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industry and government – up-to-date on current and recent developments and trends in the field of 
inattention and distraction in driving.

The conference topics include theory, measurement, effects, crash risks, and prevention/mitigation 
related to driver distraction and inattention. Moreover, DDI2020 will focus on the driver/occupant sta-
tus. Participants are invited to present and discuss work covering disconnected drivers in assisted 
(drowsiness, out-of-the-loop, overreliance), and in autonomous vehicles (sleeping, take overs, etc). 
The new distraction legislation related to autonomous driving will also be given pride of place this 
year. 

The conference features keynote speakers, plenary and parallel sessions and special symposia.
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UNSW Sydney is a powerhouse of cutting-edge research, tea-
ching and innovation.
We are one of the top 100 universities in the world, with more 
than 59,000 students and a 7,000-strong research community.
Located in Sydney, Australia’s largest city, the University was 
established in 1949 with a unique focus on the scientific, techno-

logical and professional disciplines.
UNSW is committed to making a difference by focusing on areas critical to the future. Pioneering re-
search and sustained innovation are addressing some of the most important issues of today – from 
climate change and renewable energies to lifesaving medical treatments and breakthrough tech-
nologies. In the social sciences, UNSW research informs policy and expert commentary in issues 
facing society, ranging from human rights and constitutional recognition of Indigenous Australians to 
public health and population ageing.
UNSW offers an extensive range of undergraduate, postgraduate and research programs. We are 
expanding our education and reaching more students from all backgrounds and communities around 
the world.
The main UNSW campus is located on a 38-hectare site at Kensington, seven kilometres from the 
centre of Sydney. Other major campuses are Art & Design in Paddington and UNSW Canberra at 
the Australian Defence Force Academy.

Université Gustave Eiffel is a multidisciplinary university of national 
importance. It also has the distinction of being the first institution to 
bring together a research institute, a university, a school of architec-
ture and three engineering schools. By pooling its many strengths in 
the areas of education and research, Université Gustave Eiffel aims 

to develop by pursuing a strategy based on complementarity between its founding institutions. By 
creating better synergies in this way, the university can offer the groups it serves a wider range of 
expertise. Educating young people, employees or citizens at all levels, providing the whole of so-
ciety with scientific insights  ̶  the ultimate aim of Université Gustave Eiffel is to help raise everyone’s 
level of qualification.
Université Gustave Eiffel is active in many areas of research. In particular, it accounts for a quarter 
of French research on the cities of tomorrow and brings together multidisciplinary capabilities to 
conduct quality research for the benefit of society, offer education tailored to the social and econo-
mic world and support public policies.
The institution’s main remits are:
• Initial and in-service education, with a strong focus on apprenticeship education.
• Research (fundamental and applied) and innovation.
• Expert appraisals, public policy support and standardisation.
• Openness to society and international cooperation.

SAFER Vehicle and Traffic Safety Centre at Chalmers is a com-
petence centre using competence from 32 partners from aca-
demia, industry and public organisations. Our vision: SAFER 
provides excellent inter-disciplinary research, innovation and 
collaboration to secure close to zero accidents and injuries in 

traffic and enable Sweden to hold global leadership in the new paradigm where traffic safety is a key 
factor for implementing a sustainable, connected automated traffic system.
Research at SAFER spans a broad base, covering several disciplines and encompassing both traf-
fic and vehicle safety in real environments. The centre’s activities engage the very elite in the field 
of traffic safety, and the results contribute to increasing the competitive advantages of the centre’s 
partner companies and organisations. Chalmers University of Technology hosts the centre. By using 
the multidisciplinary scientific competence available within the centre, we will make it a hub for ex-
cellence within the field of vehicle and traffic safety.
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ABSTRACT 

 

Automated vehicles (AVs) are expected to improve road safety by reducing the 

number of collisions and safety critical events [1,2]. In the event of a failure of the 

automated driving system (ADS), or if it reaches the limit of its capability, action is 

required to preserve the safety of the vehicle occupants and other road users. The 

Society of Automotive Engineers (SAE) [3] highlights the need for the user to assume 

control in these situations by performing the driving task or placing the vehicle in a 

safe state, i.e. one in which the risk of a collision is reduced (‘minimal risk condition’ 

(MRC)). Should the driver not be available or deemed unable to achieve this (for 

example, if they are inattentive or distracted by a non driving-related task (NDRT)), 

the ADS (operating at level 4 or above) must achieve the MRC. MRC is therefore the 

subject of intense scrutiny, with many automotive manufacturing companies (OEMs) 

already proposing solutions, for example, by performing a controlled stop of the car at 

the side of the road (a ‘minimal risk manoeuvre’ (MRM)). This is arguably an 

extension of existing advanced emergency braking systems (AEBS) that sense driver 

inactivity or their lack of an adequate braking response and intervene. However, one of 

the key differences in a L4-AV is that drivers are “out of the loop” by design (i.e. not 

driving and engaged in a NDRT), and the MRM may therefore be entirely unexpected. 

As such, drivers’ responses and behaviour are unpredictable. For example, the ADS 

will likely prohibit driver intervention during the MRM [3], but it is unclear whether 

the driver would expect or attempt to intervene and what the consequences might be. 

These factors are likely to influence the acceptability of proposed solutions.  

 

In a medium-fidelity driving simulator, sixteen experienced drivers (10 female, 6 

male, 21-65 years old, mean age 31.8, mean driving experience: 12.0yrs with licence, 

4.0 hrs/wk driving) undertook three 8-minute drives, each within the same simulated 

environment created using STISIM Drive software (v3). The driving simulator 

mimicked an SAE level 4 AV in that it was capable of monitoring the environment and 

executing both lateral and longitudinal control, thus relieving the driver from primary 

driving tasks. The MRM was achieved by changing lanes and bringing the vehicle to a 

stop outside the active traffic lanes (on the “hard shoulder”) – a commonly proposed 
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MRC strategy [4]. Lane change trajectories and brake intensity were based on relevant 

literature [5,6,7], and vehicle controls were functionally disabled during the MRM. 

Automation was available only on lane two of a two-lane dual carriageway – 

representing the operational design domain. The first two drives included routine take-

overs. During the third drive, participants were actively engaged in a secondary task – 

an immersive game on an iPad. This ensured they were “distracted” and subsequently 

failed the attentiveness assessment made by the ‘driver monitoring system’ (i.e. the 

experimenter) immediately prior to the takeover request, thereby initiating the MRM. 

This was communicated via an HMI located in the centre console and an 

accompanying spoken warning: “You are inattentive, a safe stop will begin in 5 

seconds”. Participants were made aware of the level 4 capabilities of the vehicle, with 

regard to routine operation, but were not informed of the MRM or MRC to avoid 

influencing their instinctive behaviour and responses. The study was video recorded 

for subsequent analysis. In a post-study interview, participants were asked to elucidate 

on factors such as: their initial response to the MRM, their understanding of the 

situation (what just happened?), the role they assumed, and the level of control they 

had or felt they should have (i.e. should they be able to intervene during the MRM). 

This paper briefly introduces six themes which emerged through inductive thematic 

analysis [8] of the transcribed responses to all questions. 

 

1. Reluctance to Relinquish Control. Several participants felt that the intervention 

was abrupt and ‘over the top’ (p2,5,12), evoking negative emotions of “anger” and 

“frustration” (p2,3,14,15) or “panic” and “surprise” (p5,10,13); others referred to the 

process of the vehicle taking over control as “weird” (p6,12). Some stated that they 

subsequently felt the need to define and adopt a specific role during the manoeuvre, 

thus enabling a semblance of ‘being in control’ (e.g. monitoring the system 

performance), while others admitted that they waited for the system to instruct them. 

 

2. Loss of Authority and Control. Participants expressed concerns regarding the 

removal of active control and decision-making authority. Some were frustrated by their 

inability to ‘correct’ the inattentiveness assessment (“I am here and ready to drive” 

(p3)), while others (p7) specifically identified that control had been removed without 

their consent, and therefore expected that it would be reinstated if they actively 

engaged with the driving task (e.g. pressed a pedal), as might be expected with existing 

driver assistance systems, such as cruise control. Others expressed the desire to be 

given a choice in the course of action. 

 

3. Sensemaking. Although participants were initially unsure of what was 

happening, they were generally forgiving of the experience once they understood that it 

had been triggered by their lack of attention, and ultimately accepted that it probably 

represented the best (safest) course of action (p5,9,14). Nevertheless, concerns were 

expressed regarding the potential disruption it could cause (e.g. delaying their journey) 

– although this was regarded as an acceptable consequence by some (p4). It was also 

recognised that manually intervening during the manoeuvre could have a disruptive or 

deleterious outcome, and this stopped some participants from attempting to do so (p8).  
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4. Mental Models of System Capability. Drivers’ mental models affected the level 

of trust they placed in the system. Scepticism about AVs generally, translated to 

distrust in the MRM (p8), although the experience already provided during the routine 

drives/handovers also shaped opinion (“this is the first time it was changing lanes, so I 

didn’t trust the car” (p9)). For others, the ability of the car to take over control when 

their own attention lapsed increased their trust in the system (p4). The means by which 

driver attention was assessed was also questioned: “I just glanced away and it 

suddenly said oh you're not attentive” – assumes glance behaviour (p2). Another 

thought that their attention was determined by hands-on-wheel (p7), resulting in this 

driver fervently grasping the steering wheel. Others expected that the check involved a 

more thorough assessment, acknowledging the limitations of human performance 

(“maybe … you think you are alert enough to drive but you are not actually” (p9)). 

 

5. Perception of Drivers’ Capability. Participants were generally in favour of their 

own abilities to take control, over and above those of the automated system and 

indeed, other drivers. This was consistently used as justification for their desire (and 

expectation) to intervene during the MRM (p4,6,8,15). Amongst those drivers who 

perceived the automated system as more capable than a human driver (p3,10,16), 

participant 3 even so highlighted that the system telling them they were not ready was 

annoying. Interestingly, several participants were supportive of the system controlling 

other drivers’ unsafe behaviour (not necessarily their own!). 

 

6. Situation Assessment. Participants regularly refereed to their own assessment of 

the driving situation, including factors such as ‘complexity’. As such, many recognised 

that the MRC did not represent complete safety, but rather the best (“safest”) course of 

action, under the circumstances. This also influenced their decision to intervene, with 

participants suggesting that they would more likely intervene if there was “not much 

traffic” (p5), for example. Conversely, others questioned how well the system would 

have performed had the road situation been more complex (higher density of traffic, 

different road infrastructure etc.), suggesting that this would ultimately determine their 

confidence, trust and the acceptability of the system (p11). 

 

The study explored drivers’ responses to a level 4 ADS-initiated MRC scenario 

using a simulated driving experience and follow-up interview, and presents themes that 

were identified from the interview data. Whilst most drivers ultimately understood the 

purpose of the MRM and appeared willing to accept it as the safest course of action 

under the circumstances, there was some initial confusion, resulting in strong 

emotional reactions, such as surprise and even anger. An interesting irony is that 

several drivers felt that they should have been consulted regarding the vehicle’s 

intentions and actions – despite them being actively taken out of the control loop 

immediately prior to the take-over request. This suggests that drivers need to be made 

aware of the actions and intentions of their vehicle and indeed, their own limitations – 

at all times. In addition, the lack of control – or more precisely the removal of control 

without drivers’ consent, and their inability to resume control partway through the 

manoeuvre (when some felt they were able to do so), appears to have frustrated drivers 

and presents a challenge to OEMs. Many of the concerns centred around drivers’ 

preconceived ideas about AVs (i.e. their mental models), which, combined with 
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elevated opinions of their own ability to resume control, suggest the additional need 

for improved driver training and awareness. Overall, the study highlights several key 

challenges to overcome before an enforced MRC may be seen as acceptable solution. 

Future work will aim to validate findings by analysing drivers’ behaviour during the 

study. 

References: 

[1] Cunningham, M. L., & Regan, M. A. (2017). Driver distraction and inattention in the 

realm of automated driving. IET Intelligent Transport Systems, 12(6), 407–413. 

https://doi.org/10.1049/iet-its.2017.0232  

[2] Serban, A. C., Poll, E., & Visser, J. (2018). Tactical safety reasoning. A case for 

autonomous vehicles. IEEE Vehicular Technology Conference, 2018-June, 1–5.  

[3] SAE International. (2018). Taxonomy and Definitions for Terms Related to Driving 

Automation Systems for On-Road Motor Vehicles J3016_201806. 

https://doi.org/https://doi.org/10.4271/J3016_201806  

[4]Dennis, E. P., Schultz, M., & Wallace, R. (2018). Opportunities to Encourage On-road 

Connected and Automated Vehicle Testing Recommendations for the Saginaw Region, 

(May). 

[5] Yang, D., Zheng, S., Wen, C., Jin, P. J., & Ran, B. (2018). A dynamic lane-changing 

trajectory planning model for automated vehicles. Transportation Research Part C: 

Emerging Technologies, 95(June 2017), 228–247. https://doi.org/10.1016/j.trc.2018.06.007  

[6] Large, D. R., Pampel, S., & Burnett, G. (2018). Exploring Drivers ’ Visual Behaviour 

During Take-Over Requests Exploring Drivers ’ Visual Behaviour During Take-Over 

Requests. In International Conference on Driver Distraction and Inattention (DDI2018). 

Gothenburg, Sweden.  

[7] Pampel, S. M., Large, D. R., Burnett, G., Matthias, R., Thompson, S., & Skrypchuk, L. 

(2018). Getting the driver back into the loop: the quality of manual vehicle control 

following long and short non-critical transfer-of-control requests: TI:NS. Theoretical Issues 

in Ergonomics Science, 20(3), 265–283. https://doi.org/10.1080/1463922X.2018.1463412  

[8] Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative 

Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa 

 

 

 

5



 1 

 DDI2020 – LYON 

France, 12-14 Oct, 2020 
 

 

 

 

Effects of secondary tasks on drivers’ glance and driving behavior 

while driving a partially automated vehicle on a closed circuit  
 

C. Hollander*
1
, N. Rauh

2
, F. Naujoks

3 

 
1, 2

 Research Unit Cognitive and Engineering Psychology, Institute of Psychology, Technische 

Universität Chemnitz, GERMANY.  

(E-mail: cornelia.hollander@psychologie.tu-chemnitz.de, nadine.rauh@psychologie.tu-

chemnitz.de) 
3 
User Interaction / Usability, BMW Group, GERMANY.  

(E-mail: frederik.naujoks@bmw.de) 

 

Keywords: Closed circuit, failure in longitudinal / lateral control, partially automated 

driving, secondary tasks, take-over maneuver. 

 

AIM & SCOPE 

 

In recent years, the automotive industry focused on increasingly automating the 

driving task to enhance driver safety by reducing human error [1], resulting in different 

levels of vehicle automation [2]. However, at this moment only intermediate levels of 

automation with limited capabilities and the requirement of constant supervision by the 

driver are available [3]. During partial automation (SAE level 2), the system is 

responsible for the longitudinal and lateral control of the vehicle, while the driver has 

to monitor the system, the environment and needs to take over the driving task 

completely without any take-over request, if the necessity occurs [2].  

 

Even though vehicle automation might relieve some of the momentary driving 

demands, it does not inevitably lead to safer driving [4]. New issues arise due to the 

changing role from active driver to passive supervisor [5]. This change and the 

monotony of the monitoring tasks can result in reduced task engagement possibly 

leading to inattention, fatigue and cognitive underload, which in turn can trigger 

problems such as slower reactions or failure to intervene [6]. In addition, research 

showed that boredom and cognitive underload can result in increased secondary task 

engagement during automated driving [7, 8, 9], which is likely to cause other problems 

(e.g. reduced situation awareness, distraction), hence impairing potential safety 

benefits of different automation levels [9].   

 

Studies evaluating the effects of secondary task engagement during automated 

driving often focused on higher automation levels [e.g. 3, 7] or are mostly executed in 

driving simulators [e.g. 1, 4, 6, 8]. The current study’s goal was to evaluate the effects 

of different secondary tasks on the drivers’ glance behavior and take-over performance 

while driving in a partially automated vehicle in a closed circuit environment.  
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METHOD 

 

To safely investigate the effects of secondary task engagement on the participants 

while driving in a real, partially automated vehicle, the current study took place on a 

closed circuit that was situated on a parking lot in Chemnitz, Saxony (Figure 1).   

 

Participants. N = 39 participants (18 female, 21 male), who were M = 40.38 years 

old (SD = 17.16, range 18-70 years) took part in the study. They all held a valid 

driver’s license and drove M = 15,000 km (SD = 9,000 km) in the last year. Three 

participants were excluded from analysis due to technical problems. 

 

Partial automation. Two vehicles were present on the circuit: the partially 

automated ego vehicle (maximum speed 27km/h) and a manually driven lead vehicle. 

The partial automation of the ego vehicle combined Wizard-of-Oz techniques with 

genuine automation: longitudinal control (acceleration and deceleration) was actually 

automated (i.e., maintained speed and distance automatically), whereas the 

experimenter on the passenger seat executed lateral control (steering) using a small 

steering wheel out of sight of the participants (Figure 1, right).  

 

Take-over situations. Two different take-over situations, corresponding to 

possible errors in the longitudinal and lateral control, were examined. The situation 

drifting corresponding to the lateral control entailed the ego car drifting to the left. The 

situation deceleration of the lead vehicle corresponded to the longitudinal control and 

entailed the lead vehicle to decelerate without brake lights. Consistent with SAE level 

2 automation [2], no take-over requests were issued, which required monitoring the 

system and environment to notice the take-over necessity. The experiment consisted of 

four trials (à 12 minutes), each consisting of five rounds on the circuit. In each trial, 

the participants experienced four take-over situations randomly assigned to the five 

rounds. Further, it was randomized which one of the two take-over situation occured. 

Due to limited space, involvement of two vehicles, and to enhance reproducibility, the 

take-over situations always took place on the same tract of the circuit (Figure 1, left).  

  

Figure 1. Closed circuit with the locations of the take-over situations (left), Wizard-

of-Oz steering execution out of sight of the participants (right).  

 
 

Secondary Tasks. Of the four trials, three took place with and one without 

(baseline) a visual-manual secondary task. The three tasks were 1) the manual radio 

tuning task [10], which is used as reference task for manual driving, where the 
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participants had to tune the radio to a predefined station; 2) watching news videos 

(length: 20s) followed by answering a question about the visual content; 3) text 

reading that requires scrolling followed by answering a questions about the content. 

The participants continuously engaged in one of the three tasks per trial. The order of 

the secondary tasks as well as the baseline trial was randomized. 

 

Procedure. After reading written instructions about the study, the tasks and the 

take-over situations, the participants completed a manual and a partially automated 

familiarization drive. During the trials, the participants were filmed by cameras to 

collect glance behavior data. The driving performance was recorded though measuring 

technologies implemented in the vehicle. Participants filled out questionnaires after 

each trial to assess subjective experience. 

 

Results. Regarding the glance behavior, the 10 seconds prior to a take-over 

situation were analyzed. Significant differences were found between the three 

secondary tasks regarding the mean glance duration (MGD), procentual gaze duration 

(PGD) and the number of glances (NG) to the task. Significantly fewer, yet longer 

glances were executed to the text reading task (NG: M = 3.26, SD = 1.08; MGD: M = 

2.85s, SD = 1.49s; PGD: M = 74.71%, SD = 13.95%), compared to the video watching 

(NG: M = 4.11, SD = 1.04; MGD: M = 1.46s, SD = .55s; PGD: M = 56.29%, SD = 

15.57%) and radio tuning task (NG: M = 3.76, SD = 1.05; MGD: M = 1.92s, SD = 

1.15s; PGD: M = 61.24%, SD = 13.58%) that did not differ significantly. In addition, 

even though the participants did not allocate significantly fewer glances to the road 

during the task execution trials than the baseline trial, the on-road glances during task 

execution were significantly shorter (e.g. PGD: Baseline: M = 94.65%, SD = 6.34%; 

text reading: M = 24.69%, SD = 13.37%; radio tuning: M = 38.09%, SD = 12.64%; 

video watching: M = 42.98%, SD = 15.34%).  

 Regarding the take-over performance measures (e.g. reaction time or distance to 

lead vehicle), the results did not show significant differences between the three tasks 

and/or the baseline trial. There was, however, a significant difference between the two 

take-over situations regarding the reaction time: as expected, the participants reacted 

significantly faster to the drifting (M = 2.33s, SD = .89s), than to the deceleration of 

the lead vehicle (M = 9.45s, SD = 1.61s).  

 

CONCLUSIONS 

 

The study showed that different secondary tasks had distinctly strong effects on 

the drivers during partially automated driving. Compared to the baseline trial, the 

drivers allocated considerably less visual attention to the driving scene during 

secondary task execution. Especially text reading redirected considerably more visual 

attention to the secondary task. Video watching did not require as much attention and 

even less than the radio tuning task. A possible explanation for this observation might 

be that drivers simply listened to the video instead of looking at it. The take-over 

performance measures did not differ depending on the secondary task or the baseline 

trial. However, in a real driving situation the effects of the secondary tasks on the 

driver’s attention might be much more detrimental than in this study. Especially, when 

more enticing contents such as YouTube videos or personal messages are involved.  
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Nonetheless, a promising methodological step was taken towards evaluating secondary 

task execution during partially automated driving. 
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ABSTRACT 

 

One objective of vehicle automation is to mitigate distraction and inattention while 

driving. The Society of Automotive Engineers defines six levels of vehicle automation, 

ranging from Level-0, no automation, to Level-5, full automation [14]. Currently, vehicles 

with partial vehicle automation (i.e., Level-2) are publicly available and equipped with 

systems that maintain lateral and longitudinal control simultaneously. During Level-2 

automation, drivers are required to remain engaged with the driving task, monitor the 

environment, and be able to safely regain control of the vehicle at any time, should the 

automated system fail. The current research compared and contrasted the driver’s 

experience when operating a vehicle under Level-2 automation with that of operating the 

same vehicle when automation was not engaged.  

Our research assessed driver workload and visual engagement using 

electroencephalography (EEG). EEG is the measurement of the summated electrical 

activity of the brain, recorded non-invasively from electrodes on the scalp. EEG provides 

high temporal resolution (within milliseconds) and therefore a direct record of neural 

activity in real-time [11]. Oscillatory components of EEG can be decomposed into 

canonical spectral frequencies (e.g., Delta ~0.5-4 Hz, Theta ~4-8 Hz, Alpha ~8-12 Hz, and 

Beta ~12-30 Hz) using Fourier analysis [4]. These frequency bands have been studied in 

relation to various neurocognitive functions. For example, theta frequency in the frontal 

regions of the brain is studied as an index of cognitive workload, such that theta power 

increases with driving demand [5,6] and with cognitive fatigue [9]. Meanwhile, alpha 

power in the parietal regions of the brain has also been studied in relation to selective 

visual attention, such that higher alpha power indicates lower visual engagement with the 

environment and lower alpha power indicates higher visual engagement [2]. Parietal alpha 

power is highest when an individual’s eyes are closed [7]. Therefore, measuring power in 

the theta and alpha bands can be used to assess changes in workload and visual 

engagement while driving, respectively. In the current study, we utilized a mobile EEG 

system to measure frontal theta and parietal alpha while driving. 

We performed an on-road evaluation of drivers between the ages of 21-64 

operating up to four different vehicles that supported Level-2 automation on both urban 

and rural roadways. The research design was 4 (Vehicle: Cadillac CT6, Nissan Rogue, 
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Tesla Model 3, Volvo XC90) x 2 (Age: 21-42 vs. 43-64) x 2 (Automation: Level-0 vs. 

Level-2) x 2 (Interstate: I-80 vs. I-15) factorial with 24 younger and 24 older participants 

tested in each of the vehicles. Since most participants were new to this technology, they 

first completed an extensive training protocol on the automated features of the vehicle. 

Data collection began with four minutes of eyes-closed EEG recording to get a baseline 

level of parietal alpha power. Participants then drove two different routes while EEG data 

were recorded. One route, I-80, was a low trafficked, curvy interstate highway. The other 

route, I-15, was a heavily trafficked, straight interstate highway. On each highway, 

participants drove with Level-2 partial automation features engaged or not engaged (in a 

counterbalanced order) for approximately 20 minutes each.   The total time required to 

train and test a participant in one of the vehicles was approximately 5 hours.  

We hypothesized that if partial automation decreases driver workload and attention 

as some fear, there would be a decrease in frontal theta power and an increase in parietal 

alpha power in partially automated compared to manual driving. By contrast, if partial 

automation increases driver engagement and attention as the technology intends, we would 

expect to see an increase in frontal theta power and a decrease in parietal alpha power in 

partially automated compared to manual driving.  

Data were analyzed using linear mixed effects models in R [13] to account for the 

repeated-measures design and any missing data. Models were run using the lme4 package 

[1]. The repeated subjects factor was input into each model as a random intercept with the 

other factors of interest (Level of Automation, Interstate, Age, Vehicle) alternately entered 

as fixed effects. For significant effects, effect sizes were calculated as Cohen’s d. For null 

effects, we calculated a Bayes Factor for linear mixed models to determine the strength of 

the evidence for the null hypothesis over the alternative hypothesis [9].  

Collapsed across age cohorts, highways, and vehicles, there was no significant 

difference in frontal theta power (Level-0: M=3.45, SD=2.12; Level-2: M=3.51, SD=3.08) 

or parietal alpha power (Level-0: M=2.39, SD=1.59; Level-2: M=2.28, SD=1.62) between 

manual driving and partially automated driving. This implies that for drivers new to this 

technology, there was no difference in workload or visual engagement associated with 

manual versus partially automated driving. There was, however, significantly lower 

parietal alpha power when driving on the more rural, curvy highway compared to the 

relatively urban, straight highway (I-15: M=2.42, SD=1.75; I-80: M=2.26, SD=1.45; 

2(1)=7.89, p=0.005), consistent with expectation that the curvy highway demanded more 

visual attention.  There was no significant difference in frontal theta power (Young: 

M=3.46, SD=2.10; Old: M=3.50, SD=3.10) or parietal alpha power (Young: M=1.98, 

SD=1.03; Old: M=2.72, SD=1.98) when controlling for age cohort differences. Lastly, 

there were no omnibus effects of vehicle on either frontal theta power or parietal alpha 

power, yet there were slight differences between individual vehicles. The interpretation of 

between-vehicle differences is beyond the scope of this research project. 

 The purpose of this study was to compare the driver’s experience under partial 

automation and manual driving conditions using EEG. Even though some argue that 

automation’s intention to mitigate distraction and inattention may in fact lead to under-

arousal and disengagement from the environment, our data suggest that driving a partially 

automated vehicle does not, in fact, significantly alter mental workload or visual 

engagement, particularly for drivers new to the technology. The data establish that 

participants remained engaged with the driving task when partial automation was enabled. 

