the state-of-the-art heuristic. Extending Energy-efficient Driving to Automated
Driving use-case (ecoAD) provided exceptional advantages compared to the state-of-
the-art approaches. Comparing with the state-of-the-art optimal overtaking approach
based on the least quadratic deviation from desired velocity (LQ) showed almost 5%
reduction in energy used with only about 3% extension of travel time. Comparing to
the state-of-the-art eco-driving solutions that consider only vehicle following (ecoACC)
showed exceptional 35% energy saving and almost 50% time saving when overtaking
is considered. This is highly affected by the leading vehicle driving. The ecoACC can
totally fail if other vehicle fully stops, making ecoAD superior. The comparison with
state-of-the-art traffic light assistant (TLA) solutions, that control velocity in order to
catch the green light, showed that the benefit of TLA can be totally lost in the traffic,
if the vehicle in front does not catch the green light. Using ecoAD showed to be robust
to this, in scenarios if overtaking is possible, achieving the savings that can range up
to 93% less energy used and 73.73% less time spent, when looking the segment with
one traffic light.
Finally, the developed Automated Driving function was successfully validated and
SuperHuman driving performance in terms of safety, efficiency and comfort was suc-
cessfully demonstrated. While many drivers violate traffic rules (56% of drivers violate
speed limit, 10% even with margin of 10km{h) and cause accidents, AD system does
not. AD system showed to have better energy consumption, in particular, 22% bet-
ter than the best human driven trajectory, from more than 100 trials and almost 30
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participants. As the last stage in validation, passengers rated Automated Driving tra-
jectory better than other two human driven trajectories in terms of perceived safety
and comfort. This validation is a proof of concept and is based on a single scenario.
For more general conclusions a bigger study is necessary, including more participants
and more scenarios.
Presented work is only one part of the complete solution. To achieve fully functional
planning for level 5 Automated Driving, it is necessary to extend this solution as such
that it is considering:

• uncertainties in the environment and vehicle model,
• interactions with other participant directly in planning,
• limits of the perception system,
• following up on the execution of the plans and integration with tracking control.

To improve the computational performance that would enable these advanced features,
it is possible to pursue several different directions such as:

• combining planning and learning,
• better search algorithms and heuristics, i.e. multi-heuristic A* search [235],
• parallel computation.

Future steps for planning and learning could include studies of planning behavior in
different scenarios (i.e. bug-traps and tight passages), other domains (i.e. higher
dimensional problems), kinodynamic motion and extension of the approach to a end-
to-end Model Based Reinforcement Learning framework.
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Acronyms

ACC Adaptive Cruise Control
AD Automated Driving
ADAS Advanced Driver Assistance System
AEB Advanced Emergency Braking System
AI Artificial Intelligence
AMoD Automated Mobility on Demand
AV Autonomous Vehicle

BFS Breadth-first search

CAN Controller Area Network
CAV Connected and Autonomous Vehicle
CC Cruise Control
CL-RRT Closed-loop Rapidly-exploring random tree
CNN Convolutional Neural Network

DARPA Defense Advanced Research Projects Agency
DL Deep Learning
DP Dynamic Programming

ecoACC Energy-efficient Adaptive Cruise Control
ecoAD Energy-efficient Automated Driving
ecoCC Energy-efficient Cruise Control
ecoTLA Energy-efficient Traffic Light Assist
ESC Electronic Stability Control
EU European Union

GCDC Grand Cooperative Driving Challenge
GDP Gross Domestic Product
GNSS Global Navigation Satellite System

HD High Definition
HMI Human-Machine Interface
HPC High Performance Computing
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Acronyms

IMU Inertial Measurement Unit
ITS Intelligent Transportation System

LQ Least Quadratic
LQR Linear-quadratic regulator
LV Leading Vehicle

MaaS Mobility as a Service
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
MHA* Multi-Heuristic A*
MIMO Multiple-Input Multiple-Output
ML Machine Learning
MP Motion Planning
MPC Model Predictive Control

NN Neural Network

OCV Optimal Cruising Velocity
OEM Original Equipment Manufacturer (i.e. vehicle pro-

ducers)
OV Other Vehicle

PHS Prolonged Heuristic Search
PID Proportional–Integral–Derivative Controller
POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning
RRT Rapidly-exploring random tree
RWD Rear-Wheel Drive

SAE the Society of Automotive Engineers
SBOMP Search-Based Optimal Motion Planning
SHAVe SuperHuman Autonomous Vehicle
SLT distance-lane-time space
SoA State-of-the-Art
SPaT Signal Phase and Timing

TLA Traffic Light Assist

V2V Vehicle-to-Vehicle
V2X Vehicle-to-Anything
VAN Vanilla
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Symbols

Ptot Total power
Paux Auxiliary power
Tm Motor torque
rw Eheel radius
ωm Rotational velocity of the motor
ρa Air density
cd Vehicle drag coefficient
cr Vehicle roll coefficient
Af Vehicle frontal area
Fr Resistive force
Fm Vehicle traction force
x Vehicle position in Euclidean space
y Vehicle position in Euclidean space
ψ Vehicle yaw angle
v Vehicle velocity
β Vehicle side-slip angle
s Distance travelled along the road in curvilinear frame
l Vehicle position on a lane
t Time
TLC Maximum time for lane change
khr Hourly rate
kep electricity price

x State vector
X Set including all possible states
Xfree Collision-free subset of the states
q Configuration
O Obstacle

n Node
Open Open list for A* search
Closed Closed list for A* search
hp¨q Heuristic function for A* search
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Symbols

Vi Matrix of initial velocities for Dynamic Programming
Vf Matrix of final velocities for Dynamic Programming
Vav Matrix of average velocities for Dynamic Program-

ming
T∆ Matrix of time for transition for Dynamic Program-

ming
Aacc Matrix of acceleration during transition for Dynamic

Programming

Trep Period of replanning
Thor Planning time horizon
Shor Planning distance horizon
∆tgrid Time step of the grid
∆sgrid Distance step of the grid
∆texp Time limit for motion primitives
∆sexp Distance limit for motion primitives
texp Time travelled of motion primitive
sexp Distance of motion primitive
Tplan Time required for planning

M Vehicle model
D Dataset
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