This pattern of data meets the SAE guidelines for maintaining awareness during partial 

automation.  
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These findings provide an initial understanding of the effect of automation on 

workload and visual engagement on a neural level when using this vehicle technology for 

the first time. They extend the research beyond simple behavioral studies on driver 

behavior and provide insight into neurophysiological responses when drivers operate a 

vehicle under partial automation. Our study refines a methodology that can be used 

alongside behavioral measures to assess the driver’s experience under partial automation 

[11]. 
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Context and objective : The level 2 automation system was defined by the SAE [1] as 

a “partial automation”, that is to say a “driving mode-specific execution by one or 

more driver assistance systems of both steering and acceleration/deceleration using 

information about the driving environment, and with the expectation that the human 

driver completes the OEDR (object and Event Detection Responses) and supervises the 

driving automation system”. This definition assumes an attentive driver supervising 

the adequacy between the behavior of the automated system and the different situations 

encountered while driving. This constraint is also known as driving "Eyes On" and 

covers different man-machine interaction strategies tending to ensure this attentional 

implication. Indeed, the question of attention/distraction is crucial for the proper 

functioning of this type of system. However, we know that maintaining sustained 

attention with low levels of stimulation puts cognitive skills at risk [2],[3]. This is a 

major issue in the context of the different regulations existing all over the world. 

Namely, the Hands-Off system is not currently allowed in Europe which regulates only 

"Hands On" systems at level 2, while in USA or Japan, the same Hands Off system is 

currently allowed for marketing. Thus, the objective of this study is to bring some 

empirical results and theoretical interpretations for positioning this subject in terms of 

ergonomic and human factors risks and benefits.  We compare three possible Driver-

Vehicle-Interactions conditions: 

1. "Hands On" system: a level 2 system with the obligation for the driver to keep 

one hand on the steering wheel.   

2. “Hands Off’: the same level 2 system, but without the necessity for the driver to 

keep one hand on the steering wheel.  
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3. the “Hands OFF EyeMo”: the same as the “hands Off” system but with an Eyes 

tracker MOnitoring able to alert the driver in case of a glance “off the road” 

longer than 5 seconds. 

Methodology: This experimentation was conducted on two equivalent Dynamic 

Driving Simulators at RSA and PSA sites. We developed three events, intervening 

after 20mn of autonomous driving, to test the impacts of the three conditions: 

Event 1 (EV1): incidental loss of assistance in a high-speed turn (regulated at 130 

km/h): This loss of assistance occurred in a normal Motorway bend (900 m radius). It 

was implemented as a “silent failure” (the absence of an audible alert is proposed , 

because of the state of the art, to limit the impact of false alerts). However, changes in 

the dashboard indicates the deactivation with the disappearance of the Autonomous 

Driving symbol, as well as a torque of the steering wheel and a suspension of 

acceleration. The comparison focused on the differences of behavior, measured in 

terms of maximum lateral offset. 

Event 2 (EV2):  sudden stop of assistance followed by an obstacle on the roadway: 

The scenario begins with a truck traveling at 110 km/h in front of the ego car; it moves 

to the left, leaving visible another truck stopped in the middle of the road (with a 

traffic cone ahead) and requiring braking or lane changing.  A vehicle, travelling about 

50 meters back, is positioned in the left lane. The speed of this vehicle was enslaved to 

the Ego vehicle in order to allow it to change the lane. A beep-sound is associated with 

the loss of assistance about 300 m from the obstacle. Also, changes in the dashboard 

indicates the deactivation. There were about 8sec left for the driver to react before the 

obstacle (commonly used base-lines for this type of scenario [4]). The comparison 

focused on the differences of behavior measured in terms of minimum time at the lane 

change obstacle (MTHW) and maximum lateral acceleration. For this event we did not 

implement on the simulator an additional security ADAS, such as Automatic 

Emergency Braking, because the implemented failure affected radar and devices 

involved in target calculation including FCW and AEB.  

Event 3 (EV3) was an untimely rotation of the steering wheel occurring in a 

straight line at low speed (50km/h): The untimely deactivation occurred on a highway 

bridge where only the left lane was available, road works blocking the right lane . The 

event was materialized by a rapid movement of the steering wheel to the left that 

simulates a strong lateral gust of wind, an irregularity of the roadway or a system 

malfunction. The chosen area was an overpass (which made the Wind effect likely) 

without Emergency lane on the left to create psychological pressure at low speeds. The 

comparison focuses on the correction performance measured in terms of maximum 

lateral deporting before lane correction. 

For the all the conditions and events, the subjects' perceptions and feelings were 

questioned during an interview [5] occurring right after each critical event. The 

interviews were transcribed and analyzed with 6 thematic categories. 

Also for the three conditions of driving, an eyes tracker system recorded the gazes 

of the drivers. 

Population: A total of 120 subjects were recruited by PSA and Renault, with an average of 

40 years old (EC-10 years) with 20% of women. A majority of subjects declared to be very 

interested in ADAS , 20% of the subjects said to be moderately interested. None of the 
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subjects recruited were engaged in professional activity related to the ADAS tested. 

Main Results: The results, for the three events tested, showed a significative decrease in 

driving controllability due to the "hands off" condition. This decrease in performance 

resulted fore examples in: 

- higher trajectory deviations with hands off (EV1 mean lateral offset Hon=1,53 m ; Hoff= 

3,33 m ; HoffEyeMo= 2,24 m ; Anova p value < 0,01**), (EV3 mean lateral offset Hon: 

0,88 m, ; Hoff: 1,43 m ; HoffEyeMo 1,78 m ; Anova p value < 0,001***),  

In terms of loss of controllability (crash risk), by considering deviations ratio of more than 

0.8 m inside the adjacent lane, we got 14% with Hon condition ; 60% in case oh Hoff and 

42 % with HoffEyMo. 

- shortened obstacle times with hands off (Ev2 mean Minimum Time HeadWay Hon=3,1s ; 

Hoff=2,4s; HoffEyeMo=2,4s  , Anova p value < 0,05*). 

In terms of controllability, by considering MTHW ratio of less than 1second we got 0% 

with Hon; 19% in case of Hoff and 12 % with HoffEyMo. 

 

- We can say that the hands OFF EyeMo condition, with monitoring of the gaze 5sec, does 

not restore the driving performance to reach the Hands ON condition performance. 

We develop explanatory dimensions of these results. Observations and interviews 

indicate that in the hands OFF condition, drivers: 

1. Watch less the road and have more NDA (Not Driving Activities); 

2. Feel less vigilant, are more prone to boredom (those who do not have NDA); 

3. Feel more disconnected from driving, have less awareness of the system state 

and of the traffic around, with less anticipation of what the system will (or not) do;  

We assume that the contact of the steering wheel plays an important role in these 

phenomena and will develop this point.   

We noted that he Hands OFF EyeMo condition, with monitoring of the gaze, does 

not restore the driving performance to reach the Hands ON condition performance. 

Indeed, if monitoring does generate a gaze back on the road, this gaze would not be 

associated with much vigilance and attention, as if they looked but not saw. Moreover, 

the cognitive and bodily disconnections, described in Hands OFF condition, does not 

seem improved with the monitoring. It can explain why the performance in Hands OFF 

EyeMo is closer to those observed in Hands OFF than in Hands ON conditions. 

Finally, concerning the perceptions of the systems tested, we note that in Hands 

OFF condition, the subjects feel more like “a passenger”, free, relaxed, but also less 

responsible; they a priori attribute, wrongly, more capacity to the system than in Hands 

ON condition. The question of where to place ones hands were also raised. Conversely, 

hands ON, the physical contact with the moving steering wheel is often considered as 

unpleasant, even if useful. In Hands off EyeMo, visual monitoring is perceived as 

constraining but essential. 
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How far smartphone activities are easily interruptible during HAD? A pilot 

study  
Jaussein M., Bellet T.,  Tattegrain H., Marin-Lamellet C. 

Introduction 
Highly automated systems for automotive is going to offer free time to drivers. As several studies 

recently described it, drivers will prefer to engage in another activity while delegating control to the 

system than supervising it (Dingus et al., 2006; Large et al., 2020). One of the more common activity 

categories reported by the latest studies is the use of electronic devices, tablet or smartphones, to 

text, to watch videos, to navigate or to play (Clark et al., 2017; Hecht et al., 2020; Olson et al., 2009). 

In the context of individual cars, Hecht et al. found that general use of smartphone and texting are the 

most attractive activities according to their online survey (2020). The use of smartphone and the wide 

variety of activities that it offers give a large field to explore. So, the driver will very often engage in a 

Non-Driving-Related-Task (NDRT). What would be the impact on his capacity to regain vehicle control 

when it will be necessary? In fact, transitions between driver and the system are going to be more and 

more common because of the emergence and democratisation of highly automated driving systems 

but also because fully automated vehicle, able to drive in all situations seems to be still far in the future. 

The driver's ability, when engaged in NDRT, to manage control transitions is a crucial question. How 

different will be the reactions depending on the activity of the driver before the transition (Marberger 

et al., 2018; Mouloua & Hancock, 2019; Park et al., 2019; Richards & Stedmon, 2016). Some previous 

studies used interruption theory to explore this issue (Befelein et al., 2018) and combined it with 

different on-board behavior variables (Wandtner, Schmidt, et al., 2018; Wandtner, Schömig, et al., 

2018) to investigate the NDRT engagement variations and its impact on driving performance. These 

approaches are commonly based on multitasking models (Ho et al., 2001, 2004; Salvucci et al., 2009) 

which attempt to explain switching mechanisms between different tasks. Sequences of actions are 

explored through cognitive mechanisms. These approaches give clues to investigate multitasking 

situations, as a takeover situation to handle after a phase of automation: stopping the current activity 

and re-engaging in the driving task in a very short period.  

Objectives 
This online study was conducted in April 2020 as a pilot study to explore differences between popular 

activities through declared levels of interruption. 340 participants took part in the study. NDRTs (Video 

vs. Reading vs. Playing) and motivation (Insistent instruction vs. No particular instruction) were used 

as independent variables.  

Experimental design 
The online study was conducted through a google form. The title of the study was “Automatisation et 

Cognition”. The link to the study was sent through different ways (social media, university channels 

and sports communities). It contains three activities chosen in function of previous research on NDRT 

occurrence during highly automated phases (Large et al., 2020; Olson et al., 2009). Each participant did 

each activity in the same order as presented below. The first activity was a compilation of short videos 

extracted from a well-known scientific cartoon for adults. The video approximately lasted 3 minutes. 

The second activity was a news article about the different shapes and colours of the moon during a 

year. It was calculated that the reading took in average 4 minutes. The last activity was the mental 

rotation game. Twelve items were extracted from an official standardized rotation mental test 

(Vandenberg & Kuse, 1978). The instruction for each item was to find among 4 figures which one is the 
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equal to the one presented at first but in a different position (see figure 1). The three others were 

distractors. This last activity lasted on average 5 minutes. after each activity, the participants were 

asked to imagine themselves doing it but in a HAD vehicle launched in an automated mode. Then, 

three questions were asked about the perceived interruption level of the activity. For each question, 

it was described how the interruption would appear:  

• The system communicates a navigation information by an auditory message (case 1). 

• The system communicates a navigation information by a beep and a visual information 

through a pop-up on the central screen of the cockpit (case 2). 

• The system communicates a navigation information only by a visual pop-up on the central 

screen of the cockpit (case 3).  

 
Figure 1 - Example of the mental rotation game item 

To ensure that it was clearly understood and to make it more vivid, a video which described and 

illustrated the different cases was displayed. A 5-items-lickert-scale from “Not at all” to “Extremely” 

was used to collect the disturbing level of the communication presented. This design to measure how 

much the participants felt disturbed by the alert was inspired from previous research (Fogarty et al., 

2005; Kern & Schiele, 2006). So, an interruption score was calculated for each activity but also for each 

system communication type.   

Results 
First, a global score of the perceived disruption was calculated for each task by combining the three 

answers obtained for each of them. Significant differences on disrupting ratings for the question “How 

disturbing was the system intervention?” were found between watching a video (t(326)=57.3, p<001), 

reading an article (t(326)=55,8, p<.001) and doing a mental rotation exercise (t(326)=43.2, p<001). As 

illustrated in figure 2, reading was the less interruptible activity (high rating of disruption associated to 

a task means that the task is not easily interruptible) while the video was associated to less disruption.  

 

Figure 2 - Interruption ratings in function of activity 
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More precisely, Figure 3 showed that the ratings of case 1 (the system communicates a navigation 

information by an auditory message) is the point that make the difference between the video and the 

reading. Indeed, ratings for the case 1 are more concentrated in the high part of the scale than for the 

video. It probably means that receiving a vocal information while reading is particularly discordant, 

more than while watching a video. Moreover, results showed more dispersion in the ratings for the 

video game: participants feelings about the interruption of a video game are more heterogenous.    

 

Figure 3 - Disruption ratings in function of the notification and the activity type.  

Conclusion 
Through our online study, we observed that the way to receive a system communication during an 

activity seems to have an effect on the perceived level of disruption. These results are particularly 

consistent with the Multiple Resource Theory (Wickens, 2002) which predict greater interferences 

between two tasks that use two distinct modalities (here visual and auditory). The attributed 

interruption level also appeared different in function of the type of activity. The activity of reading 

appeared to be the less interruptible while the video watching was the most interruptible. These rating 

differences between each task were highly significant. Through future research works, it would be 

interesting to explore the effect of the type of activity on a driver behaviour in the context on highly 

automated driving.  

Références 
Befelein, D., Boschet, J., & Neukum, A. (2018). Influence of non-driving-related tasks’ motivational 

aspects and interruption effort on driver take-over performance in conditionally automated 

driving. 6th international conference on driver distraction and inattention, Gothenburg, 

Sweden. Retrieved from: http://ddi2018. org/wp-content/uploads/2018/10 S, 9. 

Clark, H., McLaughlin, A. C., Williams, B., & Feng, J. (2017). Performance in Takeover and 

Characteristics of Non-driving Related Tasks during Highly Automated Driving in Younger and 

Older Drivers. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 

61(1), 37‑41. https://doi.org/10.1177/1541931213601504 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Vidéo Game Reading 

20



Dingus, T., Klauer, S., Lewis, V., Petersen, A., Lee, S., Sudweeks, J., Perez, M., Hankey, J., Ramsey, D., 

Gupta, S., Bucher, C., Doerzaph, Z., Jermeland, J., & Knipling, R. (2006). The 100-Car 

Naturalistic Driving Study : Phase II – Results of the 100-Car Field Experiment. 

Fogarty, J., Hudson, S. E., Atkeson, C. G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J. C., & Yang, J. 

(2005). Predicting human interruptibility with sensors. ACM Transactions on Computer-

Human Interaction (TOCHI), 12(1), 119‑146. 

Hecht, T., Darlagiannis, E., & Bengler, K. (2020). Non-driving Related Activities in Automated Driving – 

An Online Survey Investigating User Needs. In T. Ahram, W. Karwowski, S. Pickl, & R. Taiar 

(Éds.), Human Systems Engineering and Design II (p. 182‑188). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-27928-8_28 

Ho, C.-Y., Nikolic, M. I., & Sarter, N. B. (2001). Supporting Timesharing and Interruption Management 

Through Multimodal Information Presentation. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting, 45(4), 341‑345. 

https://doi.org/10.1177/154193120104500416 

Ho, C.-Y., Nikolic, M. I., Waters, M. J., & Sarter, N. B. (2004). Not Now ! Supporting Interruption 

Management by Indicating the Modality and Urgency of Pending Tasks. Human Factors, 

46(3), 399‑409. https://doi.org/10.1518/hfes.46.3.399.50397 

Kern, N., & Schiele, B. (2006). Towards personalized mobile interruptibility estimation. International 

Symposium on Location-and Context-Awareness, 134‑150. 

Large, D., Shaw, E., & Burnett, G. (2020). Towards Future Driver Training : Analysing Human 

Behaviour in Level 3 Automated Cars. https://nottingham-

repository.worktribe.com/output/3811742/towards-future-driver-training-analysing-human-

behaviour-in-level-3-automated-cars 

21



Marberger, C., Mielenz, H., Naujoks, F., Radlmayr, J., Bengler, K., & Wandtner, B. (2018). 

Understanding and Applying the Concept of “Driver Availability” in Automated Driving. In N. 

A. Stanton (Éd.), Advances in Human Aspects of Transportation (Vol. 597, p. 595‑605). 

Springer International Publishing. https://doi.org/10.1007/978-3-319-60441-1_58 

Mouloua, M., & Hancock, P. A. (2019). Human Performance in Automated and Autonomous Systems : 

Current Theory and Methods. CRC Press. 

Olson, R. L., Hanowski, R. J., Hickman, J. S., & Bocanegra, J. L. (2009). Driver Distraction in Commercial 

Vehicle Operations. https://trid.trb.org/view/907078 

Park, J., Jung, E. S., & Im, Y. (2019). 2H1-6 The Effect of Driver Engagement in Autonomous Driving 

based on Flow Experience. The Japanese Journal of Ergonomics, 55(Supplement), 2H1-6-2H1-

6. https://doi.org/10.5100/jje.55.2H1-6 

Richards, D., & Stedmon, A. (2016). To delegate or not to delegate : A review of control frameworks 

for autonomous cars. Applied Ergonomics, 53, 383‑388. 

https://doi.org/10.1016/j.apergo.2015.10.011 

Salvucci, D. D., Taatgen, N. A., & Borst, J. P. (2009). Toward a Unified Theory of the Multitasking 

Continuum : From Concurrent Performance to Task Switching, Interruption, and Resumption. 

10. 

Vandenberg, S. G., & Kuse, A. R. (1978). Mental Rotations, a Group Test of Three-Dimensional Spatial 

Visualization. Perceptual and Motor Skills, 47(2), 599‑604. 

https://doi.org/10.2466/pms.1978.47.2.599 

Wandtner, B., Schmidt, G., Schoemig, N., & Kunde, W. (2018). Non-driving related tasks in highly 

automated driving—Effects of task modalities and cognitive workload on take-over 

performance. AmE 2018 - Automotive meets Electronics; 9th GMM-Symposium, 1‑6. 

22



Wandtner, B., Schömig, N., & Schmidt, G. (2018). Effects of Non-Driving Related Task Modalities on 

Takeover Performance in Highly Automated Driving. Human Factors, 60(6), 870‑881. 

https://doi.org/10.1177/0018720818768199 

Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical issues in 

ergonomics science, 3(2), 159‑177. 

 
 

23



 DDI2021 – LYON 
France, 18-20 Oct, 2021 

 
Characterisation of Visual Distractions in Drivers Associated with 
Accident Risk: A Multi-Component Investigation 
 
J.D. Jackson*1, C. De Marco2, C. Periago1, D. Salanitri1, K. Kamijo2, J. Lorente2, L. 
Eiroa Sattler2 

 
1 Applus IDIADA, SPAIN 
(james.jackson@idiada.com, cristina.periago@idiada.com, davide.salanitri@idiada.com) 
2 Toyota Motors Europe, BELGIUM.  
(cinzia.de.marco@toyota-europe.com, kentaro.kamijo@toyota-europe.com, 
jorge.lorente.mallada@toyota-europe.com, laurens.eiroa.sattler@toyota-europe.com) 
 
Keywords: accidents, distraction, drivers, simulator, visual task 
 
ABSTRACT 
 
This paper outlines and activity to characterise visual distractions in drivers associated with 
accident risk. An approach involving multiple research activities is employed to investigate 
relevant parameters and identify objective components of high-risk visual distractions.  
 
Background: 
Short visual distractions involve secondary tasks engaging driver’s visual attention away from 
the primary driving task, and are known to be an underlying cause in a significant number of 
road accidents and near misses [1]. These reduce driver capability for effective response to the 
road environment and closely relate to errors leading to outcomes with a high accident risk [2]. 
Given their prevalence, risks associated with visual distraction are a key focus in road safety.  
 
Implementation of assistance systems able to detect and respond to driver visual distractions is 
a key mitigation strategy to accident risk. Active visual distraction monitoring systems work 
to classify driver behaviour according the type and associated risk [3]. This determination 
triggers appropriate response to effectively mitigate and/or prevent driver engagement in 
secondary tasks, with successful execution depending on defined parameters of visual 
distraction for use as criteria in distraction state determination [4].  
 
Much investigation has been conducted into classification of tasks contributing to visual 
distraction in drivers and is widely reported [5]. Objective parameters that may be used in the 
classification of visual distractions and their associated are less defined. For this it is important 
to characterise visual distractions by objective criteria and to define how each of these relate to 
the relative risk of accidents under relevant road scenarios.  
 
Aims: 
The objective of the study is to investigate and assess driver visual attention associated with 
road traffic accidents and near-misses. This aims to characterise short visual distractions acting 
as contributing factors in such scenarios under objective criteria, and according to related risk. 
 
Driver visual distraction characterisation involves investigation and validation of behaviours 
associated with a high risk outcome. These are defined with respect to the following criteria: 
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 Classification of distraction type (i.e. smartphone use, infotainment use, other) 

 Visual behaviour (fixations or glances) period and speed between driving and non-
driving related targets 

 Degree of eye and head movement between targets associated with the driving task and 
those associated with a secondary task (task target relative position).  

 Frequency of visual attention changes between the driving task and a secondary task 

Methodology: 
The study takes a multi-stage approach to investigation of driver distractions and the associated 
risk of road accidents. Initial stage investigation involves two parallel activities. The first 
evaluates critical scenarios associated with visual distraction, with the second assessing driver 
visual distraction by general task and objective components. Project activities culminate in a 
naïve driver simulator study. 
 
Critical scenarios are assessed by means of a literature based accidentology study and 
supporting complemented by accident database data. Outcomes identify representative 
scenarios relevant to high frequency of occurrence and a higher outcome severity, which are 
implemented in a virtual environment for driving simulator evaluations. 
 
Visual distraction is defined with the aim of forming a taxonomy of visual distraction 
behaviours in drivers. It was conducted by an examination of existing literature around visual 
distraction characteristics and associated secondary tasks, and a naturalistic field study 
involving 12 volunteer drivers with eye tracking sensors and interior cameras fitted to their 
vehicle. This recorded visual behaviour and interactions when engaging with secondary tasks. 
Outcomes are used in definition of representative driver distraction inducements. 
 
The subsequent dynamic driving simulator experiment involved 126 naïve driver participants. 
12 conditions were tested, with 4 visual task inducements representative of identified 
distraction characteristics and 3 identified critical scenarios. Drivers were instructed to engage 
in one inducement task at multiple defined points whilst driving in the simulated environment. 
During distraction inducement each of the critical scenarios were presented to them. Data is 
collected regarding scenario outcome, driver state of visual attention, the driver reaction, and 
driver perception of the scenario severity and task difficulty.  
 
Analysis of simulator testing assesses outcomes and determines risk associated with each 
induced distraction and critical event. Meta-analysis follows, relating recorded outcomes of 
tested simulator conditions, to defined characteristics of distraction and quantify risks. This 
identifies the associated risk according to objective parameters of distraction.   
 
Results: 
The initial accidentology study consulted 42 resources which defined scenarios associated with 
visual distraction, with 24 of these reviewed in detail. Outcomes from 14 sources were used 
for scenario definition input, made up of a combination of survey-based studies and the 
outcomes of targeted accident database analysis. The literature investigation was 
complemented by accident data coming from GIDAS (German In-Depth Accident Study) 
dataset. Accidents were considered where the guilty participant was a passenger car and was 
distracted and involved a total of 21317 accidents. The accidentology outcomes identified rear 
end, and single vehicle accidents as being the most prevalent and high-risk scenarios associated 
with visual distractions. Second to these were crossing scenarios. Specific representative 
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parameters for each of these were also identified from the reviewed resources. Based upon the 
analysis of prevalence and risk, one of each of these critical events was represented as part of 
developed scenarios for simulator testing.  
 
The evaluation resources for driver visual distractions consulted 50 resources, of which 24 were 
analysed in detail. These report survey-based studies, accident data analysis, and real-world 
driving studies. Output from sources mainly identifies secondary tasks with regards to their 
classification, with use of use of mobile phones, interaction with other vehicle occupants, and 
use of non-driving related vehicle systems being the most prevalent. These findings were also 
supported by subjective analysis of the real-world driving study data. Evidence was found for 
more specific parameters of visual behaviour within both literature and field test outcomes. 
This outlined a distinction between “timesharing” and “fixation” behaviour, alongside 
association of distraction visual target position relative to the forward view. Four representative 
visual distraction inducement tasks were defined based upon outcomes. These were based upon 
position relative to the forward view, and the type of visual interaction (fixation or timeshare). 
 
Simulator study experiment results show differences in the effect of different distraction 
inducements on the outcomes of critical scenarios, and the associated risk. Analysis of 
outcomes shows differences in prevalence of severe outcomes (collision, no collision, control 
loss), severity of each outcome (speed profile), and the effective driver reaction (reaction time 
and manoeuvre) according to the inducement. Across all of the 3 testes scenarios analysis 
shows that fixation tasks are associated with an overall increase in severe outcomes, higher risk 
during those outcomes, and later driver reactions relative to corresponding timesharing tasks. 
Position of the visual task target sees general trends in the data towards higher risk outcomes 
for task targets positioned further away from the forward view, both vertically and laterally. 
For some event and inducement combinations where the task location is more approximate to 
the position of critical stimuli in the simulated environment, this trend was lessened.  
 
Conclusions: 
Results from the simulator study, coupled with the findings of previous project phases provide 
evidence to allow for characterisation of visual distraction in drivers according to the outlined 
criteria. Evidence is also found to validate the probability of severe outcomes and relative risk 
for each. The activities were not fully successful in quantifying the speed of visual glance 
behaviour between driving and non-driving related targets and associated degree of risk.  
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ABSTRACT 

 

It is well established that long off-road glances increase the risk of crashes (e.g. 

[1]). When drivers look away from the road to perform a task, it depletes their 

situation awareness (SA). SA can be defined as the knowledge of what’s around the 

vehicle, how objects are moving, and whether collision potential is increasing. While 

minimizing off-road glances remains critical for safe driving, research also suggests 

that looking back at the road for more than a brief glance helps rebuild sufficient SA 

for maintaining stable control and for recognition of unfolding conflicts. It’s been 

found that this aspect of attention to the road differentiates crashes from near-crashes 

[2]. Following Kircher and Ahlström’s AttenD model [3], a 2s loss of visual 

information should critically deplete a driver’s awareness of his/her position within the 

lane. Based on recent scene perception findings, once a driver looks back on-road 

following an off-road glance, it takes approximately 200ms of on-road viewing to 

establish basic perception of a scene (or Level 1 SA; [4]). It takes on the order of 500-

1500ms to establish Level 2 awareness (i.e., comprehension) such that a driver is 

appropriately responsive to bottom-up cues that signal a potential impending hazard 

[4,5]. However, based on preliminary testing from an unpublished image detection 

study (and from relevant literature; e.g., [6]), it may take more on the order of 4-8s to 

establish Level 3 awareness (i.e., prediction) of a scene in order to appropriately detect 

hazards using both bottom-up and top-down cueing. The driving simulator study 

reported here considered the impact of shorter (2s) and longer (6s) on-road glance 

intervals between a series of 2s long off-road glance periods.  

Participants were experienced drivers between the ages of 20 and 34 or 55 and 69.  

The MIT AgeLab’s upgraded driving simulator (fabricated by Realtime Technologies 

Inc., Ann Arbor, MI) consists of the full cab of a 2001 Volkswagen New Beetle 

mounted on a three-degree of freedom motion base. Three exterior projection screens 

provide an approximate 180-degree forward field of view. Rear views are provided in 

actual side mirrors and the rear-view mirror. Participants interacted with the simulator 

through a full-scale automotive steering wheel, throttle, and brake pedal inputs.  
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The basic driving scenario ran 3 minutes. Participants followed a lead vehicle on a 

divided highway (2 lanes each direction) and were instructed to follow the speed limit 

of 65 mph. There were no curves and the road scenery contained only light foliage 

(Fig. 1). During the last 25s of the scenario, drivers encountered traffic cues predictive 

of a downstream event (a hard deceleration by the lead vehicle), to which they had to  

brake to avoid a collision. The set of cues (Fig. 1) were sequenced to occur in the same 

order and timing for each participant. The vehicle directly in front of the participant 

was a motorcycle, providing an unobstructed view of the brake lights of the vehicle 

traveling in front of it. The onset of this vehicle’s brake lights (i.e., Cue 3) preceded 

the Event. 

 

Figure 1. (left) Cue and event sequence and timing. (right) Forward road scene 

without (top image) and with (bottom image) masking for the 2s blanking periods. 
 

 

 
 

 

Participants experienced the scenario first without any external constraints on their 

forward view. This provided an opportunity to orient participants to the importance of 

attending carefully to forward scene information (as is the case in real-world driving). 

The drive was repeated a second time with the addition of an artificially-imposed 

series of masks over the forward scene (blanking; see Fig. 1, lower right) to force the 

loss of visual information corresponding to a 2s off-road glance. A sequence of 2s 

“off-road glances” began after one minute of normal driving and a short interval of 

task instructions. Out of 21 participants in the analysis sample, just over half (N=11) 

were exposed to 2s-long unmasked forward roadway views between 2s of off-road 

glance time, while the remainder (N=10) experienced 6s-long unmasked views. Age 

and gender were closely balanced across the two groups. For the first 95s of the 

alternating road visible and blanking sequencing, the surrounding traffic continued at a 

consistent speed matched to the driver’s speed. The blanking sequences continued up 

to the Event onset (for a total of 116s of on and off-road glance sequences). This 

duration, while seeming long compared to some tasks, is within the range for many 

visual-manual tasks studied (e.g., navigation destination entry [7], texting [8]). 

Staring at a masked road image enforces a SA decrement for experimental 

purposes, but is clearly not a normal experience. To induce an off-road glance pattern 

similar to one employed when interacting with a cell-phone or other secondary activity, 
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a visual monitoring task was included. A rectangular device approximately the height 

and twice the width of a medium sized smartphone was placed in their lap. Single digit 

numerical displays were located in each corner (up, down, left, right). A tone prompted 

participants when it was time to look down at the device. This corresponded to the 

start of a masking period. They were to continue looking at the device until one of the 

four displays lit-up with a flashing ‘0’ (masking ends). This simultaneous procedure 

produced the functional experience of physically moving the head and eyes downward 

to engage in a secondary activity, while masking of the screen ensured that an actual 

loss of view of the forward road occurred for a full 2s. In addition, physical orientation 

of the head and eye away from the forward view might be expected to have greater 

impact on basic vehicle control since drivers tend to steer toward where they are 

looking [9,10]. Thus, this artificial secondary task modeled the impact that moving the 

head and eyes off-road, as well as a modest cognitive load [6], which would be missing 

from occlusion alone. 

 

Figure 2. Standard deviation of lane position (SDLP) for baseline driving and the two 

blanking conditions (** = p < .01; *** = p < .001) and crash rates. 

 

As anticipated based on Sender’s [11] classic work, 2s off-road glances 

(occlusion/blanking) significantly impacted basic vehicle control as measured by 

SDLP (F(2,39) = 38.00, p < .001). However, while off-road glance durations were 2s 

long in both blanking conditions, the intervening duration of the restored view of the 

forward roadway significantly influenced the magnitude of this effect. Interleaving 

brief 2s on-road views resulted in SDLP values 325% greater than baseline (t(30) = 

7.76, p < .001) (Fig. 2). In contrast, interleaving 6s on-road views resulted in a 

significant (t(29) = 3.56, p < .01) but more modest 43% increase over baseline. The 

difference between 2s and 6s conditions was also significant (t(19) = 4.358, p < .001). 

Successful avoidance of a crash during the cueing and brake sequence was considered 

by blanking condition. While nearly half of the 2s on / 2s off participants crashed into 

the lead vehicle (5 of 11), only one of the 6s on / 2s off participants did, suggesting 

that crash risk (to the extent it can be measured in a simulator study) was substantially 

reduced by increasing the amount of eyes-on-road time between 2s off-road glance 

periods. 
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In this driving scenario with sequences of experimentally-induced off-road 

glancing, the time between off-road glances was a critical factor in differentiating 

lateral lane maintenance (SDLP) and crash avoidance. While the speed at which good 

vehicle control and SA is reacquired is likely highly related to individual 

characteristics and driving context, this study indicated that longer glance time to the 

road supports refilling of depleted SA reserves. As such, interleaving long on-road 

glances are advantageous and should be encouraged [2,12,13]. 
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ABSTRACT 

 

Visual driver distraction detection algorithms are typically based on gaze information 

or lateral and longitudinal driving performance measures [1]. However, with more advanced 

driving assistance or automated systems, the latter category of vehicle control parameters is 

no longer useful for driving performance assessment. When it comes to the former category, 

gaze based visual driver distraction detection, two lines of research have emerged. One 

branch deals with computer vision and machine learning to extract head pose, gaze direction 

or secondary task activities from video streams [1-3]. The other branch aims to estimate the 

attention level of the driver based on the extracted gaze data [4-6]. Unfortunately, there is a 

gap between these two lines of research. With the recent availability of open source deep 

learning algorithms and pre-trained networks for facial feature detection and gaze 

estimation, there has been an upsurge of papers focusing on the image processing problem 

of visual driver distraction algorithms. However, the branch researching how to go from eye 

tracking data to a driver attention estimate has practically not evolved in the past decade. 

This is unfortunate since the breakthroughs made on the image processing side are wasted 

on simple warning schemes where any secondary task activity or glance away from forward 

immediately equals distraction.  

As a workaround, some visual distraction detection algorithms try to reduce the number 

of false warnings by measuring the time spent looking away from the forward roadway, see 

[5, 7] for reviews. The time spent looking away is typically set to around 2 seconds, loosely 

based on the finding that it is “uncomfortable” to look away for longer times, and also that 

glances exceeding 2 seconds are considered dangerous [8]. These approaches are better than 

the “look away from forward immediately equals distraction” strategy in the sense that they 

take time history into account, meaning that looking away from forward for too often or for 

too long will eventually result in a distraction warning. A problem is however that they do 

not consider situation-based attentional requirements at all, or only in a rudimentary way, as 
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in the AttenD algorithm, which has a built-in mechanism for acknowledging the necessity 

of mirror and speedometer glances [7]. 

The objective of this paper is to present a first version of a driver distraction detection 

algorithm that takes context into account, by extending the AttenD algorithm with elements 

from the Minimum Required Attention (MiRA) theory [9]. The feasibility of the prototype 

algorithm has been tested in a simulator experiment investigating automatic docking at bus 

stops. Sixteen professional bus drivers (age 26 – 62 years, 3 women) drove a route with 10 

bus stops in an urban environment, with manual driving and with automated docking, in an 

alert and a fatigued split shift condition (i.e. four drives per participant). While driving 

manually between the bus stops, the drivers performed a visual-manual secondary task in 2 

of 10 road stretches. The task was framed as a ticketing machine task, requiring 7 taps on a 

touch screen to complete the task. Only results from this ticketing task, across all conditions, 

are presented in this abstract.  

The original AttenD algorithm uses gaze direction, connected to a 3D-model of the 

interior of the vehicle, as input. This means that the algorithm knows which objects in the 

vehicle that the driver looks at (mirrors, windows, speedometer etc.). AttenD is, however, 

unaware of the surroundings outside the vehicle. A so-called field relevant for driving (FRD) 

is assumed, which covers the forward region where a cone with 45-degree radius intersects 

with the windscreen. The driver has a buffer of two seconds, which is decremented when the 

driver looks outside the FRD. Upon gazing back at the FRD, the buffer is increased over 

time after a refractory period of 0.1 s. When gazing towards the mirrors or the speedometer, 

the depletion starts only after a delay of 1 s. When the buffer reaches 0, the driver is assumed 

to be distracted. 

Here, AttenD was extended in three ways. First, instead of having one buffer with 

conditional rules for the mirrors and the speedometer, multiple buffers were generated, one 

per traffic relevant area. Separate buffers were incorporated for the FRD, the left mirror and 

the right mirror. The number of buffers was also made situation dependent. Since this project 

focused on automated versus manual docking at bus stops, a region encompassing the bus 

stop area was added to the 3D-model. When approaching the bus stop, this region became 

active and the buffer associated with the bus stop region started to deplete. Similarly, a buffer 

was added to a hands-on sensor in the steering wheel which was active during manual driving 

and when handing back control to the driver. Note that both the number of objects and the 

increment/decay rates are adaptive and differ between situations and object types. Second, 

the decay rate of the buffers now varies with speed. When driving above the speed limit, the 

buffers decrease faster. Similarly, it is possible to buy time by slowing down. Third, the 

buffers decrease/increase based on a logarithmic function loosely based on Senders’ 

information decay rate formulas [10]. The implementation assumes that the mental model of 

the surrounding environment remains accurate for a while but then quickly turns more and 

more inaccurate. For glance targets with slower information decay rate, such as the mirrors 

in a situation where traffic from behind is less relevant, the buffers remain full for a long 

while until they eventually dissipate rather quickly. 

Results from the ticketing task shows that there were distraction detections in 12.5% of 

the interactions (2.2% in a matched baseline without secondary task). The corresponding 

percentages for a different algorithmic approach, counting the number of times that the 

driver looked away from a 12° road center region for more than 2 seconds, was 95.3% during 

the task and 50.9% during the matched baseline. Apparently, long glances away from a small 

road center region are highly indicative of visual-manual secondary tasks, but such 

algorithms also detect a lot of (false) distraction events in normal driving, e.g. when the road 
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turns or when scanning the periphery. Note that 2 of the extended AttenD distraction 

detections that occurred during the secondary task (1 during baseline) arose due to neglect 

of the mirrors. This is the advantage of the multi-buffer approach, i.e. that proper visual time-

sharing between different traffic relevant targets can be accounted for. Distraction detections 

arise not only when looking away from forward but also when neglecting traffic relevant 

information in other directions. 

 Future work includes expanding the concept to real-world environments by 

automatically integrating situational information from the vehicles environmental sensing 

and from digital maps. 
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ABSTRACT 

Visual occlusion has been used in various ways to evaluate vision related aspects 

of driving [1]. Senders et al. [2] did pioneering work in real traffic to assess the visual 

demands of different traffic environments. Occlusion has also been used to simulate 

glances to traffic while parked to evaluate in-car technology [3], to simulate distraction 

while driving on a closed course [4], and to assess the influence of a secondary task in 

driving situations of varying complexity in a simulator [5]. Here, we compile and 

discuss findings from a series of four studies in which visual occlusion was used to 

assess situational demand for visual information and visual spare capacity, that is, the 

possibility to execute an additional visual task while driving. We also discuss the 

strengths and weaknesses of visual occlusion as a method in this field of research. 

The concept of spare capacity has been forgotten in most popular definitions of 

driver distraction, which typically equate glances away from traffic with distraction. 

Harking back to Senders et al.’s [2] work, we used visual occlusion with the ultimate 

aim to achieve a better understanding about the relationship between situational 

demand, attention and self-regulation. The key features of the four studies are listed in 

Table 1. 

 

 Study I Study II Study III Study IV 

aim assess situation-based 

minimum required 

attention 

assess situation-based 

minimum required 

attention 

assess utility of 

occlusion distance as 

measure of event 

density 

assess information 

decay rate under 

irrevocable occlusion 

study 

platform 

field study with 

instrumented vehicle 

fixed-base simulator motion-base 

simulator 

linear motion-base 

simulator 

road 

types 

motorway motorway, rural road, 

urban road 

intersection, 

suburban, motorway 

motorway 

occlusion occlusion goggles blank-out of forward unoccluding blanked- blank-out of screen 
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apparatus operated by micro-

switch on finger, 

allowing rudimentary 

peripheral vision 

screen (110°) with 

micro-switch on 

finger, allowing some 

peripheral vision 

out scene with lever 

behind steering 

wheel, no peripheral 

vision 

occlusion 

type 

self-paced occlusion 

onset and duration, 

default: not occluded 

self-paced onset, 

fixed duration closed 

(1.0-2.6 s, increment 

0.4), default: not 

occluded 

self-paced onset, 

fixed duration open 

(0.5 s), default: 

occluded 

system-paced, 

occlusion irrevocable 

until crash/ run-off-

road 

N (valid) 25 30 97 22 

reference Kircher, Kujala & 

Ahlström, 2019 [6] 

Liu, Ahlström, 

Forsman & Kircher, 

2019 [7] 

Kujala, Mäkelä, 

Kotilainen & 

Tokkonen, 2016 [8] 

Kircher, Ahlström, 

Nylin & Mengist, 

2018 [9] 

Table 1. Key features of the four occlusion studies. 

A key finding emerging from all four studies and corroborating previous research 

is that drivers possess visual spare capacity to varying degrees, depending on several 

factors, which we will look into more closely in the following. This conclusion is based 

on the fact that drivers could occlude their vision without ensuing incidents or 

collisions. 

Environmental circumstances predict the likelihood of visual occlusion (Studies 

II, III), with features like oncoming traffic or intersections, which are associated with 

higher prediction uncertainty [10], leading to less frequent and shorter occlusions. In 

more monotonous environments like motorways, the previous occlusion history is a 

predictor of future occlusions. Studies I, II and III indicated interindividual differences 

in occlusion strategies, but this was not associated with driving experience (Study III). 

The results suggest that drivers are sampling information in such a way that they 

predict and prepare for the near future. In Study II, the likelihood to occlude was 

lowest upon approaching an intersection and when still closing the gap to an oncoming 

vehicle but increased already in the first half of an intersection, or when the oncoming 

vehicle was still a few metres in front of the driver (Study II). In Study IV, drivers 

corrected their trajectory under occlusion, based on the information sampled before the 

occlusion occurred. It could be shown that visual occlusion can help differentiating 

necessary glances to and away from the forward roadway from unnecessary glances 

(Study I). Necessary glances away include glances to the mirrors and across the 

shoulder to check the blind spot, which are not neglected when attempting to maximise 

occlusion time. Comparing occlusion time with occlusion distance, which also 

incorporates speed, it was found that less information-dense environments allow longer 

occlusion distances, with occlusion duration being more constant across situations, 

reflecting higher speeds in less complicated environments (Study III).  

We found the visual occlusion method to be a flexible and relatively objective 

tool to assess various aspects of self-assessed situational attentional demand and spare 

capacity. Depending on the research question, system-paced or self-paced occlusion 

with either fixed or variable duration can be used. Different areas of the visual field can 

be occluded, for example separating peripheral and foveal vision. Compared to 

executing an additional task, occlusion does not require a mental focus away from 

driving, except when an additional task is given during the occluded period [11]. A 
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drawback with the occlusion method is the lack of a given benchmark. There are no 

concrete criteria that allow a judgement of whether the frequency and duration of 

occlusions were below or just at capacity, or possibly over. An incident or collision 

would be a clear indication that the minimum required information was not sampled, 

but the absence of such occurrences does not guarantee that enough information was 

sampled for safe driving. With an unoccluded default state, many participants in Study 

I reported that they had occluded below their maximum capacity, keeping a safety 

margin. This self-reported assessment is supported by Study IV, where collisions/run-

off-roads occurred on average first after twice the time or more as the typical self-

paced occlusion duration. Usually the occlusion apparatus is operated by hand or foot, 

which may require more mental effort than the more natural closing of the eyes. 

Anecdotical evidence shows, however, that the latter quickly leads to mental fatigue 

and would not allow the flexibility offered by external occlusion devices. 
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ABSTRACT 

 

Background  

There is converging evidence from around the world that drivers engage regularly in 

competing activities that are distracting (e.g. Dingus et al., 2016; Young et al., 2019), that 

distraction significantly increases crash risk (e.g. Dingus et al., 2016; Klauer et al., 2014; 

Cunningham, Regan & Imberger, 2017) and that it is a significant contributing factor in 

fatal and serious injury crashes (e.g. Beanland et al., 2013; Overton et al., 2014).  

Drivers in Australia engage in a wide range of non-driving activities (Young et al., 2019). 

These include interactions with infotainment systems provided by vehicle manufacturers. A 

recent US study found that interacting with the visual display unit (VDU) in a vehicle 

carries a nearly five-fold increase in crash risk (Dingus et al., 2016). 

Aim and Scope 

Not all technologies in new vehicles introduced to the market are equal in terms of their 

potential to distract. The same technologies are often designed and implemented in very 

different ways by different manufacturers. Consequently, some vehicle cockpits are more 

demanding of drivers’ attention than others and are more likely than others to distract them 

39



 2 

(Strayer et al., 2017). This oral presentation will report on the outcomes of an Australian 

study, commissioned by the Victorian Department of Transport (DoT) (formerly 

VicRoads), designed to develop a test protocol for rating the distraction potential of new 

vehicles entering the Australian market, along with a Road Map for its introduction as a 

consumer or New Car Assessment Program (NCAP) rating.  

Materials and Methods 

This project, undertaken by the Australian Road Research Board (ARRB), in collaboration 

with the Victorian DoT, had three components (Regan, Cunningham & Paine, 2018; Paine 

& Regan, 2018): 

1. Research to: (a) determine how the current New Car Assessment Program (NCAP) 

safety rating processes operate; (b) review human-machine interface (HMI) guidelines 

and criteria relevant to the assessment of driver distraction; (c) identify and assess the 

suitability of potential test methods; and (d) identify other human factors literature 

applicable to the development of a distraction safety rating system.  

2. Development of a draft distraction safety rating system. 

3. Development of a Road Map that outlines how a distraction safety rating system might 

be incorporated into NCAP ratings, how it could operate as a standalone process and 

what other potential pathways for implementation of the system could be followed. 

The specific activities involved in progressing these three components, and outcomes of 

them, will be discussed during the oral presentation.  

The project was overseen by two committees: a Scientific Advisory Committee and a 

Ratings Advisory Committee. These were comprised of local and international distraction 

and HMI design experts, and vehicle safety rating experts, respectively. The project was 

undertaken in collaboration with two distraction experts from the University of Utah, who 

were engaged in similar work at the time (Strayer et al., 2017). 

Findings 

Based on the literature reviewed, and consultation with members of both Committees, three 

out of a total of nine identified candidate assessment methods were judged to be most 

suitable for evaluating the distraction potential of the in-vehicle HMI (the first step in 

developing a distraction rating system): 

1. the Detection Response Task (DRT), 

2. the Visual Occlusion Test (VOT), and 

3. HMI design guidelines. 

The DRT is an internationally recognised and validated measure of cognitive demand (ISO, 

17488). The VOT is, similarly, an internationally recognised and validated measure of 

visual demand (ISO, 16673). These two measures are already used by some vehicle 

manufacturers to assess the visual and/or cognitive demand of selected infotainment tasks 

during the design process. The HMI design guidelines, referred to above, were developed 

by the Australian project team, and were derived from various existing vehicle HMI design 

guidelines and standards (e.g. NHTSA, 2013). Together, these three methods were judged 

by the Project Team and Scientific Advisory Committee to be capable of being combined 

to measure and rate the potential for distraction deriving from driver interactions with in-
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vehicle infotainment systems (Regan, Cunningham, & Paine, 2018).  

 

Conclusion  

A voluntary scheme for encouraging vehicle manufacturers to produce less distracting 

vehicle HMIs is considered, in the short term, to be the most feasible approach for 

implementation of a rating system, with a longer-term vision of incorporating the test 

method into consumer rating systems such as NCAP (Paine & Regan, 2018). 

An HMI distraction rating system that is credible to industry and consumers appears 

feasible but requires further validation and possibly demonstration of its potential to reduce 

crashes - similar to evidence requirements directing the policies of Australasian/European 

NCAPs. A proof-of-concept study is currently being undertaken that will employ the 

distraction safety rating system described in this oral presentation to rate the distraction 

potential of a small number of new Australian vehicles. If the proof-of-concept study 

proves successful, a follow-up study, with a larger number of vehicles available for 

distraction assessment, will need to be undertaken. Ideally this would be with involvement 

of international research/rating organisations so that it becomes an international project and 

could be readily adopted by consumer rating organisations such as NCAPs.  

The resulting rating protocol could be used by these organisations to rate new vehicles 

coming to market for their distraction potential. It would also assist manufacturers to 

design less-distracting in-vehicle HMIs. Our initial economic analysis of the cost of 

distraction-related crashes and potential trauma savings suggests a very high cost-

effectiveness for improved HMI and that this issue should be high on the list of road safety 

funding priorities. 
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ABSTRACT 
 
Introduction 
Given the crash risk associated with driver distraction [e.g. 1]and the potential increase in 
in-vehicle technology-related distractions, the development of a method to monitor the 
prevalence and types of driver distraction over time is important for identifying trends (and 
potential countermeasures) for such behaviors. Observation of drivers while moving in 
traffic can provide objective information about the prevalence of specific distractions 
within the vehicle. Recording video of drivers in traffic is an innovative unobtrusive means 
of obtaining data on driving-related distractions and avoids issues related to self-reporting 
errors and the effect of changing behaviors while being monitored [2]. In addition, it 
allows observations of a large number of vehicles within a relatively short time frame. This 
exploratory study sought to determine whether camera technology is suitable for observing 
a variety of distracted driving behaviors among drivers in moving traffic on public roads 
and to provide an indication of the prevalence of different distracting behaviors by location 
and gender. 
 
Method  
Four locations around Adelaide, South Australia, were selected for video camera 
observations of distracted driving behavior in low speed and high speed traffic 
environments. Elevated locations were used so that drivers could be observed using a 
system of three strategically placed cameras (i) on their approach, from afar (ii) zoomed in 
to the driver’s compartment directly from above and (iii) zoomed in from an angled 
perspective to capture the driver.  
 
Around 90 minutes of video footage was recorded at each location. For each period of 
recorded video footage, a 30-minute observation period was selected and used in the 
analysis to identify any distracted behaviors.  
 
Results  
In the two-hour sample period across the four sites, 920 drivers were observed, of whom 
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8.9% (n=82) were engaged in some form of distracted behavior. Table 1 shows the number 
and type of distractions observed. Of those who were distracted, 28.1% (n=23) were 
observed engaging in mobile phone use while driving. The most frequently observed 
distracted behavior, aside from mobile phone use, was searching for, or holding an object 
(20.7%), eating/drinking (17.1%), wearing headphones (9.8%) and smoking (7.3%).  
 

Table 1. Driver distractions coded at each location 

Distraction 1 2 3 4 Total Per cent 
 1. Mobile phone - Talking (phone to ear) - - - 1 1 0.1% 
 2. Mobile phone - Active touching (texting etc) - - 1 1 2 0.2% 
 3. Mobile phone - Hands-free (touching in cradle) - 1 4 - 5 0.5% 
 4. Mobile phone - Holding 1 - 6 - 7 0.8% 
 5. Mobile phone – On lap (passive) 1 3 2 2 8 0.9% 
 6. Touching navigation system /other tech - - - - - 0.0% 
 7. Adjusting controls  1 1 - 1 3 0.3% 
 8. Wearing headphones 1 - 3 4 8 0.9% 
 9. Eating/drinking 1 3 6 4 14 1.5% 
10. Smoking - 2 1 3 6 0.7% 
11. Searching for (or holding) object 3 6 5 3 17 1.8% 
12. Reading - - - - - 0.0% 
13. Grooming (& looking away)  - - - 1 1 0.1% 
14. Attending to/touching passengers or animals  1 2 - - 3 0.3% 
15. Likely/possible distraction (nature unknown) 1 - 3 1 5 0.5% 
16. Other 1 1 - - 2 0.2% 
No Distraction 123 320 294 101 838 91.1% 
Total 134 339 325 122 920 100.0% 
 
Of the drivers who were observed as being distracted 74.4% were male, 22.0% were 
female and in three cases the gender could not be determined. Examples of driver 
distractions extracted from the video footage are shown in Figure 1.  
 

 

 

Figure 1. Examples of driver distractions. The top three images show ‘Mobile phone – 
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holding’ for the same driver as seen in the three different camera views. The bottom three 
images show various examples of ‘Eating/drinking’ and ‘Smoking’. 
 
The proportion of drivers engaging in distracted behavior decreased as the road speed limit 
increased. This result was statistically significant between 50 km/h and 60 km/h speed 
zones (p<0.01) and 50 km/h and 100 km/h speed zones (p<0.001), however the difference 
between 60 km/h and 100 km/h was not significant (p=0.06). 

 
Generally, the prevalence of distractions observed in this study using on road observations 
was of a similar magnitude to those reported in crashes. In Australia, a recent analysis of 
fatal and injury crashes found 7.5% of crashes were due to in-vehicle distractions with 
2.5% attributed to phone use [3]. Similarly, an analysis of fatal crashes in Norway reported 
2-4% of crashes were due to phone use [4]. These findings are also relatively consistent 
with recent data from the Australian Naturalistic Driving Study (ANDS) examining 
secondary task engagement. The study found mobile phone use was observed in 7.4% of 
the secondary tasks [5].  
 
Conclusions 
This explorative study has demonstrated that there is technology suitable for observing 
distracted driving behavior among drivers in moving traffic on public roads which could 
potentially be deployed for a larger, more representative study. The method used provides 
a reasonably objective snapshot of distracted behavior, although some judgement is 
required when viewing the footage. The observation and coding processes are quite labour 
intensive but it is anticipated that this will decrease as the technology progresses through 
automated detection, machine learning and artificial intelligence. A method of validating 
the findings in a larger study would involve randomly selecting at least 20 locations, 
weighted by geographical distribution, including various road types (high volume, low 
volume, different speed zones, urban and rural) and sampling 24 hours on a weekday and 
weekend. A significant number of vehicles (e.g. 2,500 or 10,000 vehicles) would be 
randomly selected from the pool of vehicles recorded (weighted by day of week and by 
traffic flow numbers at each location). This study provided some evidence to suggest that 
drivers were less likely to engage in distracted behaviors when travelling at higher speeds.  
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ABSTRACT  

 

This study used a synchronised eye tracking and electroencephalogram (EEG) system to 

examine the effect of external (static and dynamic) distraction on driver’s visual and 

cognitive responses to digital billboards. The EEG was used to eliminate any concerns 

about differences in workload or fatigue within participants. The eye tracking served as a 

function of attention for participants as they passed billboards. It was predicted that if there 

was evidence of increased attention over the billboard, it would be more prevalent over 

dynamic billboards. Driving performance was also examined in relation to the events the 

participants were witnessing.   

 

A customised driving simulator was made using Unity. The driving simulator consis ts of a 

straight road. Along the left side of the road, there are 50 speed limit signs, randomly placed. 

The speed limits vary between 40km/h, 60km/h and 80 km/h. Along the right side of the 

road, there are 50 digital billboards placed opposite to the speed sign. The digital billboards 

were randomly sorted. Half of the billboards were dynamic (changing image) and the other 

half were static. The billboards content were a combination of advertising and road 

messages. Each dynamic billboard changed the content as the car approached the speed 

sign at a predefined distance. The experiment utilised a Logitech G27 racing wheel and 

pedal for the participants to control the car in the simulator. The participants were told to 

obey the rules of road and observe speed limits. Steering on the simulator was disabled, but 

participants had control of the pedals.  

 

The EEG acquisition system used was the g.Tec g.USBamp. The EEG recorded at 512 Hz 

with 16 active electrodes. The eye movement data was recorded with Tobii X-120 eye 

tracking system. The sampling rate of this system was 120Hz. Fixations and saccades were 

identified with velocity threshold of 80°/second [1]. Calibration accuracy was controlled 

within 1.5 degrees. Participants were seated at 100 cm from triple head monitor (Matrox 

TripleHead2Go). The collection of driving simulator car position data, EEG data, and eye 

tracking data were synchronised using the lab streaming layers (LSL) [2].  

 

EEG data was pre-processed using EEGLAB (14.1.1) under Matlab (R2016) [3]. The data first 

applied finite impulse response (FIR) filter at 0.1 to 30 Hz to remove DC and high 
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frequency noise. Artefact correction using independent component analysis (ICA) to detect 

noisy components were then removed from the data. EEG band powers were determined 

using the Multitaper power spectral density estimate. Relative power was computed as a 

ratio to power prior to distractor events to during. Utilising the positions of the electrodes 

they were split and averaged into frontal (AF3, AF4, F7, F8), central (Cz, T7, T8), parietal 

(P1, P2, Pz, P7, P8, CP5, CP6), and occipital (O1, O2) sites. 

 

The eye-gaze data was initially processed to identify times when tracking was lost.  

Interpolation was used correct short periods of tracking loss. The data was converted from units 

of pixel location to degrees to allow eye velocity measurements. A five-point Gaussian running 

average (FIR) filter was used to reduce noise. 

 

An example of the data for a single participant can be seen in Figure 1. The two graphs show 

driver speed, and eye-tracking information plotted against distance along the driving route for 

one participant. Red lines indicate the position of dynamic billboards, green lines correspond 

to the position of static billboards. The driver speed graph shows speed limit in green horizontal 

bars and driver road speed using blue lines. The eye-tracking plot identifies target fixations to 

areas of interest as a function of road position. 

 

Figure 1. Single participant data while navigating the driving simulation 

 
 

The data collected was analysed to show the drivers overall response over the duration of the 

experiment. For each of the 9 participants their eye gaze data was represented as fixations over 

areas of interest (white space, speedometer, billboard, sign). To test for differences between 

static and dynamic billboards the averages for dwell time over the areas were calculated for 

each event and the difference of these averages were plotted, see Figure 2. A paired t-test on 

each of the average dwell time differences showed that the billboard dwell time differences 

had a significant effect size, with a p-value <0.05 and t-value of 3.677. This contradicts the null 

hypothesis that the average difference of dwell time over the dynamic billboard has either less 

time or zero difference to the static billboard dwell time. The driver controls were represented 

as the root mean squared error (RMS) between the speed limit and the actual speed the 

participant travelled at, and the standard deviation of the participants speed (σSpeed) at each of 

these intervals. A paired t-test was carried out for each driver performance variable with respect 

to the static and dynamic averages. There was no statistically significant difference for the 

RMS but there was for the standard deviation size of their speed (α<0.05). The mean of the 
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differences for the standard deviation of the speed was 1.48km/hr. Alpha, beta, theta, and delta 

power spectral densities were averaged second to second for static versus dynamic events at 

the sites listed above. There were no statistically significant effects witnessed (α<0.05) with 

ANOVA tests while considering the differences in the averages of the group. 

 

Figure 2. Average difference of fixation dwell times in static and dynamic billboard events.  

 
 

Using averaged data across the 9 participants (50 billboards) it suggests that there is an 

increased fixation time for dynamic billboards over static billboards. The dynamic billboards 

each required an average additional 0.41 seconds fixation time per short sequence (between 

15-20 seconds at each billboard). The speedometer fixations over these periods remained 

relatively constant. The other two groups appear to have high variability in fixation dwell times. 

There is a slight increase in the variability in driving speed following a dynamic billboard when 

compared to a static billboard. It appears that driver performance deteriorates marginally from 

a single dynamic billboard event. Further testing with more intricate distracting events on 

billboards (more transitions or video/animation based) may elicit a stronger response in terms 

of driver performance.  
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ABSTRACT 

 

Visual and manual forms of driver distraction are, at least conceptually, directly 

observable events (e.g., eye glance directed away from the roadway, removal of a hand 

from the steering wheel to rotate a control knob). Cognitive workload / distraction, 

however, must largely be inferred by indirect means. The Detection Response Task 

(DRT) method has been investigated and standardized by the International 

Organization for Standardization (ISO) specifically to support a means for assessing 

the attentional demands of cognitive load arising from engagement with driving 

information and control systems (ISO 17488) [1]; it can similarly be applied to other 

sources of cognitive engagement (e.g., a cellphone conversation, mind-wondering). 

While the DRT has been validated as a sensitive technique for detecting scaled levels 

of cognitive demand [2], it seems reasonable to ask whether, and to what extent, the 

DRT task impacts the underlying workload and behavior the driver? 

Two studies were conducted in a full cab, medium fidelity driving simulator. Self-

reported workload, driving performance (lane discipline, speed control), and heart rate 

data were collected while ‘just driving” and driving while engaging in multiple levels 

of an auditory presentation – vocal response working memory task (n-back; see [2,3]) 

designed to systematically manipulate cognitive workload. In addition to standard 0-, 

1, and 2-back levels, a “blank-back’ condition in which participants simply listened to 

a series of single digit numbers, but without a requirement to respond, was included. 

Participants in the analysis samples were balanced by gender and equally distributed 

across the 4 NHTSA-recommended [4] age groups of 18-24, 25-39, 40-54, and 55+. 

The sample in Study 1 consisted of 48 participants who engaged in the aforementioned 

conditions with and without concurrently being presented with a visual DRT consisting 

of a head-mounted LED stimulus system and micro-finger switch response 

configuration that was implemented in conformance with ISO standard [1]. A second 

study with 24 participants further considered a tactile DRT following the ISO standard. 

The combined data from the head-mounted visual DRT and tactile DRT studies 

provide a fairly consistent picture. First, as expected, the 0-, 1-, and 2-back levels of 

the n-back cognitive demand task produced statistically significant and relatively 

equally stepped increases in workload as measured by self-report (Figure 1) and heart 

rate indices (Figure 2). This result was seen in both studies, and was present when 
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participants were engaged in a dual task paradigm (driving the simulator and doing an 

n-back task) and in a triple task paradigm (driving the simulator, an n-back task, and a 

DRT or TDRT task). 

 

Figure 1. Self-reported workload ratings (0 low to 10 high) across all conditions 

without and with a DRT (head-mounted visual DRT on the left and tactile DRT to the 

right in each pair). Error bars represent ±1 within-subject SEM. 

 
Figure 2. Percent change in heart rate from a baseline driving period compared to all 

task periods without and with a DRT (head-mounted visual DRT on the left and tactile 

DRT to the right in each pair). Error bars represent ±1 within-subject SEM. 

 
In terms of sensitivity / scaling, both self-report and heart rate scaled “just 

driving” and driving with each of the levels of the n-back in the expected order based 

on objectively defined working memory demand. Similarly, the head-mounted DRT 

and TDRT reaction time measures also correctly ordered the task conditions. The DRT 

and TDRT miss-rate measures generally increased with task demand, but did not 

successfully discriminate all levels from each other. Thus, while the miss-rate metric is 

heuristically appealing as a distraction measure, the reaction time metric appears to be 

more appropriate for scaling purposes. This finding is in-line with the 

recommendations of the standard that specifies reaction time as the primary metric.  

Core questions of this work concerned the extent to which the DRT methodology 

adds to the overall demand placed upon the driver or otherwise influences the pattern 

of results obtained in evaluating apparent cognitive demand associated with a task. In 

terms of self-reported workload, participants reported significantly higher levels of 

workload when engaged with the head-mounted DRT and TDRT than when they were 

not engaged in the added tasks. However, this did not impact the relative scaling of 

task levels and it did not translate into significantly higher levels of physiological 

arousal as measured by heart rate. Consequently, while perceived workload was higher 
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when participants engaged with the head-mounted DRT or TDRT, the use of the DRT 

methods to establish the relative scaling of cognitive demand associated with the 

secondary tasks under study appears quite reasonable. 

It is more difficult to make as definitive a statement about whether or not engaging 

in DRT tasks impacted other aspects of driver behavior. A priori, adding a DRT task 

increased the objective demand on the drivers, and this is reflected in thei r higher self-

reported workload under the DRT conditions. However, physiological arousal levels 

were comparable with and without the DRT tasks. This suggests that drivers engaged 

in some form of compensatory behavior to maintain similar arousal level under  both 

conditions. To the extent that this was the case, the overall impact on behavior patterns 

was subtle. No clear impact on driving speed was observed. N-back performance at the 

2-back level was lower and SD of velocity was nominally higher when doing the DRT 

in Study 2, but this pattern was not as evident in Study 1. These latter findings largely 

align with [5] that found that a visual DRT increased secondary task time (a 

compensatory response) but had no significant effect on driving performance.  

While these findings are seen as largely positive for the DRT methodology, some 

cautions in generalizability are suggested. The two studies reported were carried out 

under a relatively low demand driving scenario consisting of a two-lane rural highway, 

with low traffic density, a posted speed limit of 50 mph, and only occasional, gradual 

curves requiring minimal active steering. This scenario was intended to be in relative, 

although not exact, conformity with the assessment scenario described by NHTSA in 

the original draft visual-manual distraction guidelines for the assessment of in-vehicle 

electronic devices. Consequently, while the triple task of driving the simulator, 

engaging in a 2-back task, and responding to a DRT stimulus was reasonably 

demanding, the data collected suggest that most, if not all, participants did not exceed 

the limits of their spare cognitive capacity to deal with these combined demands. The 

extent to which different results might be obtained as such spare capacity is further 

taxed or exceeded, is an open question. 
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ABSTRACT 

There is no clear consensus about the theoretical definition and operational criteria 

of inattention or distraction in traffic, which may lead to conflicting conclusions in 

research [1]. The scientific community should have a consensus on the definition and 

operationalization of driver inattention in order to provide strong guidance, for instance, 

in the planned distraction assessment incorporated into EuroNCAP ratings, the new 

distraction legislation, and development of driver attention monitoring systems. 

Some researchers may consider any competing glance away from the forward driving 

scene as distraction (e.g., [2]), whereas others have stressed that often drivers have spare 

visual capacity in driving (e.g., [3]). There is also no agreement on if a certain off-

forward glance duration (e.g., 2 seconds [4]) can be considered as a general time 

threshold for visually distracted driving. The most popular definitions (e.g., [1][5]) 

suggest that glancing away from the forward driving scene is visual distraction only if it 

prevents the driver to perform “activities critical for safe driving”. However, these 

taxonomies have not offered clear guidance on how this criticality should be defined or 

measured for different driving scenarios. Kircher and Ahlström [6] as well as Regan et 

al. [1] discuss hindsight bias in defining and measuring inattention. The bias refers to 

defining drivers as being inattentive based on the observed outcomes of a situation (e.g., 

a crash or a lane excursion). This is an inappropriate way to operationalize inattention, 

as we should know if the driver is attentive towards the driving task regardless of the 

outcome. 

The proper way to operationalize driver inattention would require a baseline of 

attentive driving, that is, to define to which driving-relevant targets attention and how 

much, should a driver allocate for successful task performance in a given scenario (i.e., 

the attentional demands of driving). For scientific, engineering and regulatory purposes, 

it would be highly useful to have well-founded and quantifiable metrics of attentional 

demand and inattention applicable for various driving scenarios and, for instance, 

different simulations of the driving task. This contribution continues the construction of 

a computational framework for quantifying attentional demands of driving presented at 

DDI2018 [7] based on the valuable feedback from the audience.  
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Quantification of attentional demand of driving-relevant event states 

The presented approach for modelling the dynamic information requirements of a 

human driver is based on the predictive processing frameworks of cognition [8][9] and 

relative entropy as a measure of potential information gain (i.e., Bayesian surprise [10]). 

The predictive processing framework of cognition [8] stresses the importance of 

prediction uncertainty and its resolution in human attention allocation and behaviour. 

Uncertainty of a belief distribution (i.e., prediction) can be computationally modelled by 

its entropy [10]. However, entropy of a driver’s belief distribution of an upcoming 

driving-relevant state (e.g., distance to lead car) cannot be used directly as a measure of 

the normative attentional demand for the driver, as drivers may have inaccurate beliefs 

and false confidence on these [11]. This is why the attentional demand is better to be 

quantified with relative entropy [10]. Here, relative entropy refers to the potential 

information gain (i.e., potential surprise, S) for a driver’s belief distribution Q of state x 

relative to a task-critical threshold T(x), if the driver samples the information at time t 

(i.e., Kullback-Leibler divergence: S(x>T(x),t) = DKL[P(x>T(x),t)⏐⏐Q(x>T(x),t)]). Zero 

S indicates no attentional demand towards x. This definition of attentional demand of a 

driving-relevant event state is dependent on task-critical threshold(s) and volatility of the 

state behaviour, which is affected by driver’s actions based on subjective belief 

distribution of the state. It is well in line with the theoretical frameworks of the brain as 

an adaptive Bayesian prediction machine (e.g., [8]), which are currently popular in 

cognitive neuroscience. In this framework, inattention is a form of inappropriate 

uncertainty [9] in relation to the volatility of a task-relevant state and task goal(s). 

Example: Quantification of attentional demand and inattention in lane keeping 

Here, the application of this framework for the operationalization and measurement 

of attentional demand and inattention is illustrated for a simple lane-keeping task. The 

oral presentation will also review empirical evidence on the feasibility of the framework 

in this task, collected in a driving simulator. Figure 1 illustrates what the definition means 

for a simplified lane-keeping task under occlusion [12][13] and with a constant speed. 

 

Figure 1. a) Driver’s assumed prior belief distribution about lane position (x) at the end of each occlusion 

[Q(x,Tocc)]. b) Measurements of the driver’s true paths during repeated occlusions and the minimum time-

to-line-crossing (TLCmin). c) Probabilities of lane position at three time points based on the measurements 

[P(x,Tocc)]. Potential surprise relative to a task-critical threshold T(x) for the lane position belief starts to 

grow at 1.5 seconds. 
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In this task, the driver is instructed to keep the own lane while driving occluded, and 

to end the occlusion at the moment when feeling it is possible the car is leaving the lane. 

At each sampling, we can therefore assume driver’s prior belief distribution about the 

lane position to resemble Fig. 1 a) (as an example), with minimum and maximum 

subjectively possible values at the lane boundaries (i.e., “extreme hypotheses”). Fig 1. 

b) illustrates measurements of the driver’s true paths during repeated occlusions and the 

minimum time-to-line-crossing (TLCmin [14]) while occluded. Fig. 1 c) indicates 

probabilities of lane position at three points in time based on the measurements. In this 

example, potential surprise (S) relative to the lane boundaries T(x) for the lane position 

belief starts to grow rapidly after TLCmin (1.5 s), corresponding to a minimum sampling 

requirement of once per 1.5 s, to (probably) succeed in the task (NB. Reaction time and 

time required for corrective steering are not included in this example.). Sampling the lane 

position less than once per 1.5 s in similar future situations would then indicate 

inattention (i.e., inappropriate uncertainty), regardless of the outcome of the situation. If 

we knew all the relevant variables that affect this minimum sampling threshold (e.g., 

lane width, curvature, speed, TLC, steering amplitude), and how much, we would be able 

to estimate the normative situational minimum information sampling frequency in this 

particular task for the driver at any situation. Note that in this exactly same task, the 

minimum required information sampling frequency can vary between drivers  and for a 

driver, depending on the situational and driver-specific variables (e.g., steering input). 

The illustration is highly simplified but the same principle applies to more winding paths 

and driving in curves. 

 
Discussion 

The introduced framework seems to work well for the studied part-task of driving, 

that is, lane keeping with fixed speed. A simplified driving task may suffice as a well-

founded baseline for, for instance, in-car tasks’ visual distraction potential benchmarking 

in controlled simulator environments. The framework should work well also for other 

continuous tracking-based part-tasks, such as longitudinal control, for which the 

occlusion method [12] can be applied to. Applicability of the approach to more realistic 

driving with multiple concurrent and interacting demands should be evaluated. 

Furthermore, its generalization to discrete driving-relevant events based on more static 

demands of the road environment or infrastructure (see e.g., [6]) should be further 

studied. At least, as opposed to a more frequentist approach, the framework suggests that 

the attentional demand of looking at both directions while approaching a T-crossing is 

independent of the traffic density in the crossing and never zero, as there is always a 

possibility of an approaching vehicle. 

The proposed operationalization and quantification of attentional demand and 

inattention is probabilistic, and thus, free of hindsight bias [1][6]. The approach may also 

be accepted even if one is not a supporter of the predictive processing approach to human 

cognition [8]. The sole cognitive assumption that must be accepted is that drivers can 

have mental representations of driving-relevant event states and that they are able to 

drive based on these, at least for limited periods of time. There is empirical evidence 

available that supports this assumption (e.g., [15]). In future studies, it will be interesting 

to study the generalizability of this approach to quantify attentional demands of tasks 

beyond manual driving and to develop driver (in)attention monitoring algorithms (cf. 

[16]) based on it. 
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ABSTRACT 

 

Driver monitoring systems are one of the important components to develop 

automated driving systems.  The driver using level 2 and 3 automated systems in the 

SAE definition [1] should take over the control of the vehicle when the operational 

domains of the automated systems exceed their functional limitations. Successful 

controls after the transition might be influenced by driver conditions while the 

automated systems are active. It is important to identify evaluation indices that detect 

driver conditions before RtI (Request to Intervene) in order to develop the driver 

monitoring system for assessing the driver’s ability for the safe transition.  

Several indices, including eye-related metrics and physiological metrics, have been 

investigated in human factors research of the automated and manual driving (e.g., [2]). 

When a driver uses the automated driving systems (especially, the level 3 systems), 

he/she might be engaged in non-driving related activities, such as reading texts, 

watching a movie, gaming, searching visual information, and listening to the music. 

These driver conditions include eye-off-road (visually loaded), mind-off-road 

(cognitively loaded), and drowsy (low arousal level) conditions.  

In this study, we focused on the eye-off-road condition and investigated evaluation 

indices that can be adapted to non-wearable detection under real road traffic 

environments, contributing to practical implementation of the driver monitoring 

systems (see the references [3] for the other driver conditions). The research flow was 

as follows: 

1. Driving simulator experiment 

The aim of this experiment was to select the metrics for assessing the eye-off-road 

condition within a variety of measurement indices including the index that we could 

measure only in experimental environments (e.g. brain activities). 

2. Test course experiment 

The aim of AIST proving ground experiment was to confirm whether the evaluation 

indices selected in the simulator study suggested similar tendencies between in the 

virtual and real environments.  

3. Public roads experiment 
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The aim of this field operational test was to confirm that the assessment methods 

obtained from the simulator and test course experiments were valid for longer travel 

duration in real road traffic environments.  

The driving simulator consisted a real vehicle cabin, a 6 degrees-of-freedom 

electric motion system, and a 300-degree field of view screen. 32 drivers (12 females 

and 20 males, average age: 36.5 years old, average driving experience: 16.2 years) 

participated in the driving simulator experiment. The automated driving system 

controlled the vehicle at 80km/h in the left lane and followed a lead vehicle at a 

constant distance. We used a road database of a two-lane highway in one direction. 

While the driver used the automated driving system, he/she conducted SuRT (Surrogate 

Reference Task [4]) to experimentally introduce visual distraction. The SuRT required 

the participant to find the target and touch it as quickly and accurately as possible on a 

touch screen mounted on the dashboard of the simulator. In the easy task condition, the 

difference in size between target and distractors was greater compared to the difficult 

task condition. 

RtI (Request to Intervene; visual icon and verbal message) was presented during 

the automated mode. Simultaneously, the automated system ceased to operate. The 

driver controlled the vehicle manually, and avoided a stopped vehicle appeared in front 

of the driver’s vehicle. RtI presentation timing was 6 seconds before reaching the 

obstacle vehicle. 

The following evaluation indices were measured in the simulator experiment. 

- Brain activity: P2-N1 amplitude for task-irrelevant probes, eye fixation related 

potentials in small saccade 

- Face direction: head movement variability 

- Glancing behaviors: percent time of forward looking, percent time of glancing at 

touch screen 

- Eye movements: frequency of small saccade, frequency of large saccade, 

variability of saccade amplitude, pupil diameter 

- Eyelid movements: blinking frequency, blinking duration 

- Autonomic nerve: heart rate, blood pressure 

The results of the simulator experiment suggest that several indices were sensitive 

to the difficulty of the SuRT. The number of small saccade was higher in the difficult 

SuRT condition than that in the easy condition. The proportion of time glancing at front 

scene was the lowest in the difficult condition among the easy task condition, the 

automated driving alone condition (no subtask), and the manual driving condition. 

These two indices suggested the largest differences between in the easy and difficult 

SuRT conditions, in comparison with the other indices. 

The instrumented vehicle was a Tesla Model S equipped with an automated system. 
20 drivers (11 females and 9 males, average age: 41.1 years old, average driving 

experience: 22.2 years) participated in the test course experiment. None drivers 

participated in the simulator experiment. We used oval road (3200m, 3 traffic lanes, 

R180m) of the AIST proving ground. The experimental conditions were the same as 

those in the driving simulator experiment. We used a cone as the obstacle, instead of 

the stopped vehicle in the simulator experiment. Based on the findings from the driving 

simulator experiment, we focused on the glancing behaviors and eye movements that 

could be applied to a driver monitoring system. We have developed a prototype of the 

driver monitoring system. The system consists of a small camera with more than VGA 

resolution and with more than 60 fps frame rate. The camera detects high-speed 
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movement of the eyeball when a driver changes the visual target, and a small saccade is 

defined as 5-8 degrees amplitude and a large saccade is defined as 16-32 degrees 

amplitude. 

The results of the test course experiment suggested similar tendencies to those 

obtained from the driving simulator experiment. The number of the small saccade was 

higher during automated driving with the difficult SuRT condition compared to the 

easy condition. The participants cast their eyes in the frontal direction for a shorter 

period of time in the higher visual load condition. 

The results of the transition behaviors from the automated to manual driving in the 

driving simulator and test course experiments indicated that the driver’s eye-off-road 

condition before RtI led to a poor stability of driver’s manual lateral controls: Standard 

deviations of vehicle lateral positions within 5 seconds after avoiding the obstacle were 

higher in the difficult SuRT condition than those in the easy SuRT condition and in the 

automated driving condition without the SuRT. 

Finally, the prototype of the driver monitoring system was evaluated in a real 

highway environment. The driving route was on Tomei and Shin-Tomei expressways in 

Japan. Time length of driving was about 3.5 hours per one participant. 42 drivers (18 

females and 24 males, average age: 33.5 years old, average driving experience: 14.5 

years, non-participation in the simulator and test course experiments) drove the 

instrumented vehicle (Tesla Model S or Benz E class; both had level 2 automated 

systems). The drivers conducted a navigation task, instead of the SuRT, which were 

scale-up and down of the navigation map. In one experimental trip, participants 

experienced the navigation task about twelve times. RtI was not presented during 

engaging in the navigation task in the public road experiment. 

Figure 1 presents the results of saccade and glancing behavior in the real highway 

experiment. The number of saccade was higher and the proportion of time glancing at 

front scene was lower while the participants engaged in the navigation task, suggesting 

the same results as the driving simulator and test course experiments. 

 

 

 

 

 

 

 

 

 

Figure 1. Results of evaluation indices in public roads experiment 
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Background 

 

Video-based driver monitoring systems (DMS) are growing in popularity due to 

their non-intrusive nature and capacity to capture subtle behavioural changes to detect 

impaired states such as distraction and drowsiness. The benefit of such technology in 

reducing risk for professional drivers operating heavy vehicles is now recognised by 

regulatory bodies and other stakeholders [1]. Historically, risk management for heavy 

vehicle drivers has focused on limiting hours of service to ensure drivers obtain sufficient 

rest between shifts. However, it is well documented that fatigue-related driver impairment 

is highly influenced by circadian sleep-wake cycles [2], [3]; and can be predicted through 

well-established biomathematical models of fatigue [4]. Hence, combining such predictive 

models with real-time observation through DMS may provide a more effective method of 

reducing risk for heavy vehicle drivers whilst allowing scheduling flexibility to ensure both 

safety and productivity. This extended abstract explores how the predicted probability of 

sleepiness for heavy-vehicle drivers and DMS-generated real-time ocular indicators 

drowsiness vary across time of day. 

 

Method 

 

A naturalistic driving study was conducted with an operational trucking fleet as part 

of the Advanced Safe Truck Concept project (a Cooperative Research Centre Projects-

funded partnership program). Ten vehicles were fitted with Seeing Machine’s automotive-

grade DMS and tracked 102 consenting drivers while they carried out their normal shifts. 

A total of 425 shifts ranging from 5 - 12 hours in duration were included for analysis. 

Given that drowsiness is marked by slower eye closure activity, the primary DMS signals 

selected for analysis were amplitude-velocity ratios (AVR) of eyelid opening and closing 

[5]. These values were then averaged per 15-minute bins across shift duration.    
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To generate predicted likelihood of sleepiness, the three-process model of alertness 

was implemented with wake and sleep times set as 2-hours before shift start and 7-hours 

before wake time, respectively. Predicted alertness scores were generated by 15-minute 

intervals across shift duration, from which the probability of showing signs of sleepiness as 

indicated by Karolinska Sleepiness Scale (KSS) scores > 5 was computed. For the purpose 

of analysis, all values were further averaged into 24 hourly bins across operating time of 

day.  

 

Results 

 

Probability of sleepiness (KSS >5) varied across time of day and was best fitted by 

cubic polynomial regression F[4,19] = 175.7, p < .001, R2 = .97, where there was an increase 

from 12am - 5am, followed by a decline into the afternoon and an increase from 6pm 

onwards (see Figure 1A).  Similar patterns of variation were observed for opening AVR 

F[4,19] = 82.21, p < .001, R2 = .93 whereas closing AVR was better fitted as a linear decline 

F[1,22] = 5.66, p = .03, R2 = .17, as depicted in Figure 1B and 1C respectively.  

 

To reduce the potential mitigating effects of rest breaks on the relationship between 

predicted and observed signs of drowsiness, data from pre-break drive segments were 

selected. A positive linear relationship was observed between the predicted probability of 

obtaining KSS > 5 and opening AVR t[22] = 2.4, p =.03, but the same trend did not reach 

significance for closing AVR. 

 

Figure 1. Variations in predicted alertness (A) and observed ocular indicators of 

drowsiness (B & C) across time of day. 
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Discussion 

 

There is ample evidence illustrating how physiological and behavioural indicators 

of driver fatigue are strongly influenced by time of day [2], which was further 

demonstrated by results from our analysis. As illustrated in Figure 1, the night hours (7pm 

- 5am) were associated with an increase in predicted likelihood of sleepiness and observed 

indicators of drowsiness, particularly opening AVR. Although the evidence suggests 

greater likelihood of drowsiness at night time, it is not realistic to avoid scheduling drivers 

at such times as fleets have demands to meet. Furthermore, there are additional and less 

predictable factors that alter alertness at any time of day. Thus, real-time monitoring via 

DMS in conjunction with risk prediction through these underlying circadian and 

homeostatic processes that facilitate fatigue onset [4] provides a more cohesive method of 

predicting, detecting and reducing the risk of drowsy driving. 
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ABSTRACT 

 

It is well known that distraction and inattention can be a contributing factor in 

driving accidents. In 2018 in France, the road death rate because of distraction and 

inattention was estimated at 10% [1]. Automation is considered as a solution to 

mitigate the potential errors of drivers and their consequences. Still, while complete 

automation is not reached (SAE<5), human should be able to supervise the system and 

the environment so as to be able to take over the vehicle when required. However, 

even partial automation can have an impact on drivers' engagement in unrelated 

driving tasks. Indeed, having fewer driving tasks to manage can make the driver more 

prone to distraction, notably to fight against boredom. Distractive tasks can then 

capture part of the driver's attention resources and take him/her away from his/her 

supervisory task. Consequently, it is important to better understand how people 

manage to carry out tasks unrelated to driving under both manual and autonomous 

modes. As no driving activities are required in autonomous mode, a way to assess the 

impact of distraction in this context is to study how brain activity is modulated by 

these distractors, using functional magnetic resonance imaging (fMRI). This technique 

presents the advantage to have a very high spatial resolution allowing to determine 

accurately the implication of any brain region in specific tasks. This technique has 

already been used in the last years to study brain activity linked to driving [for 

example, 2] and to assess the impact of distraction during manual driving [for 

example, 3, 4]. 

 

This project aimed to assess the impact of auditory distraction on the brain 

activities involved in driving under both manual and autonomous modes. We expected 

to replicate data from the literature concerning the manual driving and complete these 
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data with what happen in autonomous driving that is when the task is mainly a visual 

supervision task. 

  

Twenty-five people (aged = 22.8 ± 2.1 year old; 12 men) participated in the study 

conducted in a MRI 3.0 Tesla (CERMEP, Bron), with a compatible driving simulator. 

In manual mode, the participant had to follow a vehicle and react by braking whenever 

vehicle’s brake lights were on, using a joystick. In autonomous mode, the simulator 

reacted automatically. The participants were asked to look at the scene and at the brake 

lights of the lead car. Each driving task was performed either as a single or as a dual 

task (listening to a radio broadcast). To ensure that participants were attentive to the 

radio broadcasts, three questions were asked at the end of the each scenario. 

The protocol consisted in 4 runs of about 10 minutes each: 2 runs in autonomous 

mode (A) and 2 runs in manual mode (M). The 4 runs were counterbalanced among the 

participants to avoid training or fatigue effect. Each run consisted in 4 blocks: 2 in 

single task (silence, S) and 2 in double task (listening, L). This leads to 4 conditions 

(AS, AL, MS, ML) which were repeated 4 times. A block consisted in a driving task 

for 90 sec followed by questions (about 30 sec) either on the broadcast after condition 

L or on the thoughts of the participant after condition S. Questions were followed by 

30 sec rest periods (R) where participants had only to look at the visual static scene.  

fMRI analysis have been conducted with SPM12 (FIL, WTCN, London). A first 

level analysis was performed for each participant for the contrasts corresponding to the 

4 conditions versus the rest condition using the general linear model (GLM) (MS>R, 

ML>R, AS>R, AL>R). A second level analysis (group analysis) was performed 

including the previous results from all the participants to study: firstly, the mentioned 

contrasts (by using one sample t-tests); and secondly, the comparisons between 

conditions (MS>ML, AS>AL, ML>MS, AL>AS) (by using Student t-test). Multiple 

comparison correction was applied (Family-Wise Error method) with a threshold of  

p < .05.  
 
Figure 1. A. Contrasts MS>R and AS>R showing activation in the occipital regions (OCC) and in the right 

middle frontal gyrus (rMFG). B. Contrast MS>ML, showing a different activity in the bilateral dorsolateral 

prefrontal cortex (DLPC) and in the anterior cingulate cortex (ACC) between both conditions. 

 

 

 

 

 

 

 

 

 

 

 

The results show similar activation patterns in manual and autonomous conditions 

in single task (Figure 1A), with a significant activation within the middle frontal gyrus, 

implied in executive attention, sensory-motor activities, ocular movements and 

supervision [5], and within the occipital regions, reflecting the visual processing. 
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Compared to the single task and as expected, the dual task increases the activity of 

the regions associated with auditory-verbal comprehension within the auditory cortex, 

whatever the driving mode. In addition, in manual driving, the dual task decreases the 

activity of the regions that can be associated with driving management (bilateral 

dorsolateral prefrontal cortex and anterior cingulate cortex), since these regions are usually 

associated with executive control, attention and error control (Figure 1B). In contrast, this 

effect was not significant when listening under the autonomous mode (AL vs AS).  

 

In conclusion, in this study the brain activities related to the driving task are 

similar in manual and autonomous mode. This similarity can be explained, at least 

partially, by the simplicity of the driving task used (simple following task) in a simple 

driving context (no intersection, no traffic). Further research by implementing more 

complex driving situations as well as more engaging dual task are needed to confirm 

these phenomena. Regarding the impact of the dual task, the decrease of activities in 

frontal regions in manual mode with dual task is in agreement with the literature [3, 4] 

and supports the interpretation that less resources are available to process the visual 

scene. The absence of such effect in autonomous driving context may be due to the fact 

that attentional resources in autonomous mode may be similar in single and dual task. 

It is known that mindwandering is stronger in monotonous situations, as in the 

autonomous mode when no secondary is asked. It is plausible that the attentional 

demand of mindwandering (attention focused on self thoughts in single task) and 

listening (attention focused to the broadcast in dual task) is similar in our context.  

 

As long as drivers have to resume control from time to time, it is important to be 

aware of the extent to which competing tasks and mindwandering can affect information 

processing and thus situational awareness. To our knowledge, this study is the first one to 

look at how a driver manages auditory distraction in an autonomous driving context using 

fMRI. This is only a first step and further studies are needed that vary the mental workload 

and the cognitive demand of competitive tasks and mindwandering.  
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INTRODUCTION 

Effects of cognitive load on traffic safety are debated and unclear [1] and reliable 
measurements of cognitive load are sought. Physiological measures are of interest because they 
can provide continuous and more or less non-invasive recordings. Those can complement, 
extend and/or substitute behavioural and self-reported measures to improve assessments of 
cognitive load, as well as other driver states [2], [3]. Several physiological measures have been 
shown to respond to cognitive load manipulations [3]–[6]. 

Most studies of driving under cognitive load assign differences in driving performance and 
physiological responses solely to the different levels of cognitive load to which the drivers are 
exposed. Consequently, how potential side effects of cognitive load manipulations (e.g. 
emotional stress caused by the test situation) and traffic context (e.g. the driving scenarios used) 
might affect drivers’ responses are generally overlooked. By ignoring such factors, one risks 
making erroneous generalizations from the results [7]. However, because changes in 
physiological measures can have many different causes [2], their similarities and dissimilarities 
contain valuable information about the driver state. The aim of the present study is therefore to 
analyse drivers’ physiological responses during driving not only in relation to levels of 
cognitive load, but also in relation to scenario repetition (associated with emotional stress 
caused by task novelty [8]) and in relation to different traffic scenario types. 

METHOD 

72 participants drove approximately 40 minutes each on a simulated rural road in a moving-
base driving simulator. The route included two intersection scenarios selected for further study; 
one where the participants, having right of way, passed through a four-way intersection with a 
potential conflict vehicle approaching from the right, and another where they passed by a 
hidden exit. Each scenario was repeated four times. When driving through these scenarios the 
participants were either involved in a simple cognitive task (1-back), a more difficult cognitive 
task (2-back) or not doing any task besides driving (No Task). The cognitive tasks were one 
minute long and the time segment from 10 to 60 seconds after task onset was used in the 
statistical analysis.  
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From the recorded physiological data, heart rate (HR), standard deviation of RR-intervals 
(SDRR), eye blink rate (BR), eye blink duration (BD), respiration rate (RR), skin conductance 
(SC) and pupil diameter (PD) were derived. Signals and derived measures were visually 
inspected and unreliable segments were excluded from the analysis. Participants were only 
included in the analysis if they had data of sufficient quality in all four repetitions of a scenario. 

To test for effects of cognitive load (No Task, 1-back and 2-back) and repetition (1 to 4), 
Mixed Model ANOVAs and subsequent Bonferroni post hoc corrections were performed. 
Participant was included as a random factor. 

RESULTS 

Eight participants were excluded from the analysis due to simulator sickness or logging 
issues. After the visual inspection of the physiological signals and derived measures, the 
number of participants included in the analyses was 61/62 (hidden exit/four-way intersection) 
for HR and SDRR, 50/49 for BR and BD, 47/41 for RR, 53/52 for SC, and 35/39 for PD.  

Cognitive load had a significant effect on all measures in both traffic scenarios (see hidden 
exit in Figure 1), except on BD in the four-way intersection scenario. The effect was most 
consistent for PD, which had significant differences between all load levels in both traffic 
scenarios. HR, SDRR and RR all showed highly significant differences for drivers under 
cognitive load compared to when not under load but were less good at differentiating between 
levels of load (i.e. the 1-back and 2-back tasks).  

 

Figure 1. Effects of cognitive load and repetition in the hidden exit scenario. Green represents No Task, 
orange 1-back, and purple 2-back. Lines are least-square lines. Black diamonds are mean values and crosses 
median values. Boxes goes from 25th to 75th percentiles. All signals have been normalized to compensate for 
individual differences. HR is Z-normalized, the SC signal is normalized on absolute level using the time 
interval 70 to 10 seconds prior to the analysis segment and on individual response amplitude, and the other 
signals are baseline adjusted by subtraction of the entire signal’s median value. n.u. = normalized units. 

 

Scenario repetition had a significant effect on HR, PD, RR and BD in both scenarios. 
Interestingly, for HR the effects of repetition only occurred under cognitive load (HR levels 
decreased when scenarios were repeated) but there was no change in the No Task condition. In 
other words, the initial effect of cognitive load on HR attenuated with repetition. In contrast, 
PD decreased with repetition in all conditions and the difference between conditions remained.  

Traffic scenario had different effects on different measures. As the traffic environment 
complexity increased, i.e. when the driver approached the hidden exit or four-way intersection, 
PD and SC increased while BR and BD decreased (see Figure 2). For HR, a decrease can be 
seen after passing the hidden exit in the load conditions. No traffic scenario effects are evident 
in RR.  
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Figure 2. Continuous plots over each measure in the hidden exit scenario (all repetitions). The cognitive 
tasks start at time 0 (first vertical line) and lasts for 60 s (second vertical line). A few seconds before time 0 
participants are informed that the task will soon begin. The participants reach the hidden exit around time 
45 s. The thick lines are the mean values, except in BD where it is the median. The shaded areas are ±1 
standard deviation, except in BD where it covers the area from the 25th to the 75th percentile. Signals are 
normalized as described in the Figure 1 caption and smoothened for clearer visualization.  

 
DISCUSSION  

In line with previous research, cognitive load had significant effects on all physiological 
measures [3]–[6]. However, there were also clear differences between the measures when 
analysing the effects of traffic scenario and scenario repetition.  

For one, the results clearly show that physiological responses to variations in cognitive load 
may not only represent a response to the load in itself but also capture side effects caused by 
the experimental setting [7]. For example, while the effect of cognitive load on PD remained 
consistent in all repetitions, the effect on HR attenuated with repetition. This is probably due 
to the fact that while PD has a close physiological relationship to cognitive attention and effort 
[9], HR is more sensitive to arousal and stress [2], [10]. The HR measure thus indicates that 
participants became more relaxed over time when performing the cognitive tasks, while the PD 
metric suggests that they still invested the same amount of cognitive effort in performing them.  

The study also highlights the fairly intuitive insight that drivers’ cognitive states are not 
constant. Rather, cognitive states changed both over time and in response to traffic scenario 
variations. A clear illustration of this can be seen when the drivers approached the intersections. 
PD then increased, reflecting an increase in cognitive effort [9], while BR decreased, revealing 
an increase in visual attention [11], [12]. That is, as the drivers approached the intersections, 
they increased their cognitive load by paying more attention to the traffic environment.   

When generalizing experimental results to other contexts, test methodological side effects 
and contextual influences need to be carefully considered. Side effects, such as emotional stress 
caused by the experimental setting, can significantly influence both physiological responses 
[13] and driver behaviours [14]. In real life situations, where drivers themselves choose how, 
when and where to engage in cognitively loading tasks, such side effects might not be the same. 
Likewise, contextual variations, such as traffic environmental changes, can also affect both 
physiological measures and driver behaviours and lead to incorrect conclusions if not properly 
accounted for. Instead of only viewing multiple physiological measures as “backups” for each 
other in unidimensional analyses [3], [15], it is therefore also worth studying their similarities 
and differences in multiple dimensions to get a more nuanced view of the driver state. Viewed 
in this more holistic way, psychophysiological measures can likely take on a more prominent 
contributing role in our understanding of how cognitive states relate to crash causation and 
prevention than they historically have done. 
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ABSTRACT 
 
Introduction 
Research has demonstrated that distraction and inattention can lead to diminished driving 
performance [e.g. 1, 2] but there is limited evidence regarding their role in crashes. 
Investigating the role of distraction within crashes, and the context within which it occurs, 
is challenging as it is often difficult to obtain accurate information about circumstances 
preceding a crash. The in-depth analysis of crashes which includes participant interviews is 
likely to elicit more information about pre-crash circumstances and motivations due to the 
assurance of confidentiality, lack of legal consequences and ability of the interviewer to 
prompt the participant. Importantly, it also permits the investigation of underlying 
behavioral mechanisms behind inattention-related crashes (e.g. cognitive distraction) that 
might not be revealed using other methods. This study investigated the contribution of 
driver distraction and inattention within a sample of fatal and injury crashes using recent 
in-depth road crash investigation data. The wider context in which inattention-related 
crashes occurred was also examined to assist in developing system-based solutions.  

Method  
The sample included in-depth crash data from 186 fatal and injury crashes in South 
Australia investigated from 2014-2018. Within the sample, there were 259 drivers/riders 
(drivers n=225, motorcycle rider/cyclist n=34). Crash case notes were reviewed to 
determine if there was evidence that attentional failures contributed to the crash. A 
standard definition of inattention and distraction was operationalised in order to code the 
data. Using an adapted taxonomy of inattention [3], five subtypes of driver inattention 
were defined: misprioritised attention, neglected attention, cursory attention, diverted 
attention (distraction) and unspecified inattention. The characteristics of inattention crashes 
were also compared with those for non-inattention-related crashes.  

Results  
Of the 160 crashes for which there was sufficient information, 31.3% showed evidence of 
driver inattention contributing to the crash. A summary of the prevalence of inattention and 
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distraction in crashes by subtype is presented in Table 1. The most common subtypes of 
inattention were distraction (13.8% of all crashes) and driver misprioritised attention 
(8.1%). The distraction-related crashes included a variety of different distractions with 
those located in-vehicle the most prevalent (e.g. phone use, passenger interaction, 
searching for objects), followed by internal thoughts (e.g. emotional stress) and external 
behaviours (e.g. other road users). Distraction from phone use was identified in 2.5% of all 
crashes (18% of distraction crashes). The majority of distractions were cognitive (64%) 
and voluntary (77%) in nature.  

Table 1: Prevalence of inattention and distraction in crashes by subtype 

Inattention subtype Number of 
crashes  
(n=50) 

Percentage of 
inattention 

crashes 

Percentage of 
crashes coded 

within taxonomy 
(N=160) 

Driver misprioritised attention (DMA) 13 26.0% 8.1% 
Driver neglected attention (DNA) 3 6.0% 1.9% 
Driver cursory attention (DCA) 6 12.0% 3.8% 
Unspecified inattention (U) 6 12.0% 3.8% 
Driver diverted attention (DDA - Distraction) 22 44.0% 13.8% 
   Internal 7 (14.0%) (4.4%) 
     Task related thoughts (3)   
     Emotional/stressed (3)   
     Task unrelated thoughts (1)   
   In-vehicle a 12 (24.0%) (7.5%) 
     Using mobile phone (4)   
     Passenger interaction (3)   
     Adjusting/searching for object (3)   
     Looking down (1)   
     Animals in vehicle (1)   
     Music (headphones) (1)   
   External 3 (6.0%) (1.9%) 
     Other road user behavior  (3)   
a One crash had two in-vehicle distractions; subtypes of in-vehicle distractions do not sum to 12. 

 
In comparison to non-inattention crashes, inattention crashes were statistically significantly 
more prevalent in metropolitan areas (78%), occurred more frequently at intersections 
(60%) and on roads with a speed limit of 60km/h or lower (74%). Analysis of crash types 
indicated that inattention crashes were most commonly right turn/angle crashes (44%) 
followed by rear end crashes (16%) while crashes not involving inattention were most 
frequently single vehicle crashes (47%). 
Analysis of the demographic characteristics of the 259 drivers indicated that 23.2% (n=22) 
of females were inattentive compared to 17.1% (n=28) of males but this difference was not 
statistically significant. Around 36% (n=18) of inattentive drivers were younger, aged 16–
29years, in comparison to 23% (n=47) of drivers who were not inattentive, and this 
difference was statistically significant (X2=3.8, df=1, p=.05).  

Conclusions 
This study established that almost a third of fatal and injury crashes involved driver 
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inattention and distraction and many of these crashes could have been prevented. This 
proportion was of a similar magnitude to that found in a recent study of fatal crashes in 
Norway [4]. System-wide solutions that could mitigate or prevent inattention and 
distraction crashes include intervening vehicle safety technologies, infrastructure solutions 
to provide a forgiving road environment, blocking capabilities within technologies to 
prevent communications while driving and interventions communicating the risks 
associated with inattention. Of significance, this study also demonstrated the importance of 
in-depth data for understanding the contribution of distraction and inattention in crash 
causation.  
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ABSTRACT 

 

Through our work we decided to focus on the, still relatively new, topic of driver 

boredom. As the main aim of our study we established the collection of as many of the 

strategies used by drivers to cope with boredom behind the wheel, as the circumstances 

allowed. In order to reach this ultimate goal, we have set ourselves several other partial 

goals, that are mentioned further. 

The first step taken was a thorough examination of existing previous research on the 

topic of boredom itself. Through this action we managed to compare several different 

theoretical approaches both to the boredom in general and to the driver boredom 

specifically. Based on this theoretical research, we chose to view boredom through the 

scope of Mihaly Csikszentmihalyi (2000) and his concept of optimal stimulation, widely 

known as flow. Therefore, we perceive driver boredom as a state of either under- or 

overstimulation, in other words as a state, that is not a flow. We chose this point of view 

because of it seeming to be the most appropriate for the driving environment, where one 

can get bored both by driving down an empty speedway in the middle of the night 

(understimulation) and by crawling through the heavy city traffic (overstimulation). 

As we have mentioned above, through our research we mainly focused on finding and 

describing as many of the coping strategies, as possible. In order to achieve our goal, we 

have set ourselves six research questions in total, that were following: (RQ1) What 

strategies are used by drivers in order to not get bored while driving?; (RQ2) Which of 

those strategies are perceived by drivers as safe, if any (is there some strategy, that is 

perceived by one driver as safe, perceived as dangerous by others)?; (RQ3) In what 

situations does the driver get bored?; (RQ4) Approximately after what period of time does 

the driver get bored?; (RQ5) What strategies are used by the drivers in the overstimulating 

environment?; (RQ6) What strategies are used by the drivers in the understimulating 

environment?  

With the need to really get to know the topic of coping with boredom, that arose from 

our research questions, we have decided to conduct our work in the form of descriptive 

research. In order to get a maximum amount of possible answers to our research questions, 

we chose mixed design of the research. Therefore, the work can be divided into two parts. 
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The first part was an exploratory qualitative semi-structured interview, through which we 

mainly tried to further understand the fundamentals of the topic. The interview consisted of 

17 questions. In an order to at least basically understand to the driving style (mainly to 

their tendency to disobey the law and to the erroneous driving) of the interviewed drivers, 

we also administered them with the Driving Behavior Questionnaire (Šucha, Šrámková & 

Risser, 2014). Then we moved to the second part of the research. Based on the answers 

gained through our interviews, we have created a questionnaire, consisting of 11 closed-

ended questions, that was meant to extend the findings of the interviews as much as 

possible. 

Regarding our research sample, we have chosen to work with male drivers in the age 

between 18-25 years. We opted for this particular population, since it is not only with no 

doubt the most dangerous group of drivers, as proved by numerous studies (Brown et al., 

2017), but also appears to be the most boredom prone group (Sundberg et al., 1991). 225 

young male drivers participated in our study in total. 14 of them did so through the 

interviews and Driving Behavior Questionnaire (mean age 23.0 years; SD = 1.36), they 

were found through the method of snowball sampling. Remaining 211 drivers participated 

via the questionnaire (mean age 22,93; SD = 1,92). The questionnaire respondents were 

found online, with the help of Facebook, recruited mainly from the groups of fans of 

specific automobile brands. All of the obtained data were anonymous. For both the 

interview and the questionnaire, we asked drivers only about their age, for Driving 

Behavior Questionnaire we asked about age and gender.  

Through our research we managed to collect 45 coping strategies in total. Initially we 

wanted to divide them into two categories (approach and avoidance), as used by 

Steinberger, Moeller & Schroeter (2016), but then we decided to aim for a finer, more 

specific sorting. Therefore, we divided strategies into 11 thematic categories. On the 

following lines we present those categories in descending order, in terms of how many 

times was the given category mentioned. For each category we mention a few of the 

specific strategies.  

The most frequent category was music, which our drivers reported more than twice as 

much, than the remaining categories. Drivers mentioned for example listening to music, 

singing, or tapping the rhythm of the song on the steering wheel. Second category was 

passenger, where drivers mentioned, besides the rather obvious conversation, also playing 

simple games with the passenger, while for others the simple presence of the passenger 

was enough of a “strategy” as well. Thinking happened to be our third category, where for 

instance mind wandering but also mindfulness was mentioned. Fourth category was 

driving style, represented by fast driving, but also by focusing on advance driving 

techniques, or by aggressive driving. Consumption, as our fifth category, mainly consisted 

of smoking, drinking and eating. Sixth category was Observation, where drivers mainly 

just looked around, but also for example specifically focused on cars passing by, or on 

women on sidewalks. Spoken word, seventh category, was represented by podcasts, radio 

shows, audio books or preachments. Eighth category was mobile phone/smartphone, which 

we anticipated to appear more often, consisted of making phone calls, sending sms or even 

playing with the phone. Control features, nineth category, where drivers mentioned 

pushing buttons, moving levers, or even shifting in and out of gear just for the sake of it, or 

adjusting one’s seat. Last but one category was a specific one, which we labeled as 

completely evasive. Drivers were mentioning even sex or watching movies. Final category 
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was route alternation, which we found quite innovative and consists of taking short breaks 

or even altering or changing the route in order to make it more interesting and less boring.  

Regarding the subjective safety of obtained strategies, listening to the music was 

perceived as the safest one, while playing with the phone was considered to be the most 

dangerous one. However, as we asked the drivers about their formal experience with the 

use of those strategies in real life, looking around seemed to be the most dangerous 

strategy overall.  

Further, we found altogether 17 factors, that caused boredom of our drivers. We 

mention those in the same order, as the coping strategies – from the most mentioned one to 

the least mentioned one. The factors were monotony, waiting, well-known route, long 

route, speedway, being in a car alone, specific situation (e.g. early in the morning, driving 

in dark, driving in rain, driving in sunset, driving after having a meal), disruption of one’s 

tempo, specific car (e.g. car not being entertaining enough, car not being powerful enough, 

car being equipped with ADAS). 

When we focused on the time, after which the driver starts to get bored, we assumed, 

that young male driver will be bored in matter of minutes after sitting behind the wheel. 

However, results of our research indicate something else. Average representant of our 

research sample reported to start feeling boredom after 64,43 minutes (SD = 73,25), 

therefore, based on our research, we can state that young men often don’t get bored behind 

the wheel, until the first hour of driving passes.  

The last finding of our study relates to the last two of our research questions, that is the 

difference between under- and overstimulating environment in relation to coping 

strategies. To our surprise, we found no significant difference in strategies used in those 

specific environments.  

Through our research most of all we wanted to describe the complex situation 

regarding the driver boredom and coping strategies of young drivers. Therefore, the whole 

research is a sort of summary of the topic, with the main focus on the coping strategies, 

their functionality and their impact on the traffic safety. 
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Increasing vehicle automation gradually changes the driver’s role during driving. 

While in partially automated driving (AD) the driver is required to monitor the driving 

constantly, in higher automation levels she can withdraw completely from the driving 

task and is only needed to intervene occasionally (see e.g. the SAE taxonomy of 

vehicle automation [1]). The role of the driver is similar to the role of a pilot flying in 

autopilot mode who is only required to intervene in unusual circumstances or for 

special tasks like e.g. takeoff and landing. By SAE level 4 (L4) the driver will be 

enabled to sleep during the automated drive, however, she will still have the possibility 

to drive manually. This circumstance raises the question whether after sleeping a 

driver is able to perform the driving task.  

Sleep Inertia (SI), the “period of transitory hypovigilance, confusion, 

disorientation of behavior and impaired cognitive and sensory-motor performance that 

immediately follows awakening” [2] is a well-investigated phenomenon in the field of 

aviation, where pilots are allowed to sleep during the flight and after sleep return to 

duty.  

With the upcoming of AD drivers will increasingly be at risk of sleeping behind 

the (automated) wheel and even voluntarily do so. It is therefore important to 

understand if and how SI impacts drivers’ performance in the period after sleep. The 

aim of the presented study is to gain a first insight in drivers’ subjective perception of 

driving under the influence of SI. 

A study with N = 19 drivers was conducted in a high-fidelity driving simulator 

where participants could use an L4 automated motorway chauffeur during 6 drives 

with the aim to investigate naturalistic behavior. One drive took place at 6 a.m. after 

participants were allowed a maximum of 4 hours of sleep in order to investigate their 

behavior in the state of sleepiness. N=7 drivers fell asleep during the drive after sleep 

deprivation which was confirmed by an expert scoring sleep according to the AASM 

standard using EEG [3]. When sleep was confirmed, a take-over request (TOR) was 

issued urging drivers to take back the vehicle control. The TOR was an auditory alarm 

along with a displayed notice that the AD mode would end soon. After take-over, 

drivers were exposed to one of two driving situations: The first situation was a 
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monotonous 10-minute drive on a 3-lane motorway with low traffic volume during 

rain. The drivers’ main task was to keep the vehicle in its lane and to keep the speed 

limit of 120 km/h. The second situation was a roadwork site where drivers had to 

change lanes to avoid an obstacle. 

After the drive, those participants who had experienced at least one take-over 

situation after sleep took part in a semi-structured narrative interview with the aim to 

gain a deeper understanding of their subjective perception of driving under the 

influence of SI. 

The main interview questions were: 1) “Please describe your condition and your 

driving behavior after sleep.” and 2) “Please compare the process of waking up due to 

a take-over request to waking up from your alarm clock in the morning.” 

The interviews were recorded and then analyzed with the Affinity Diagram, a 

contextual design method [4]. The Affinity Diagram is a bottom-up method to find a 

structure in data. The interviewees’ statements are written down on post-it stickers in a 

workshop session stickers are grouped according to similarities in the statements (see 

Figure 1, “yellow level”). Then titles are given for each group (“blue level”). Those 

titles are then again grouped to higher categories (“red level”) and overall top-level 

categories are built (“green level”). 

 

 

Figure 1: Basic structure of an Affinity Diagram 

The Affinity Diagram yielded 3 main categories with 5 categories of impacts of 

prior sleep on driving. One level below 14 subcategories were found. Categories, 

subcategories and examples of statements for each subcategory are listed in Table 1.  

Table 1: Categories resulting from the Affinity Diagram. 

Level 1 Level 2 Level 3 Example statements 

Performance 

impairments 

Impairments 

in Driving 

behavior 

Impaired lane-

keeping 

 

“I had the impression that after taking over, my lane-

keeping was really bad” 

  Impaired 

speed keeping 

 

“It was not easy for me to keep the speed. Sometimes it was 

5 km/h too low, sometimes 10 km/h too high.” 

  Insecurities in 

driving 

 

“I felt very insecure behind the wheel.” 

 

  Cautious 

driving 

“I tried to stay on the right lane in case something might 

happen.” 
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Level 1 Level 2 Level 3 Example statements 

 Cognitive & 

Behavioral 

Impairments 

Slower 

reaction 

“My reaction was way too late.” 

  Lower 

attention 

“I had the feeling I drove really bad and that I was very 

inattentive.” 

  Difficulties to 

concentrate 

“I had difficulties to really concentrate on the driving task 

and stay focused.” 

  Impaired 

perception 

“I realized too late that there was a road sign”  

 

Negative 

affect 

Lower 

motivation 

Reluctance to 

drive 

“I have had enough of driving drowsy.” 

  Desire to relax “I was waiting for the autopilot to be available again so that 

I could continue to sleep.” 

 Emotional 

stress 

High strain “I had to make on effort not to fall asleep again.”  

  Numbness “I didn’t feel fit at all.” 

Physical 

symptoms 

Physical 

symptoms 

Eye problems “I blinked more frequently and touched my eye.”  

  Headache “I got a bad headache.” 

 

To summarize, three main manifestations of SI were found during driving: 

Performance impairments, negative affect and physical symptoms. Those findings have 

to be taken into consideration when designing automated vehicles that offer both the 

option to sleep in automated mode and the option to drive manually.  Performance 

impairments after sleep are especially relevant for driving safety. The negative affect 

as well as the physical symptoms might decrease drivers’ acceptance of AD. SI should 

be taken into account when designing AD vehicles that allow the driver to sleep.  
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ABSTRACT 
Numerous studies have shown that driving on highway for long durations induces drowsiness 

and lack of attention ([1], [2]), which is a result of the monotonous travel environment (i.e. low 

traffic density). As a response, car manufacturers are developing “Highway chauffeur” 

conditional functions, designed for long automated travel at high speed. The main goal is to 

allow the driver to devote travel time to non-driving related tasks such as working, watching 

movies, or reading among other things. It is particularly relevant to remember that 

“conditional” means the driver must be able to regain control at each instant, whatever his/her 

state or travel environment (i.e. traffic density). However, it is now well-known that an “out-

of-loop state” could be induced by such periods of autonomous driving, particularly if one 

considers long periods of automation ([2], [3]). This issue represents a major problem that 

manufacturers must better understand to safely develop this function. To add new insight to the 

factors inducing the “out-of-the-loop” state [4], and conversely facilitating the return to ”into-

the-loop” or “on-the-loop” state ([5], [6]), the present study focused on the impact of 

autonomous driving periods of various durations on drivers take-over performance. Indeed, 

duration has rarely been considered as the main independent variable so far. Thus, it is not 

clear whether there is a linear relation between duration and driver’s state and/or take-over 

performance. In order to describe more accurately the effect of a long autonomous phase and 

investigate its possible deleterious effects on regaining control of the vehicle ([1],[2],[3]), we 

designed a 4 independent groups experiment, each group being associated to a specific 

duration of the autonomous driving period (5, 15, 45, or 60 minutes). We hypothesized that 

take-over performance would be more affected in participants experiencing longer durations 

compared to shorter durations of autonomous driving. The impact of each duration was 

investigated under two traffic conditions (low traffic: ~7 vehicles/km; high traffic: ~20 

vehicles/km), with the same event to manage at the time of TOR signal for the two conditions. 
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Figure 1. Illustration of the dynamic of the event to manage at the TOR notification appearance. Top left 

graph illustrates the dynamic of the position of the lead car (red line) and the ego car (black line) from TOR 

notification appearance until crash. Top right graph illustrates the deceleration dynamic of the lead car from 

TOR notification signal. Bottom illustration represents dynamics of the event at time of Take Over Request.   

 

Fifty drivers (36 males, 14 females) aged between 19 and 35 years old drove a static driving 

simulator at the Mediterranean Center of Virtual Reality facility. Each group was homogenized 

by gender balance and driving experience (at least 18 months of driving, ~ 8 000 km/year). 

Participants were equipped with physiological and oculomotor (Tobii) sensors, in order to 

assess afterward the drowsiness status ([7]) and gaze behavior around TOR time. After that, 

they ran a habituation session lasting 13 min to familiarize themselves with the simulator, the 

take-over request (TOR) signal and the way to activate and deactivate the “Highway 

Chauffeur” function. Then, they ran two driving sessions (one per traffic condition, “Low” and 

“High” in a randomized counterbalanced order) conducted on a highway loop at 113.5 km/h 

with an automatic gearbox. One session proceeded as follows: participants drove under manual 

mode for 2 minutes at the end of which the system sent a manual-to-autonomous request to 

activate the “Highway chauffeur” function. After a duration corresponding to the group with 

which they were associated (5 (N=13), 15 (N=13), 45 (N=13) or 60 (N=12) minutes), a TOR 

signal was displayed (text and tone). As soon as the TOR signal appears, the car in front (car 

ahead is present all the session with a headway time of 2.8 seconds; see Figure 1) started to 

decelerate and conducted to a crash after 8.3 seconds if the participant did not resume control 

of his vehicle. Participants’ task consisted in resuming manual control of the car by action on 

brake or acceleration pedal, then performing an avoiding maneuver of the car ahead, getting 

back into the right lane and continuing for 1 minute of manual driving. During autonomous 

driving phase of each session, participants were requested to engage into a secondary task 

(watching a movie on a screen on the right side of the dashboard). 

To assess the effect of traffic density and duration of the autonomous phase on driver’s take-

over behavior, we analyzed three temporal variables: (1) time from TOR signal to the first 

glance back to the road; (2) time from the first glance to the first action on a pedal (brake or 

accelerator) corresponding to the deactivation of the autonomous function (3) the takeover time 

which is the time from TOR signal to the first action on a pedal. Moreover, we analyzed car 

trajectories during the avoiding maneuvers and oculomotor strategies before the TOR was 

displayed. For reasons of brevity, we only present the average takeover times, the standard 
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deviation between groups and sequence and, the effect of the duration of the autonomous 

driving phase on driver’s take-over behavior (see Figure 2).  

 

We conducted a one-way ANOVA on takeover times between groups for each sequence which 

did not reveal significant difference between duration (sequence A (F(3,40) = 2.167, p = 0.107) 

and sequence B (F(3,40) = 1.13, p = 0.348) ; Figure 2. Bottom panel). Nevertheless, a linear 

trend is observed with a longer takeover time increasing as well as autonomous duration in 

both sequences (around 1s longer for the group C60 compared to the other groups). This trend 

is confirmed by comparison of grouping the data of short duration groups (Und30 = C05 and 

C15) and long duration groups (Upp30 = C45 and C60) with a significant difference for the 

sequence A (mRTUnd30 = 3.37sec (sd = 1.31) ; mRTUpp30 = 4.33sec (1.24) ; F(1,42)= 6.06 ; p 

= 0.0179). This effect disappears in sequence B likely due to a larger standard deviation in the 

two groups (mRTUnd30 = 3.38sec (sd = 1.41); mRTUpp30 = 4.13sec (2.05) ; F(1,42) = 2.07, ; p 

= 0.157) suggesting a potential effect of the sequence’s repetition in our procedure ([8],[9]) . 

 

Consequently, takeover times measurement did not allow us to confirm our initial hypothesis 

that take over performance is strongly influenced by long autonomous duration. However, this 

result should be interpreted in regard of the individual distribution, sample size and the number 

of crashes we reported in the experiment. Indeed, we reported interindividual differences 

within groups illustrated by similar standard deviations in all groups, with short reaction times 

and long reaction times regardless the autonomous duration (Figure 2. Top panel), likely due to 

different reaction time profile in our population. 

More, unsuccessful trials were removed from the analysis reducing the sample size for each 

group (we report 4 crashes in group C05 (two in sequence A, N= 11), 7 crashes in group C45 

(three in sequence A, N = 10 and 9), and 2 crashes in group C60 (one in sequence A, N=11) 

and none of the participants in any groups crashed twice. Thus, the linear trend we reported as 

takeover times increase with autonomous duration did not follow the same dynamic than the 

occurrence of crashes in groups (C45 > C05 > C60, none for the group C15), reinforcing that 

critical take over performance is not specifically modulated by the duration. 

 

 
Figure 2. Panel A: Top panel boxplots illustrate reaction time distribution for each group in each 

sequence with the mean for each group (black dot). Colored horizontal bars at the ends represent 

standard deviation, central-colored horizontal lines represent median for each group. Bottom panel: 

barplots illustrate mean reaction time for each groups and sequences (dark yellow barplot for sequence 

A; dark orange barplot for sequence B). Horizontal black lines illustrate standard errors. Panel B: 

Barplots illustrate mean reaction times for short duration groups grouping (Und30) and long duration 

groups (Upp30). Horizontal black lines illustrate standard errors ;* : p< 0.05. 
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Furthermore, it remains unclear in our study if the out-of-loop state, which is underlined by 

longer reaction times or failures, is strictly induced by (i) drowsiness which may have 

increased due to longer duration of autonomous phases, (ii) attentional tunneling induced by 

the secondary task, or both. Thus, we will discuss our results in the light of these two impaired 

states, and the type of non-driving related task we used in our procedure [10].  
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Groupe PSA and Aix-Marseille University and issued from the “Back into the loop Project” supported by the 

Fondation MAIF. 
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ABSTRACT 

 

Introduction: Previous research, aiming at understanding the effect of automation 

exposure on driver behaviour in different conflict situations, has found automation to result 

in unsafe response (e.g., crashing, delayed response) [1, 2]. For example, Victor et al. [2] 

found that a third of drivers crashed with a conflict object (CO), revealed in a lead-vehicle 

(LV) cut-out scenario, after having supervised a near-perfect automated system for 30 

minutes. In order to design safe vehicle automation, there is a need to understand how to 

prevent such unsafe responses. For example, would another type of automation, that can 

trigger a take-over request (TOR) prior to the LV cut-out, be able to prevent drivers from 

crashing in the conflict as observed in [2]? Further, how far in advance from the CO such a 

TOR is presented may also influence the safety of the response. The reason is that previous 

research indicates that a longer take-over-time budget (i.e., the time-to-collision at the 

TOR) generally results in a longer take-over time (i.e., the time needed for drivers to 

deactivate automation in response to a TOR) [1, 3]. Consequently, a TOR that is presented 

early will not necessarily give the drivers more time to respond to a conflict, since these 

drivers may take longer to deactivate automation. Whereas previous research has focused 

on how different factors (e.g., the take-over time budget) influence the take-over time, the 

influence of the same factors on other parts of the response process (e.g., reaction times for 

hands on the steering wheel, eyes to the HMI) has not received much attention [1, 3].    

 

Aim: This study aimed to examine the driver response process in a LV cut-out 

scenario after driving with: (a) adaptive cruise control (ACC) and (b) unsupervised 

automation with a TOR issued 9 seconds or 18 seconds prior to the CO used in the 

scenario.   

Methods: The present study used data from a Wizard-of-Oz experiment on test-track. 

48 participants operated a test vehicle (TV) which followed a lead vehicle (LV) on a 

rural road test-track. The automation feature was implemented using the Wizard-of-Oz 

approach that simulated the system operation. Each participant drove for a total of 30 
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minutes with either: (a) ACC or (b) unsupervised automation (i.e., an automated 

system that allows the driver to disengage from the driving task during automation but 

needs to be prepared to resume manual driving when requested). The participants that 

drovewith unsupervised automation were free to engage in any secondary tasks of their 

choice. At the end of the 30-minute drive, all participants experienced a LV cut-out 

scenario: the LV changed lane to reveal a static “balloon” car in the lane, which 

required the participants to intervene to avoid a crash. The participants in the ACC-

condition received no notification prior to the conflict appearance (i.e., the LV 

changed lane and the static vehicle became visible). For the participants with 

unsupervised automation, a TOR was triggered at 9 (TOR9-condition) or 18 (TOR18-

condition) seconds time-to-collision away from the static “balloon” vehicle 

(corresponding to 6 and 15 seconds prior to the conflict appearance, respectively). The 

TOR was a combination of visual (message in DIM) and audio (tone and voice) 

information. To avoid a collision, the participants pressed two buttons on the steering 

wheel for approximately 0.6 seconds to deactivate automation, and then performed a 

steering intervention to pass the CO. Using recorded video and vehicle data, the driver 

response process was assessed through a take-over process for the TOR9- and TOR18-

condition, anchored at the TOR, and the driver steering intervention start, for all three 

conditions, anchored at the time point when the drivers passed the CO (i.e., when the 

longitudinal distance between the TV front and CO was zero). The take-over process 

consisted of timings, after the TOR, for: (a) first glance to HMI, (b) first glance 

forward, (c) hands on the steering wheel, (d) automation deactivated, (e) end of 

secondary task engagement, (f) start of second button press (if the first one did not 

succeed to deactivate automation), (g) eyes on path from now on, (h) first brake, and 

(i) start of steering intervention (to pass the CO). In addition, glance locations at the 

TOR presentation (i.e., on task (TASK), forward (FWD) or other (OTHER)), and 

timings for the LV cut out and passing of the CO were also coded.  

 

Results & Discussion: 

The results show that the first part of the take-over process was independent of the TOR 

timing. The majority of the participants had showed a first glance towards HMI, a first 

glance to the forward road, ended their secondary task (if a task was present), put hands on 

the steering wheel and deactivated automation within about 6 seconds from the TOR (see 

Figure 1a). However, three participants within the TOR18-condition, needed longer time to 

deactivate automation. Two of these participants (Participant ID 36 and 43 in Figure 1a) 

did not manage to deactivate automation at their first attempt, since they either pressed the 

buttons too short time (i.e., shorter than 0.6 s) or they pressed next to the button instead of 

on it. The third participant with long take-over time, was engaged in two secondary tasks 

(mobile phone and notebook) and sat in a relaxed position (with both feet up on the car 

seat) at the time of the TOR. Further, the results indicate that the LV cut-out triggered the 

start of steering intervention independent of TOR timing: in Figure 1a, all the brown plus-

signs occur to the right of the vertical line which marks the LV cut-out. Finally, the most 

clear  difference between the two TOR timings seem to be that: (a) the earlier the TOR, the 

longer it takes until the drivers direct and keep their eyes on the road/threat (i.e., eyes on 

path from now on generally occur later for the TOR18- compared to TOR9-condition) and 
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(b) the first driver braking, generally, takes place prior to the conflict appearance in 

TOR18, and after the conflict appearance in TOR9.  

 

Surprisingly, the present study could not confirm the previously found delay in conflict 

response for automated driving [1, 2]. Rather, Figure 1b indicates that the safest response    

 
(earliest driver steering intervention start) was achieved by the participants in the TOR18-

condition, followed by the ACC-condition, and then the TOR9-condition. A one-way 

Kruskal Wallis test (α = 0.05) indicated a significant effect of the steering intervention 

times across the three conditions (H = 12.0, p = 0.002). Post-hoc comparisons using 

Dunn’s test further indicated that the steering intervention time for TOR9 (Mdn = 2.61 s, 

SD = 0.33 s) happen statistically significantly later than for TOR18 (Mdn = 3.01 s, SD = 

0.71 s; p = 0.0005). The steering intervention times for ACC (Mdn = 2.69 s, SD = 0.28 s) 

did not statistically significantly differ from the other two conditions. Note that, in the 

present study, ACC served as baseline condition for manual steering, since a fixed time 

headway between the TV and the LV was needed in order to achieve the same conflict 

criticality across conditions. Triggering the TOR early seems to result in that the 

participants can notice the conflict object early (e.g., before the conflict appearance) and 

adopt a precautionary behavior (e.g., brake). Consequently, these drivers will be farther 

away from the CO at the conflict appearance and can therefore start their steering 

intervention earlier compared to the drivers that are presented with the TOR later and do 

Figure 1a): Take-over process for TOR9- (top panel) and TOR18- condition (bottom panel). Text marks the glance position 

at the TOR and markers represent different driver actions performed sometime between the TOR and passing of the CO. 

Vertical lines mark the TOR, the LV cut-out (shaded band displays the range) and the CO (shaded band displays the range). 

b): The start of the steering intervention (anchored at the CO) for ACC-, TOR9- and TOR18-conditions.   

 

Driver steering intervention start 
b) a)  
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not slow down before the conflict appearance. In fact, obtaining the TOR later may even 

prevent the drivers from noticing the conflict since the take-over procedure may require 

drivers to look off path (e.g., look at HMI to obtain feedback about automation deactivation 

etc.). This could potentially explain the slight delay in response for TOR9-participants 

compared to the ACC-participants.  

Finally, presenting a TOR prior to the conflict appearance, did not result in drivers that 

respond too late. In contrast to Victor et al. [2], none of the drivers in the present study 

crashed with the CO. Importantly, Victor et al. [2] concluded that the drivers crashed 

because they did not understand the need to act, because they expected the automated 

vehicle to act and resolve the conflict. Thus, it seems that when automation trigger a TOR 

prior to the conflict appearance, drivers understand their responsibility of having to act. In 

fact, the present study shows that an early TOR provide the drivers with more time to 

monitor and understand the situation, and they may even adopt a precautionary behavior 

(i.e., slowing down); giving them more time to respond to the conflict.  
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ABSTRACT 

Advances in technological and industrial research in the automotive sector suggest 

the imminent introduction of Level 3 automated personal vehicles (an automated car 

requiring sporadic supervision by the driver, who must be able to regain control of the 

vehicle if necessary), Level 4 (no-human interaction required under certain conditions) 

or 5 (fully driverless automated vehicle) (SAE automation levels). Traffic policies are 

evolving to allow the deployment of autonomous vehicles. These technological 

advances raise questions in terms of road safety. Notably, these questions concern 

human-machine interaction and the allocation of driver’s attention during the use of 

automated systems. Future vehicles should give the opportunity for the driver to do 

something else than driving. Therefore, it will become necessary to supervise drivers in 

their activities to keep them in the loop when needed. 

Vehicles currently on the market are equipped with Level 1 or 2 automation 

systems. Research on automation has shown that the use of systems such as Advanced 

Driver Assistance Systems (ADAS) can lead to over-reliance, over-dependence or 

misuse, even if the system is not completely effective [1]. According to [2], “excessive 

trust can lead to rely uncritically on automation without recognizing its limitations or 

fail to monitor the automation’s behavior”. However Level 3-4 automated vehicle 

prototypes are being developed rapidly. In these levels, taking back the control of 

vehicles is still needed to ensure safety of driver and other road users.  Relying on the 

system can lead to a passive fatigue in the sense that the driver should have too few 

things to do while driving [3; 4], leading to an under activation. This could hamper the 

mobilization of attentional resources when needed to respond to take-over requests [5]. 

Any of these two effects could be detrimental on the different steps needed while 

taking the driver back in the loop. A minimum state of vigilance is required to monitor 

the system optimally [6]. Inattention episodes are already observed when driving non-

automated vehicles, although drivers’ attentional resources are supposed to be entirely 

dedicated on the driving task. Indeed, an epidemiological study has shown that, among 

a population of drivers admitted to an emergency department following a car crash, the 
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probability to be considered responsible of the crash increased when the driver reported 

to mind wander just before the crash [7]. The proportion of accidents linked to 

inattention to driving being not negligible, it is necessary to address these road safety 

issues by notably taking into account driver’s state during the use of automated vehicle. 

 

The objective of the research presented in this paper is twofold: 1) identify the 

drivers’ activity (either processing external stimuli to the driving context, e.g. when 

listening a broadcast or not) using physiological data; 2) disentangle the drivers’ 

emotional state (neutral vs. sadness) using physiological indicators. 

 

To do so, 20 participants were involved in this research (11 males, mean 

age=27.15, SD=4.65). All participants had their driving license for at least 3 years 

(M=7.5, SD=3.69). Participants were asked to drive on a highway and on a country 

road. After two minutes of manual driving, they were asked to switch to an automated 

driving mode. During this mode, participants had four different tasks: 1) listening to an 

audio broadcasting neutral content (stories about nature or science), 2) listening to 

stories with sad content, 3) performing an imagination task (imagine a story based on 

two cards representing a personage and a place) and 4) driving after written the saddest 

experience they ever lived (autobiographical recall). The purpose of the imagination 

task was to produce some non-driving related thoughts. The recall task was designed to 

make the participants mind-wandering with a general sad emotional state. The four 

conditions were counterbalanced into four different driving scenarios. After 8 minutes 

of automated drive mode, an unplanned take-over was requested (TOR). Participants 

had then to take back the manual control of the vehicle in accordance with the safety 

rules. To sum-up, we manipulated the Activity the participants had to perform during 

the automated mode (listening vs. non-listening) and the Emotion (neutral vs. sadness). 

Different physiological data were recorded in order to assess the participant internal 

state: heart and respiratory activities. Reaction times to the TOR were also collected 

from the steering wheel or the pedals. 

 

We assessed the emotional state with an adapted version of the Geneva Emotional 

Wheel [8]. As expected, participants reported to be more sad in the listening of sad 

stories than when listening to neutral stories (p<.001). They also reported to be more 

sad when asked to recall their personal experience than when asked to imagine a story 

(p<.001). No statistical differences were observed when comparing the two sad 

conditions (listening to sad stories and autobiographical recall). Both conditions 

(listening or not) seem to induce comparable emotional states. Similarly, no differences 

were observed when comparing the two neutral conditions. 

 

The physiological results showed a main effect of Emotion on the heart rate 

variability assessed using the standard deviation of normal to normal heartbeat intervals 

(SDNN) (p<.001). For the respiratory period, a main effect of the Activity (listening > 

non-listening, p<.01) was observed. Post-hoc analysis revealed a statistical difference 

between listening and non-listening in the neutral condition (p<.05). The analyses 

performed on the respiratory amplitude revealed also a main effect of the Activity 

(listening < non-listening, p<.01) but also a difference in the sadness condition 

(listening > non-listening, p<.01). Finally, the ANOVA conducted on the reaction times 
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revealed that participants responded slower to the TOR in the non-listening task only 

under neutral condition (p<.05). 

 

These results reveal the possibility to use different physiology-based features to 

disentangle both drivers’ activity (listening or not) and emotional state (sad or neutral). 

Actually, the heart rate variability could be interesting to use in order to disentangle the 

drivers’ emotion (sadness). The respiratory amplitude could complement this 

information to define the driver’s activity that is the activity linked to the sad emotional 

state (listening task or the recall of a sad event). Moreover, the use of the respiratory 

period could be helpful, as suggested in [9] to distinguish the driver’s activity (listening 

or not) in the neutral conditions. Finally, the participants were slower to take back the 

control when they were thinking to other things than driving. All these results put 

together show the importance to take into account different features to disentangle the 

drivers’ activity and emotion. Even if our results only show an effect of mind-

wandering on the reaction time to take back the manual control, other effects could 

happen. For instance, detrimental effects of negative emotions have been shown on the 

perception of an alert by pilots (see [10]). Additional works are still needed to address 

this issue further with regard to other activities and mental states and to integrate these 

physiology-based features in monitoring diagnostics. 
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ABSTRACT 

 

Driving automation, either level 3 (including unplanned manual control recovery) 

or level 4 (fully automated driving on specific road sections), introduces new safety 

and acceptance issues. In order to improve road safety by integrating advanced safety 

technologies, we must ensure that this new technology takes into account the needs 

and expectations of the drivers, on the one hand, and the predicable changes in user 

behaviour, on the other hand. A Human Factors working group, bringing together the 

main French actors of driving automation, has been set up within the NFI plan 

(investment plan for the future) “autonomous driving” to prioritize these issues 

(www.economie.gouv.fr/files/files/PDF/nouvelle-france-industrielle-sept2014.pdf).  

   

Project presentation  

AutoConduct aims to design a new Human-Machine Interaction (HMI) based on needs 

analyses and adapted to the driver’s condition in response to the priorities identified by this 

working group. For this purpose, the current project offers advanced monitoring of the 

driver by combining different diagnoses (physical state defined by the posture, internal 

states defined by emotions and cognitive load, and perceptive state defined by visual 

strategies) to adapt the management of interactions between the driver and the vehicle 

automation in real time. The originality of this project is  

 To adopt a user-centric approach based on the needs of human factors and ergonomics;  

 Consider acceptance (a priori and after experience with the system) at the early, design 

stages of automated vehicle, which, until now, were developed primarily based on 

technological criterion;  

 To treat the driver’s state through objective measures of indicators on three 
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dimensions: physical, perceptual, and internal (attentional and emotional);  

 To develop a progressively shared vehicle control (i.e. cooperation) based on a 

physiologically valid sensorimotor control model.  

 

The project has been divided into several phases (Figure 1). The first one consisted in 

a study on acceptance to gain knowledge about the potential needs of the users in realistic 

cases of autonomous driving and recovery from surveys and interviews. The aim was also 

to specify possible HMC (Human Machine Cooperation) scenarios used in the subsequent 

stages of the project The second phase consisted in the design of different technological 

blocks to monitor the state of the driver characterized by physical, perceptual and internal 

dimensions. For that, studies have been designed to get new knowledge on the 

measurements characterizing the driver states and to develop tools and methods to obtain 

indicators on these states in real time on the three physical, perceptive and internal 

dimensions.  The third phase ‘HMI - Interaction Management’ aims at designing a 

progressive shared control system between human and vehicle and an acceptable HMC 

manager adapted to the driver state. The work of the two previous phases has been 

integrated on a single simulator in order to provide a diagnostic of the driver states in 

realistic use cases. Finally, a phase of ‘Implementation and evaluation’ will then be able 

to evaluate the integration of these developments done in the partner vehicles.  

 

Figure 1. Organisation of the AUTOCONDUCT project 

 
 

The advanced driver monitoring system and the interface developed by the project 

has been integrated in two instrumented vehicles. A Wizard of Oz instrumented vehicle 

(i.e. the active controls are managed by a professional driver hidden from the driver’s 

view) integrates driver monitoring to test robustness of diagnostics on public roads. A 

second instrumented vehicle integrate the active controls of the speed and direction of the 

vehicle, to test the acceptance and robustness of HMI in a controlled environment (i.e. test 

track). 

 

The diagnostic fusion approach  

The monitoring of driver’s state is based on 3 different types of indicators (Figure 2).  

The posture module gives some information on the position of the body, the legs and the 

hands. The visual strategy module gives some information on the position of eyes and on 

the dynamic visual behaviour. The attentional diagnostic gives information on the driver’s 

attentional level. In addition, some information is given by the vehicle module in terms of 

driver’s actions like pedal and steering wheel movements.  

94



 3 

 

Figure 2. Diagnostic fusion approach 

 
The fusion of these indicators is done in two steps. The first one makes the fusion of 

several indicators to provide diagnostics:  posture and vehicle information to improve the 

BODY, HAND and FOOT diagnostics, posture, visual and attentional indicators to 

improve VISION diagnostic. The second step will use these diagnostics to create the final 

one: DRIVER_READY. The fusion process creates two type of diagnostics. The real 

diagnostics provide ternary values (Ok, NoOk and undefined) and the HMI diagnostics 

provides binary value (Ok, NoOk) needed to manage the Human Machine Interaction. 

The fusion process is done with rules, which define for every combination of input 

diagnostic values the output diagnostic value. For example, the table 1 define the rules 

used to create Driver_Ready diagnostic from Posture, Hand, Foot and Vision real 

diagnostics.  

 

Table 1. Rules used to create Driver_Ready diagnostic  

DRIVER_READY POSTURE HAND FOOT VISION 

NoOK NoOK  All All All 

NoOK OK NoOK  All  All 

NoOK OK OK NoOK   

NoOK OK OK OK NoOK 

OK OK OK OK OK 

ok OK OK OK Undefined 

NoOK OK OK Undefined NoOK 

OK OK OK Undefined OK 

OK OK OK Undefined Undefined 

 

From a useful point of view, this type of table facilitates exchanges between 

researchers from different disciplines. Indeed, each line describes a well-defined and 

concrete situation. From an implementation point of view, this approach makes it possible 

to define which diagnoses are used in priority. It allows an exhaustive coverage of all the 

possibilities of combining diagnoses.  

 

In conclusion, this project has shown that it is possible to merge diagnostics of very 

different natures with an exhaustive coverage of the possibilities and to discuss the 

merging rules with a multidisciplinary team thanks to an exchange format understandable 

by ergonomists as well as engineers. 
 

Acknowledgment: This project was funded by the French National Research Agency 

(ANR) and labelled by Mov’eo and CARA competitive clusters.  

95



 

 1 

 DDI2020 – LYON 

France, 12-14 Oct, 2020 
 

 

 

 

Impact of the driver’s visual engagement and situation awareness on 

takeover quality 

 

Paul Marti
1
, Christophe Jallais

2
, Arnaud Koustanaï

3
, Anne Guillaume

4
, Franck 

Mars
5 

 
1,3,4 Renault SAS, LAB, Nanterre, France 
(E-mail: paul.marti@renault.com, arnaud.koustanai@renault.com, anne.guillaume@renault.com) 
2 Univ Gustave Eiffel, IFSTTAR, TS2-LESCOT, Lyon, France  
(E-mail: christophe.jallais@univ-eiffel.fr) 
5 

LS2N, Nantes, France  

(E-mail: franck.mars@ls2n.fr) 

 

Keywords: Automated driving; Critical events; Human factors; Non-driving task; 

Situation awareness 

 

ABSTRACT 

 

In Driving, drivers must develop and maintain a good situation awareness [3, 5]. Situation 

awareness (SA) involves processing the available visual information (SA level 1: 

perception), developing an understanding of the situation (SA level 2: comprehension) and 

anticipating the future states of the environment (SA level 3: projection). However, the 

updating of SA may be discontinuous. According to Rockwell (1988) [6] drivers tend to 

not spend more than two seconds without taking information about the environment. When 

it comes to automated driving, especially when a non-driving task is allowed, Rockwell’s 

2-second rule does not apply. In level 3 automated vehicles (SAE level), Zeeb et al. (2015) 

[7] reported that the participants looked at the central console without interruption from 2s 

to 55 seconds during non-driving activities, which can significantly impair and SA. In 

addition, many studies highlighted a deterioration of take-over quality when performing a 

Non-Driving Task (NDT) [1, 2, 4, 8]. In the context of the development of the level 3 

automated vehicles, it is essential to understand the extent to which a loss of SA can be 

detrimental, especially in the event of a critical takeover request.  

 

Objectives 

The aim of the study was to evaluate the quality of takeover in a critical obstacle avoidance 

situation requiring good situational awareness. The relative importance of two periods 

preceding the takeover was focused:  

 A period of 5 minutes preceding the TOR: The hypothesis was that being engaged 

in a secondary task during this long time prevented the construction of a mental 

model of the environment allowing the driver to anticipate the consequences of the 
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obstacle's appearance (SA level 3). 

 The last two seconds before the TOR: The hypothesis was that being engaged in a 

secondary task during this short time prevented the perception of the immediate 

environment just before having to deal with the critical situation (SA level 1 & 2). 

 Methods 

96 subjects participated in this study on a fixed-base driving simulator. The driving 

environment was displayed on three screens. A smaller screen was dedicated to the 

dashboard. An 11”-tablet has been added where the center console of a real vehicle would 

be. It provided information on the state of vehicle automation and allowed to manually 

switch between manual and automated mode, or the other way around. It was also where 

the non-driving task was presented. The different screens were divided into several areas of 

interest to analyze the visual behavior of the participants. 

After instructions on operation of level 3 automated vehicle and two 5-minutes training 

courses, the participants performed one of four automated driving conditions (see Fig. 1):  

 Full_SA: the participant was not distracted and was instructed to monitor the road 

at all times 

 SA_NDT: The participant monitored the road at all times, except during the last 2 s 

before the TOR when he had to read aloud a text scrolling on the tablet (non-

driving task, NDT).  

 NDT_SA: The participant had to perform the NDT at all time, except during the 

last 2 s before the TOR when he had to look at the road 

 Full_NDT: The participant was distracted during the whole drive up to the TOR. 

 
Fig 1. Automated driving conditions 

 

The participant was driving on a 3-lane highway at 110km/h with moderate traffic. At 

some point, a front vehicle was placed 3 seconds ahead from the participant’s vehicle. 

About 38 seconds before the TOR, the participant’s vehicle began to overtake two slower 

vehicles. The participant’s vehicle was then in the centre lane. Right before the TOR, two 

faster vehicles, separated by 2 seconds, started to overtake the participant’s vehicle in order 

to interfere with the takeover. Then, the front vehicle started an avoidance manoeuvre 

because an obstacle vehicle blocked the right and centre lanes. At this moment, an auditory 
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TOR was delivered. The non-driving task was interrupted if there was one, and a red 

vehicle pictogram indicated the need to take over. To disable the automated mode, the 

driver could press a button on the tablet or use the pedals or steering wheel. To 

successfully intervene, the participant had to brake and fit between the two vehicles in the 

left lane, or to change lane after the second vehicle. Another solution consisted to stop the 

vehicle in the centre lane before reaching the obstacle. The time headway to the obstacle 

vehicle at the moment of the TOR was 8 seconds. 

 

After completing the drive, participants were asked to report the vehicles they were aware 

of at the time of the TOR on a top view image of the situation. The participant’s vehicle 

and the obstacle were already placed at the correct scale and the participants only had to 

place the other vehicles. 

 

Results 

8 trials were rejected due to problems with eye-tracking data and the remaining 88 trials 

are evenly distributed between conditions. 45 trials resulted in a collision with another 

vehicle. 23 were with the first fast vehicle, 10 with the second one and 12 with the 

obstacle. No collisions with vehicles in the right lane occurred. 

Data showed an effect of conditions on the occurrence of collisions (Chi
2 

= 8.504, p = < 

.05). 72,73% of the participants in the Full_NDT condition had an accident, compared to 

59.09% for NDT_SA and 36.36% for both Full_SA and SA_NDT. A significant effect of 

the conditions was found on the awareness of the first fast vehicle before the TOR (Chi
2 

= 

32.267, p = < .05): 81.81% of participants were aware of this vehicle for Full_SA and 

SA_NDT, 45.45% for NDT_SA and 9% for Full_NDT.  

Another analysis was performed on the data between the time of the TOR and when the 

first fast vehicle disappeared in the blind spot of the participant’s vehicle (about 2.5 

seconds). This period will be referred as “critical phase”. It showed a significant effect of 

the conditions on the number of participants looking at the left mirror and the central 

mirror (Chi
2
 = 13.149, p < 0.05). When the total time spent on specific areas of interest 

was considered, there was a significant effect of the conditions on areas not related to 

driving (Chi
2
 = 14.83, p < 0.05) (see Fig. 2.A) and on the time spent in the left and / or 

center mirror (Chi
2
 = 17.35, p < 0.05) (see Fig. 2.B). There was no difference for the areas 

that displayed the driving scene (Chi
2
 = 1.17, p = 0.328). Participants in the conditions 

Full_SA and NDT_SA spent more time looking at the left / center mirror and less time in 

the non-driving area compared to Full_NDT and SA_NDT. 
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Fig 2. Total fixation time by condition during the critical phase (A:  on areas non-related 

to driving, B: on the central and left mirrors)  

Conclusions   

The results suggest that monitoring the road at the time of the TOR facilitates adequate 

visual strategies in the seconds following the TOR. However, this does not appear to be 

decisive for the success of the takeover. If drivers have not had time to build up situational 

awareness before the TOR, the risk of accidents was still high even if the vision of the 

environment was restored 2 seconds before the TOR. Finally, it seemed more important to 

have good situational awareness at the time of the TOR, even if drivers had just started a 

non-driving task and only imperfectly checked their mirrors after the TOR. The conclusion 

is that, in a critical case such as the one used here, helping drivers rebuild situation 

awareness after the TOR does not appear to be sufficient. It may also be necessary to help 

the driver maintain a good situation awareness well before the TOR to ensure safety.  
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ABSTRACT 

 

Over the last years, in addition to the increasing use of smartphones, new vehicles are 

equipped with technologies that make it even easier to use a smartphone while driving 

[1]. For that reason, driver distraction by using a mobile phone is a cause of road traffic 

accidents [2-3]. International research has indicated that accident probability is 

increasing when a driver is being distracted [4-5] and especially for the young, 

distracted drivers this increase is reaching 8% [6]. Moreover, reading text messages 

while driving reduces the driving speed by 30% [7]. The objective of this study is to 

quantify the traffic and safety effect of texting and web surfing by a smartphone during 

driving in urban areas, through a driving simulator experiment.  

The experimental procedure was carried out on the NTUA driving simulator which 

is a motion base quarter-cab manufactured by the FOERST Company. The simulator 

consists of 3 LCD wide screens 40’’, driving position and support motion base. The 

choice of the sample scheme was focused on young people with a valid driving license. 

36 drivers (19 males and 17 females) participated in the experiment, who had 5.4 years 

of driving experience on average. The sample scheme was clustered into two age 

groups, aged 18-24 and 25-33, in order to differentiate behavior based on their driving 

experience. A questionnaire was also developed to identify drivers’ profiles and 

focused on the smartphone use and their familiarity with urban road. At the beginning 

of the experiment, each participant drove a test route on urban environment during 

daytime conditions, which was a different route from the scenarios’ ones in order to get 

familiarized with the driving simulator and test for possible simulator sickness issues. 

For the present study, the type of road that was examined was urban environment, 

which included a variety of complex urban conditions: roundabouts, signalized 

intersections, not-signalized intersections, which required increased cognitive load 

compared to rural driving environment. Four different scenarios were selected to 

examine several factors that may have impact on driver’s behavior, and the impact of 

smartphone use while driving. More specifically, the scenarios were distinguished by 
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day and night driving conditions1, each with a low (300 vehicles/hour) and high (600 

vehicles/hour) traffic volume. In each scenario two unexpected events were 

programmed to appear in order to examine the accident probability. Drivers were asked 

by the experiment instructor to perform the following secondary tasks while driving 

each of the four sessions (day-night and high-low traffic): a) navigate in their Facebook 

feed, b) texting via Facebook Messenger and c) search for a location via Google Maps 

app (in random order during their route, but at specific timing given by the instructor). 

The statistical analysis that was conducted, included two levels of analysis. The 

first one included five regression models which were developed in order to analyze the 

impact of smartphone use (scrolling Facebook feed, texting and Google Maps 

navigation) while driving on young drivers’ behavior and safety in terms of mean 

driving speed, mean headway distance from the front vehicle and accident probability. 

The second step included generalized linear models in order to compare the different 

impacts of the use of different smartphone applications2. The elasticity of each 

independent variable was calculated in order to estimate the sensitivity of each 

dependent variable [8]. 

Moving on to the results of the analysis, the mean speed linear regression model 

indicated that the independent variables which were statistically significant at 95% 

level were: texting/web surfing distraction, traffic volume, if driver enjoys driving 

(variable extracted from the questionnaire) and driver’s gender. The elasticity value 

showed that texting or web surfing while driving lead to 8% decrease of the mean 

driving speed.  

The second linear regression model concerned mean speed variability and 

indicated that the independent variables which were statistically significant at 95% 

level were: texting/web surfing distraction, traffic volume, how driver changes driving 

behavior while using mobile phone and driver’s daily frequency of texting/web surfing 

(the latter three variables extracted from the questionnaire). The elasticity value 

showed that texting or web surfing while driving lead to 26% decrease the mean speed 

variation. Regarding the mean speed variability, we moved on to the second analysis 

step with the first generalized linear model, which was also developed, showed (by 

comparing the significant coefficients) that, Google Maps application had the highest 

impact in the model, followed by Facebook Messenger and Facebook app. 

Additionally, the riskiest driver profile was a male driver who is distracted by using the 

Google Maps app. 

Then, the headway distance linear regression model indicated that the independent 

variables which were statistically significant at 95% level were: texting/web surfing 

distraction, traffic volume, if driver enjoys driving, how driver changes driving 

behavior while using mobile phone, driver’s daily routes on urban roads, driver’s 

gender and age. The elasticity value showed that texting or web surfing while driving 

lead to 5% decreased headway distance.  

 
1 Nightime conditions were fully simulated not only at the driving scenario but also in the environment 

around the simulator during the experimantal procedure. 
2 The second step conducted only for two out of five examined dependent variables, as for the other three no 

statistically significant difference was observed between the three different distracted conditions. 
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Then, a linear mean headway distance variability regression model was developed 

and showed that the independent variables which were statistically significant at 95% 

level were: texting/web surfing distraction, traffic volume, lighting conditions 

(day/night), driver’s gender and weekly driven kilometers on urban roads. According to 

the elasticity values, texting or web surfing while driving lead to 19% decreased 

headway distance variation. For the mean headway variability, we moved on to the 

second analysis step with the second generalized linear model, which was also 

developed, showed (by comparing the significant coefficients) that, Facebook 

application had the highest impact in the model, then Google Maps and Facebook 

Messenger app. The riskiest condition was high traffic volume when driver is distracted 

by using the Facebook app. 

Finally, a binary logistic regression model was developed for investigating 

accident probability, which indicated that the independent variables which were 

statistically significant at 95% level were: texting/web surfing distraction, traffic 

volume, driver’s age group, lighting conditions (day/night) and driver’s weekly days 

driving on urban roads. The elasticity value showed that texting or web surfing while 

driving lead to 75% increased accident probability.  

 

Concluding, according to the results of the regression models, a key finding is that 

web surfing or texting distraction while driving has the greatest negative impact on 

driving behaviour compared to the other risk factors, such as traffic volume and 

lighting conditions. More specifically, smartphone use while driving increases 

significantly the accident probability, while at the same time reduces the mean driving 

speed. The increased accident probability may be explained by the fact that smaller 

headways are maintained from the vehicle in front and drivers while using a 

smartphone have a reduced perception of traffic, which makes them more vulnerable to 

a driving error and then a collision. Also, using the smartphone while driving reduces 

the mean speed variability because the distracted driver tries to compensate this risky 

behaviour by maintaining a steady speed, but this strategy is not successful as the 

accident risk is greater.  

 

Then, moving on to the results of the generalized linear models, comparing the 

three different smartphone applications to each other, Google Maps had the highest 

impact on mean speed variability followed by Facebook Messenger and Facebook 

application. Combined with the impact of the driver’s gender, the riskiest driver profile 

is a male driver who is distracted by using the Google Maps app. Several remedial 

measures should be implemented and enforced in order to reduce the use of smartphone 

while driving as its effect on road safety is detrimental. 
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ABSTRACT 

 

Road safety policies in many countries allow the use of a hands-free phone. 

However, research suggests that this behaviour increases the risk of being involved in 

accidents, because of the cognitive distraction (for reviews: [1], [2], [3]). Indeed, 

research also shows that conversing on the phone makes us slower, less stable, and less 

accurate in some specific visual tasks [4], [5], [6]. There is also some evidence that 

being involved in a conversation leads to some costs in the processing of verbal 

information visually presented, in mental arithmetic tasks at least [7]. 

We tested some hypotheses on the effects of cognitive distraction due to a phone 

call on the processing of text messages provided by variable message signs (VMS) in 

drivers, and also on their mental effort and vehicle control while processing the VMS, 

derived from current theories on attention and cognitive control [8], [9], [10]. VMS 

inform of special circumstances, which can be critical to make driving decisions such 

as lane changes, route choices, or hazard anticipation. Decisions based on VMS can 

involve high-level functions such as reading comprehension, memory retrieval, and 

response selection, and attention can enhance these functions, so a concurrent 

attention-demanding conversation can compete with the decision-making process. 

Moreover, verbal processing is involved in both processing VMS and listening to the 

conversation partner speech, so central attention is also needed to efficiently switch 

between these two overlapping tasks. Thus, concurrent phone conversation can lead to 

worse performance in deciding whether the message on a VMS demands immediate 

actions or not. In addition, mental effort might increase in a driver trying to make such 

VMS-related decision while talking on the phone, and a rise in heart rate should reflect 

this effect. Since visuospatial resources are needed to read text messages on VMS, a 

conversation requiring these resources would be particularly detrimental. However, in 

quiet traffic conditions, driving tasks such as the control of lateral position or the 

speed of the vehicle would be supported by processes that are relatively independent 

from active attention, so the performance of these tasks during the approach to a VMS 
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should not be substantially altered by distraction from a phone call, neither when the 

driver’s visuospatial resources are relevant nor irrelevant to the conversation. 

Eighteen drivers having a Spanish B category driving licence participated. They 

drove in a driving simulator (Carnetsoft) in a motorway environment, with embedded 

3-D models of VMS, posted on straight road sections. Heart electrical activity was 

continuously recorded (MP100 BIOPAC system). Instructions were given to drive in 

the right lane at a constant speed, as well as to indicate whether the message displayed 

on each VMS was a warning message (i.e., informing about potentially dangerous 

circumstances that would demand an immediate action from the driver, such as 

‘FLOODED LANE 2KM AHEAD’), or an informative message (i.e., circumstances 

that would not demand an immediate action, such as ‘ACCESS TO TUNNELS 2 KM 

AHEAD’), as soon as possible while avoiding errors. Responses to this VMS decision 

task were given manually. All participants completed the task three times. The first one 

was a no-distraction condition, with no phone calls. In the other two times, the driver was 

asked to respond phone calls during the route, orally: In the visuospatial distraction 

condition, the questions engaged the driver’s visuospatial cognitive resources, whereas 

these resources had a relatively minor role in the conceptual distraction condition. An 

independent experiment indicated that the difficulty question level was similar in the two 

conditions. We analyzed the effects of this manipulation of cognitive distraction on two 

aspects of the VMS task performance: a) Response accuracy, as measured by the 

percentage of correct responses to the VMS task, and b) response distance, i.e., the distance 

from the driver’s vehicle to the VMS when the response to a VMS was given. We also 

analyzed the effects on the driver’s heart rate, their control of the vehicle speed, and their 

lateral position during approach to VMS. Data were analyzed using the traditional 

frequentist analysis of variance (ANOVA) and Bayesian ANOVAs. 

Response accuracy in the VMS task was lower in the visuospatial distraction 

condition than in the other conditions. In addition, both the variability of response 

distance in the VMS task and mean heart rate during the approach to VMS were higher 

in the conditions with phone calls (Figure 1). In contrast, the variability of vehicle 

speed and lateral position were similar in the three conditions.  

Figure 1. Performance of the VMS task (standard deviation of the response distance to 

the VMS, in meters) and cognitive effort (mean heart rate) in the distraction 

conditions. 
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These results suggest that the cognitive distraction coming from the use of a 

hands-free phone affects the processing of messages presented on a VMS, and increase 

the driver’s cognitive effort. The increase of variability of response distance in the 

VMS task and in mean heart rate under cognitive distraction (either visuospatial or 

conceptual) indicated that the driver’s central attention demands were higher. 

Moreover, as expected, a diverging pattern of results was observed when considering 

the specific cognitive resources required by the conversation (i.e., visuospatial or 

conceptual processing) or the kind of task (i.e., low-demanding driving sub-tasks, such 

as the lateral or longitudinal control of the vehicle in quiet traffic circumstances, or a 

higher demanding task, such as making a decision on the VMS contents). Therefore, 

this study provides new evidence to further discuss previous studies reporting 

significant or absent effects of cognitive distraction coming from a phone conversation 

on different aspects of driving. The results also have some implications and provide 

new evidence to further discuss hands-free phone policies. 
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ABSTRACT  

 

Mobile cellular phones (including smartphones) have become an integral part of our 

daily activities. College students report using their phones for texting, calling, and other 

uses in all sorts of seemingly inappropriate situations, such as during class, during meals, 

while driving, in the shower, at the movies, while studying, and interacting with people 

face-to-face [1], [2]. When using the phone behind the wheels, studies have found that 

distraction caused by phone use leads to unsafe behaviors, as reflected by longer reaction 

times, impaired visual search and lane keeping, and reduced awareness of the driving 

environment [3], [4]. Given the high prevalence, studies have investigated ways to reduce 

distracted driving. However, the effectiveness of existing legislative efforts is inconclusive 

[5], [6]. Government agencies as well as health and safety advocacy organizations are 

dedicated to combat distracted driving by promoting campaigns and pledges to increase 

public awareness. The effect of these efforts has been limited and failed to show long-term 

benefits [7]. Therefore, innovative efforts are critically needed to design beneficial, 

sustainable, and effective educational campaigns and associated messaging and activities to 

change behaviors, attitudes, and experiences about distracted driving [8], [9].    

The current qualitative study was designed to: 1) Understand college students’ 

attitudes towards technology use and phone use behaviors, social factors related to 

distracted driving, mitigation strategies, and laws and perceived effectiveness. 2) 

Collect ideas for interventions for a college-based campaign.    

Focus groups with college students were then conducted to gather their 

experiences, behaviors, perceptions, and attitudes related to technology and phone use 

while driving (9 focus groups were conducted, number of participants varied between 

4 and 8). A focus group guide was developed that included the aforementioned topics 

related to distracted driving. At the end of each focus group, participants were asked to 

report their level of engagement in technology and phone use behaviors while driving 

on a scale of 1 to 5, with 1 being never and 5 being very often, in the past 3 months 

(own behavior). In addition, participants reported the level of engagement in these 

activities they believe a safe driver in their age group would do (expected behavior). 

Each focus group session lasted about 1 hour, and participants were compensated for 

$30. This study received approval from the Institutional Review Board for conducting 

human subjects research from the authors’ university.   

A total of 56 students (32 women, 42 with unrestricted driver’s license, 14 with 

restricted license, 33 Whites) currently enrolled in a university in Northeastern US 

were recruited. The average age of the participants was 19.93 (SD = 1.49), average age 
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when obtained their driver’s license was 16.73 (SD = 0.98), all but 3 lived in urban or 

suburban areas, 70% of them drove at least 2-4 times a week, most of them did not 

have any major and minor accidents in the past 3 years (91% and 59%, respectively), 

and most of them self-reported always wore a seat belt when they were a driver and a 

passenger in the past month (86% and 73%, respectively).  

Table 1 lists the 6 most frequent (out of 17) self-reported technology and phone 

use behaviors when the participants were the driver (averaged rating above 2.5) and 

the corresponding expected behaviors from a safe driver in their age group as well as 

the results of paired sample t-test. On average, participants’ own behaviors were less 

ideal than those of their expected safe peers.      

 
Activity Own 

behavior 

Expected 

behavior 

t-test 

Chatting with passengers if there are any while driving 

 

4.56 3.44 6.21* 

Adjusting the audio system using controls on the console while 

driving 

4.38 3.02 7.40* 

Manually entering an address into a navigation app on a smartphone 

that is not mounted inside the vehicle while the car is moving 

3.07 2.02 4.86* 

Reading a text message on a hand-held device (e.g., cell phone) 

while the car is moving 

2.71 1.97 3.45* 

Talking on a hand-held cell phone while driving 

 

2.71 2.15 2.56* 

Talking on the phone using a hands-free device (e.g., Bluetooth 

headset) 

2.57 2.74 -1.13 

*Denotes significance at .05 level 

Table 1. Secondary task engagement: own vs. expected behaviors from a safe driver. 

 

After transcribing the audio recordings from the focus groups, inductive 

thematic analysis [10] was used to identify and analyze themes within this qualitative data.  

A few themes emerged from the focus group: 1) Projected and actual technology use: 

most participants reported needing, wanting, even being forced to use technology to 

accomplish daily tasks. Participants expressed feeling lost and disconnected without 

their phones, for example, “cannot call an Uber” if they needed a ride. 2) Current 

beliefs about phone use while driving: Most participants stated that technology/phone 

use was a form a distraction and they sometimes “swerved or not checking their 

mirrors” because they were looking at the phones. Interestingly, many considered 

checking on songs or music options not distracting, but checking on text messages 

distracting. 3) Behaviors changed over time: Some said that they initially did not touch 

their phones much while driving but when they started to see other drivers’ phone use 

behaviors (e.g., texting at a stoplight) and it seemed fine, they started to do it, too. 4) 

Knowledge of current regulations: Most of the participants were unaware of the laws, 

but agreed with the idea of punishing people who undermined road safety. Some 

participants questioned if the bans applied to all aspects of driving, including stopping 

at a red light. 5) Motivational strategies for mitigation: Participants shared their own 

strategies (e.g., silencing the phone, keeping it out of reach) and suggested methods for 

minimizing problematic phone use, such as increasing fines and tickets,  making the 

phone less appealing, and increasing insurance rates. Most participants wanted to 

change the norms about having the pressure to respond right away.  
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Overall, there are misperceptions of safety and acceptable behaviors (e.g., 

texting is safe and legal at red lights). There is also discrepancy between own 

behaviors and expected behaviors from a safe driver. Understanding college students’ 

experiences, perspectives, and attitudes about technology/phone use could help design 

interventions that target adolescents and young adults as they start driving and living 

independently and being responsible for their own finances and safety. Intervention 

strategies should capitalize their desires to be socially and technologically current, 

knowledge about phone use, and wishes for safety and entertainment while driving. 

For example, one intervention could focus on comparing checking on music vs. text 

messages while driving in a portable driving simulator.  
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EXTENDED ABSTRACT 

 

In-vehicle information systems allow drivers to engage in secondary tasks, such as 

selecting music via the infotainment system, while driving. However, interacting with 

such systems can lead to visual, manual as well as cognitive distraction. Assessing in-

vehicle system demand while driving is, therefore, a central topic in driver distraction 

research. There is evidence based on different studies that visual-manual secondary 

tasks are associated with a decrease in driving performance, especially due to long off-

road glances [1]. Interacting with voice-based in-vehicle systems is, however, also not 

without controversy [2]. Findings indicate that voice-based commands lead to 

cognitive distraction, and hence, to longer reaction times and greater speed variability 

[e.g., 3, 4, 5]. Others, however, reported that cognitive demand while driving is 

associated with improved driving performance parameters, such as a better lane 

keeping [e.g., 6].      

In order to avoid collisions due to distraction, it is car manufacturers’ 

responsibility to minimize distraction elicited by integrated in-vehicle information 

systems. To assess this, easy-to-implement and low-cost methods are needed. One of 

these methods is the Lane Change Task (LCT) developed by Mattes [7]. According to 

the ISO standard [8], participants’ path deviation serves as a measure for secondary 

task demand in the LCT. However, this measure cannot distinguish accurately between 

different secondary task demands (e.g., visual, manual or cognitive ones; see e.g., [9]). 

In this area, the combination of the Box Task and the Detection Response Task 

(BT+DRT; [10]) is a relatively new method, which is based on the Dimensional Model 

of Driver Demand [see 11]. During the BT, participants’ physical (i.e., visual-manual) 

demand associated with the driving task in a car-following scenario is assessed. 

Simultaneously, participants have to react to a tactile stimulus, which makes it 

possible to assess cognitive demand (see DRT, [12]). Thus, different secondary task 
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demands can be assessed separately. However, to date, there has only been little 

research on the sensitivity of the BT+DRT (see [13]).   

The objective of the present study was to validate the BT+DRT by comparing the 

sensitivity of this method with the sensitivity of the already established LCT.  

 

Method 

 

Participants: Fifty-two participants (26 female, 26 male) with a mean age of 44 years 

(SD = 20.19) took part in this study.  

Design. A 2 x 5 within-subject-design was used, with method (BT+DRT, LCT) and 

secondary tasks (no secondary task, visual-manual easy, visual-manual difficult, 

cognitive easy, cognitive difficult) as independent variables. 

Material: In the BT+DRT condition, participants had to hold a blue box within two 

yellow boundaries (see Figure 1). The box was changing its size and position within a 

sinusoidal pattern. To adjust box position and box size, steering wheel and gas pedal 

had to be used, respectively. Simultaneously, participants had to react to a tactile 

stimulus located on participants’ right shoulder by pressing a button on the steering 

wheel. According to the ISO norm [11], the stimulus consisted of a vibration every 

three to five seconds. In the LCT condition, participants were instructed to drive on a 

three-lane road with a constant speed of 60 km/h. Participants had to change lanes 

according to signs appearing along the roadside. As visual-manual secondary task, the 

Surrogate Reference Task (SuRT; [14]) was used in an easy and difficult version. To 

assess cognitive demand, participants had to engage in an easy and difficult counting 

task (see [15]).  

 

 
Figure 1. Box Task example screen: The two yellow squares represent the guide boxes 

(i.e., inner and outer boundaries). 

 

Procedure. Participants had to complete two test blocks (BT+DRT and LCT). After 

familiarizing themselves with the primary driving task (BT+DRT/ LCT), participants 

completed a baseline run. Afterwards, the four secondary tasks had to be performed in 

addition to the BT+DRT/ LCT. Participants should “drive” safely and should engage 

simultaneously in the SuRT or counting task (i.e., attention should be paid to both the 

primary driving task and the secondary task). Each run lasted approximately three 

minutes. Methods and secondary tasks were balanced.  
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Results 

 

Regarding the BT, the variability of box position (SDLatP) and box size (SDLongP) 

serve as measures of physical demand. Friedman’s ANOVA revealed significant 

results in terms of box position variability (χ² (4) = 99.247, p < .001) and box size 

variability (χ² (4) = 84.727, p < .001) across the secondary task conditions. Participants 

performance in the BT was the best during the baseline, the worst during the difficult 

SuRT condition (see Figure 2). Moreover, the results concerning the DRT showed that 

hit rate was lowest and mean reaction time was highest during the difficult counting 

condition. Regarding the LCT, we analyzed participants’ path deviation (MDEV) using 

the adaptive model. Similar to the results of the BT, Friedman’s ANOVA revealed 

significant differences across secondary task conditions (χ² (4) = 82.338, p < .001). 

Here too, participants showed the lowest mean deviation during the baseline, the 

highest during the difficult SuRT condition (see Figure 2).  

 

 
 

Figure 2. Mean standard deviation of box position and box size in the BT (left) as well 

as mean deviation in the LCT (right) across the secondary task conditions. 

 

Moreover, secondary task performance and mental workload differed significantly 

between BT+DRT and LCT, indicating that performing the LCT was more demanding 

than performing the BT+DRT. This difference was particularly pronounced with regard 

to the visual-manual secondary task SuRT.    

 

Conclusion 

 

The results of the present study indicate that the BT is a sensitive method to 

investigate visual-manual secondary task demand while driving. The results were 

comparable to those of the LCT. However, because of the integration of the DRT, the 

BT+DRT offers the opportunity to distinguish between different dimensions of driver 

distraction. Both LCT and BT seem to be especially sensitive to visual-manual 

distraction effects, while the DRT mainly covers cognitive demand. However, it has to 

be noted that the BT is also sensitive to cognitive distraction effects, albeit in 

weakened form. The analysis of mental workload showed that performing the 

BT+DRT is less demanding than the LCT. Hence, the BT+DRT seems to be a cost-

effective and easy-to-implement method to assess in-vehicle system demand.  
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INTRODUCTION 

Executive functions (EF) are a set of cognitive functions that are required to optimize the 
performance in complex tasks by regulating one’s behavior according to internal goals and 
environmental demands [1]. The study of EF capacities, in particular inhibition, seems to be 
important to understand the interindividual differences in driving abilities [2,3]. In this 
context, many studies have focused on inhibition assessed by the interference effect in the 
Stroop task [3]. However, inhibition is not a unique process and involves attentional and 
motor aspects that are confounded in the interference effect. Few studies have investigated the 
implication of the motor counterpart of inhibitory mechanisms in driving abilities [3]. 

On another note, many studies have found a link between behavioral measures of risk-taking 
and risky driving in adolescents [4] and offenders [5]. To our knowledge, no study explored 
the impact of individual differences in performance-based measures of risk-taking on driving 
behavior. The aim of our study was (1) to analyze separately the predictive power of tasks 
involving interference resolution and response inhibition and (2) to assess the influence of 
risk-taking on on-road driving capacities. 

MATERIALS AND METHODS 

957 participants (457 females), aged from 18 to 92 years old, performed three experimental 
tasks: the Simon task [6], the Stop Signal task [7] and the Balloon Analog Risk Task [8], 
followed by an on-road test in 47 testing centers across France. 

Simon task Participants performed 2 blocks of 129 trials of the choice reaction time (RT) task 
in which a stimulus (either a square or a circle) was presented on the right or the left side of a 
screen. Participants had to respond as fast and accurately as possible according to the 
stimulus’ shape and the stimulus-response mapping: square - right finger press; circle - left 
finger press. Half of the trials were congruent (the stimulus’s location corresponded to the 
expected response) and half were incongruent (the stimulus’s location did not correspond to 
the expected response). Global RTs and error rates were collected. Interference effect was 
measured by subtracting the mean RTs on incongruent and congruent trials. Additionally, the 
Gratton effect was calculated to assess the participants’ capacity to engage adequate 
behavioral adjustments[9]. 

Stop Signal task Participants performed 2 blocks of 129 trials of the choice RT task in which 
they had to respond as quickly as possible according to a stimulus (Go signal). In 25% of the 
cases, a Stop signal was presented during the course of the trial, and indicated to the 
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participants to withhold their response by reactively inhibiting their engaged motor command. 
The time delay between the Go and the Stop signals was incrementally adjusted according to 
failed or successful stopped responses in order to compute the Stop Signal Reaction Time 
(SSRT), an index of motor inhibition capacities. Task design and SSRT calculation were 
made in agreement with the consensual recommendations of Verbruggen et al. (2019) [10].  

Balloon Analog Risk Task (BART) The goal was to accumulate a maximum of points by 
pumping a series of 30 simulated balloons with a button press. The balloons could explode if 
participants reached a maximum pumping time fixed for each balloon. At any time during a 
trial, participants could stop pumping to save the amount of points accumulated. The average 
pumping time on unexploded balloons was interpreted as an index of risk-taking, where a 
greater time pumping indicated more risk-taking [8]. 

Driving performance assessment Participants performed a 30-minute on-road session with a 
professional driving instructor. The instructor filled a French version of the Test Ride for 
Investigating Practical Fitness to Drive (TRIP), which is a 62-item grid assessing multiple 
components of the task of driving [11]. Global score was standardized on a scale of 100. Four 
additional scores based on the hierarchical model of driving behavior by Michon [12] were 
calculated following the work of Ranchet et al. [11]: the operational score (11 items), related 
to immediate reactions such as braking; the tactical score (12 items), reflecting proactive 
components such as anticipation and safety distance; the tactical compensation score (7 
items), investigating adaptive behaviors like the choice of speed; and the strategic 
compensation score, a 16-item questionnaire assessing the driving conditions that are usually 
avoided (e.g., high traffic, night driving). 

Statistical analysis Linear mixed models were fitted to predict the driving performance with 
test variables as fixed effects and both age and monitor as random intercept effects. 

 

RESULTS 

 

Table 1: F-statistics of the ANOVAs for each test variable and driving score. Reaction time 
and error rate refer to performances obtained in the Simon task. The color code represents the 
direction of the significant effect (red and blue for positive and negative slopes, respectively). 

Strategic compensation score increased in individuals showing higher mean RTs in the Simon 
task, but decreased in individuals showing higher Gratton effects or higher average pumping 
time at the BART. Tactical score was only predicted by the average pumping time: scores 
increased in individuals with higher risk-taking. Operational and global scores were smaller in 
individuals with higher RT and greater in individuals with higher average pumping time. 
Operational score also decreased with higher SSRT. Interestingly, the risk-taking index 
predicted the variance of almost all driving scores whereas out of the two inhibition measures 
(i.e interference effect and SSRT), only the SSRT predicted part of the driving performance. 

DISCUSSION  
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The current study explored how objective scores obtained in psychological tests can predict 
the capacities necessary for safe driving. Higher risk-taking individuals showed better driving 
performances and less strategic avoidance of difficult situations. Unexpectedly, both motor 
inhibition and interference resolution failed to predict most of the driving performance. Risk 
taking tendency was however a high predictor of driving capacities. 

This study showed that both types of inhibition assessed by the interference effect and the 
SSRT are limited in predicting driving capacity in an ecological setting. Although the 
executive functions are essential, our study suggests that testing them in a non-pathological 
population barely informs on the ability to drive. As long as executive functions are 
operational, personality factors such as risk-taking tendencies appear to be a much better 
evaluation criterion of the safety of the driving behavior. 

Acknowledgment: This study was part of a project between ECCA-Conduite, the University 
of Lille and the CNRS. 
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ABSTRACT 

 

Variable message signs (VMS) visually inform about unexpected and special traffic 

situations in the driving environment. However, the identification of the message on a 

VMS can be practically impossible in some circumstances, for example, if there are 

technical problems with the device, or in adverse environmental conditions. Research 

on in-vehicle systems shows that drivers can benefit from bimodal (audiovisual) 

messages [1]. Interestingly, there is evidence that drivers remember messages better if 

they are received through the auditory system than through the visual one, in particular, 

messages indicating the route to follow [2]. However, other results [3] do not support a 

possible general advantage of auditory messages over visual ones, nor an advantage of 

audiovisual messages over unimodal ones. In any case, these results, observed in the 

study of in-vehicle systems, might not generalize to the case of messages presented in 

VMS.  

 

The main objective of this work was to study if bimodal (audio+visual) messages 

can contribute to improve the processing of VMS messages, as compared to only visual 

messages. Besides, we tested if autonomous driving would affect the processing of 

traffic messages displayed on VMS, particularly, whether drivers would be more 

capable to identify the critical messages when they were freed from the burden of 

manual control. 

 

Two samples of 18 drivers, matched in gender and age, participated in two 

separated experiments in a Carnetsoft driving simulator. All participants held a Spanish 

B category driving license. The study was approved by the research ethics committee of 

the University of Valencia. In both experiments, there were two message conditions. In 

the visual one, only the text of the VMS was available. In the audio+visual condition, they 

heard the content of the VMS as an audio just before they could read the VMS text (a 

concurrent presentation of the audio and visual messages was discarded, to prevent 

possible interference effects that may lead the participants to focus on only one of them, 
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depending on their preferences). In the first experiment, participants drove manually and 

had to do two tasks. In the VMS-related task, they had to read the messages displayed 

on the VMS posted along the route, and to indicate (as soon as possible but without 

making errors) whether the message was providing information about irrelevant or 

potentially hazardous situations, by manually pressing the correct lever behind the 

steering wheel. At the same time, they had to do a car-following task, i.e., to keep a 

constant distance to the preceding car. In the second experiment, drivers activated the 

autonomous mode and only had to do the VMS-related task. 

 

We analyzed the effects of this experimental manipulation of message condition 

(visual versus audio+visual messages) and driving mode (manual versus autonomous 

driving) on two aspects of the reading task performance: a) response accuracy, as 

measured by the percentage of correct responses to the VMS-related task, and b) 

response distance, i.e., the distance to the VMS when the driver gave the correct 

response. Response accuracy was analyzed using generalized linear mixed models with 

the package lme4 v1.1-5 [4] and implemented in R [5]. A model with a binomial 

distribution (logit): accuracy ~ driving mode * message condition + (1 | participant) 

was used. Response distance was analyzed by means of the traditional frequentist 

analysis of variance (ANOVA) with the IBM SPSS Statistics 24 software. In both 

cases, the variable message condition was included as an intra-subject factor (visual 

versus audio+visual), and the variable driving mode, as an inter-subject factor (manual 

versus autonomous driving).  

 

No interaction was found between message condition and driving mode in the mean 

response distances. However, the main effects of driving mode, F(1, 34) = 7.27, p = 

.011, η2 = .176, and message condition, F(1, 34) = 745.91, p < .001, η2 = .956, were 

statistically significant (see Table 1). We also found no interaction between the two 

variables in accuracy, but the main effects were significant. For driving mode, Estimate 

= 1.37, SE = 0.62, z = 2.22, p = .027, and for message condition, Estimate = 1.37, SE = 

0.57, z = 2.40, p = .017 (see Table 1). On the one hand, the audio+visual condition was 

better than the visual one, both in response accuracy and response distance. On the 

other hand, response accuracy in the reading task was slightly better in the autonomous 

driving mode than in the manual one. Nevertheless, participants responded to the 

messages at longer (i.e., safer) distances to the VMS when driving manually.  

 

 
Driving 

mode 

Message 

condition 

Accuracy 

(%) 

SD CI 95% Mean 

response 

distance 

SD CI 95% 

         

Manual 
Visual 95.73 2.03 93.05 97.59 103.1  24.3 92.7 113.4 

Audio+visual 98.85 1.07 97.09 99.69 180.9 13 175.7 186.2 

Autonomous 
Visual 98.84 1.07 97.32 99.62 86.7  18.7 76.3 97.1 

Audio+visual 99.31 0.83 97.98 99.86 170.9  8.5 165.6 176.2 

          
 

Table 1. Accuracy (%) and response distance (m). Note: SD = Standard Deviation; CI 95% = Lower 

(left) and higher (right) values of the 95% Confidence Interval 
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Regarding the advantage of the audio+visual condition, these results replicate the 

findings by [6]. Concerning the differences between autonomous and manual driving, 

the autonomous driving was associated with delayed, although slightly more accurate 

responses in the VMS-related task. This suggests that the autonomous mode, despite 

relieving the driver from the burden of vehicle control, was not associated with an early 

identification of the VMS message. The significant reduction of response distances in 

the autonomous mode implies that drivers might partially disregard the processing of 

messages displayed on VMS. One explanation for this disregard for the VMS could be 

related with the phenomenon called “mind-wandering”, reported by other authors [7] 

when comparing manual versus autonomous driving. It could be that our participants 

suffered “mind-wandering” and this made them to react later. In addition, the increased 

accuracy observed in the autonomous mode might be a consequence of a trade-off with 

the response distance variable, i.e., drivers responding later had more time to process 

the traffic messages and, in addition, legibility of the VMS was better at shorter 

distances. 

 

The present results come from a relatively simple task (short predictable messages 

and responses and no complex interaction with other vehicles). Consequently, further 

studies would be required to assess the practical relevance of these results in real, more 

complex driving situations. All in all, the current study provides new evidence about 

the influence of autonomous driving, in particular, when processing messages on VMS. 
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ABSTRACT 

Phone use while driving has been a significant public health and safety challenge at the global level 

[1]. Many psychosocial, societal, and environmental factors as well as demographic variables have 

been linked to frequency of phone use while driving [2]. For example, boredom and habitual phone 

use are positively related to increased phone use while driving for young men; however, daily 

frequency of phone use positively predicted phone use while driving for young women [3]. Drivers 

also report phone use while driving as a strategy to alleviate boredom and drowsiness while having 

social interactions with others [4].  

 

The COVID-19 pandemic has disrupted our daily routines in unprecedented ways. Data collected 

in the early phase of the pandemic (February-April, 2020), when many nations started to impose 

lockdown and stay-at home orders, indicated trends of reduced driving and traffic volumes but 

increased driving speeds, more frequent strong acceleration and braking, and increased phone use 

while driving [5], [6]. These changes may be motivated by anxiety due to uncertainty about the 

future, need for entertainment, news, and social interactions, individual differences, and changes of 

traffic patterns, just to name a few. The current study aimed to shed some light on one of the open 

questions, that is, to evaluate the motivating factors for phone use while driving during the 

pandemic with the purpose of replicating findings [3] from a non-pandemic period.  

 

Data was collected via Amazon Mechanical Turk during the week of April 20, 2020. Individuals 

who held the status of a Mechanical Turk master, was an adult, and resided in the USA were 

eligible to participate. This study received the Institution Review Board approval from the author’s 

university. The survey items were programed in Qualtrics and included several validated 

psychosocial scales: The Need to Belong Scale [7], the Fear of Missing Out Scale [8], Perceived 

Attachment to Phone Scale [9], Habitual Smartphone and Internet Behavior Scale [10], [11], the 

Self Regulation Scale [12], the Boredom Proneness Scale [13], [14], and the Abbreviated version 

of the Big Five Inventory [15]. The rest of the survey items are detailed below:  

 

(A) Mobile Phone Use While Driving items. These questions were about the frequency of using 

mobile phones or smartphones while driving, and the phone applications (e.g., texting, GPS, etc.) 

typically used while driving. These questions were presented twice—for participants to indicate 

their answers from two time periods: before the pandemic and now during the pandemic. (B) 

Information and Communications Technology (ICT) items. ICT was defined as “the integration of 

telecommunications and computers as well as necessary software, hardware, and audiovisual 

systems that enable users to access, store, transmit, and manipulate information and to 

communicate in a digital form.” These questions were about the time spent using ICTs for getting 

news on a daily basis. These questions were also presented twice—before the pandemic and now 

during the pandemic. (C) Demographic Questionnaire items. There were 16 questions that asked 

for participants’ age, gender, when they obtained their driver’s license, whether they had a valid 

license now, residence, race and ethnicity, education, income, employment status, weekly 

frequency of driving before and during the pandemic, annual mileage, number of accidents in the 
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past 3 years, frequency of using seat belt, and whether they heard of autonomous vehicles. (D) 

Attention Check Questions. Three attention check questions were used to help identify inattentive 

participants and to provide progress status, as they appeared after each quarter (1/4, 1/2, and 3/4) in 

the survey.   

 

On average, participants took 16 minutes to complete the survey. Eight of the participants provided 

at least one invalid answer to the three attention check questions and were removed from the 

dataset; therefore, the final sample size was 394, with 219 men and 175 women and ages ranging 

from 20 to 76. SPSS version 26 was used for the analyses. Correlations of the variables were check 

and there was no evidence of multicollinearity (all the Spearman correlation coefficients were 

smaller then .6). The frequency of phone use while driving variable was dichotomized to reflect a 

low (fewer than 1) and high (more than 2) frequency of use out of 5 trips.  

 

The first logistic regression was used to model the relationship between frequency of phone use while 

driving (low vs high) and the psychosocial, ICT use, and demographic variables before the pandemic. 

These variables were entered in three blocks, with block 1 consisting of psychosocial variables, block 

2 consisting of ICT use variable, and block 3 consisting of demographic variables. Insignificant 

variables were removed with each iteration. The final model had Nagelkerke R of .24 and Hosmer 

and Lemeshow Test of χ2 (8, N = 394) = 7.60, p = .47, indicating good fit to the data. The model had 

an overall accuracy of 70.20%. For each one-point increase on ratings of boredom proneness, need 

to belong, number of phone application used before pandemic, and number of accidents, there were 

odds of higher frequency of phone use while driving by a multiplicative factor of 1.04, 1.03, 1.32, 

and 1.93, respectively. Younger individuals and individuals with higher incomes were 1.03 and 1.37 

times, respectively, more likely to report higher frequency of phone use while driving. Interestingly, 

for each one-point increase on ratings of habitual internet use, there were odds of 1.76 times lower 

frequency of phone use while driving. 

 

The second logistic regression was used to model the relationship between frequency of phone use 

while driving and the psychosocial, ICT use, and demographic variables during the pandemic. The 

same modeling approach was used. The final model had Nagelkerke R of .30 and Hosmer and 

Lemeshow Test of χ2 (8, N = 394) = 9.49, p = .30, indicating good fit to the data. The model had an 

overall accuracy of 77.10%. For each one-point increase on ratings of boredom proneness, habitual 

smartphone use, number of phone application used during pandemic, and number of accidents, there 

were odds of higher frequency of phone use while driving by a multiplicative factor of 1.05, 1.43, 

1.43, and 2.24, respectively. In addition, younger individuals and individuals with higher income 

were 1.05 and 1.25 times, respectively, more likely to report higher frequency of phone use while 

driving. However, for each one-point increase on ratings of habitual internet use, there were odds of 

2.47 times lower frequency of phone use while driving.  

 

These findings supported the links between boredom and phone use while driving [3] as well as 

between social interactions and phone use while driving [4] that were observed prior to the pandemic. 

Our finding also supported the link between phone use while driving and age and income [16]. One 

surprising finding was the association between higher habitual internet use and lower phone use 

while driving from this sample. While the benefits of internet use on stronger perceived social support 

and decreased loneliness have been documented [17], its impact on other types of social interaction 

activities, such as phone use while driving, should be further examined. Overall, the current results 

indicated some consistency, at least based on participant recalls and self-reports, in phone use while 

driving patterns and motivating factors during the two periods – before and during the pandemic.  
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ABSTRACT 

 

Driver anger – characterized as a personality trait related to driving and the predisposition to 

experience anger frequently and intensely across situations [1] – has been linked to increased crash 

risk [2]. Recently, efforts have been made to detect angry driving behaviors and anger-provoking 

traffic situations early enough so that timely and affective mitigation strategies can be 

implemented to improve driver emotions [3]. For example, music, voice, and ambient light, have 

been experimented and found to have some effect on decreasing driver anger [3], [4].  

 

One way to monitor the changes in driver anger and other emotional states is through the 

collection of drivers’ physiological signals, such as heart rate, skin conductance, respiration rate, 

and characteristics of electroencephalography and electromyography (EMG) [5]. While the 

association between facial EMG and emotional expressions has been studied in experimental 

psychology [6], [7], this biosensing approach is new to the driving context. One of the primary 

facial muscles associated with negative emotion, frustration, and anger, is the corrugator 

supercilia, which is also responsible for producing frowns [8]. The goal of this research was to 

investigate the relationship between the corrugator supercilia activations through facial EMG and 

driver anger, while using self-reported emotions as confirmation. The results of this research are 

expected to establish feasibility of inferring driver anger and affective state through facial EMG 

sensing and monitoring.  

 

This initial proof-of-concept study took place in a driving simulator environment and investigated 

three hypotheses: 1) Corrugator supercilia activation would increase during anger-provoking 

driving events when compared to baseline. 2) Upon experiencing anger-provoking events, 

participants would report higher levels of subjective anger when compared to baseline. 3) 

Participants who scored higher on trait driving anger would experience greater feelings of anger 

upon experiencing anger-provoking events than participants with lower trait driving anger.  

 

The driving simulator used in the current study was a Realtime Technologies desktop simulator 

comprised of driver’s seat, pedals, and a Logitech steering wheel. The simulation was displayed on 

a 1920x1080 desktop monitor. The simulated environment was built with SimVista and 

SimCreator software. The driving environment included rural and urban settings with variations of 

buildings, trees, straight and curved roads, intersections, and construction zones. In total, 

participants completed three drives: the training drive allowed the participant to familiarize 

themselves with the driving simulator, and two experimental drives—a control drive and an event 

drive. The order of the experimental drives was counter-balanced to prevent order effects.  
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Facial electromyography (EMG) data were collected via a BIOPAC MP 150 system with the 

Electromyogram Amplifier (EMG100C). The EMG was set to a sample rate of 1000/second, gain 

at 2000, and 100HzHP (OFF) & 500HzLP. The electrodes used were BIOPAC EL513 – disposable 

cloth electrodes designed for facial EMG. EMG data were collected and processed using 

AcqKnowledge 4.3 software. Two shielded electrodes were placed on the area of the corrugator 

supercilia (+/-) and a ground electrode placed just below the cheekbone, in accordance with the 

established research protocol [9].  

 

The Driving Anger Scale (DAS) [1] (14-item on a scale of 1-5, reliability of .80) was used to 

measure the general trait driving anger. The Discrete Emotions Questionnaire (DEQ) [10] was 

used to measure basic emotions, such as anger, sadness, and happiness on a scale of 1-7. The DEQ 

was administered four times throughout the study and served as a manipulation check. A 

demographic questionnaire was used to collect age, gender, and years of driving experience. A 

motion sickness screening questionnaire was used to screen out participants who may be 

susceptible to experiencing motion sickness symptoms.   

 

Anger was induced through the use of traffic events, navigation directions, and time pressure. 

There were 12 anger-provoking traffic events [11] in the event drive and we reasoned that with 

repeated exposure, the feelings of negative emotions (e.g., anger) would be compounded. These 

events were placed throughout the entire event drive but occurred more frequently in the beginning 

of the drive to invoke an effect earlier in the experiment. For comparison purposes, the control 

drive had identical road network and ambient traffic, but did not have any anger-provoking events. 

Navigational directions were provided to participants in the form of a directional arrow in the 

white box in bottom right of the simulator display (Figure 1). Turn by turn directions were 

provided when participants approached intersections, for the purpose of directing them through a 

preprogrammed path. Alternate routes were built into the environment which would allow 

participants to recover from a missed turn. Time pressure was manipulated via a countdown timer 

shown at the top of the simulator display (see Figure 1), for the purpose of creating a sense of 

urgency for completing the experimental drives. If participants did not finish the drives within 10 

minutes, a message would appear and ask participants to stop the car.  

 

Figure 1. Configurations of Driving Simulator and Simulator Display.  

  
Upon entering the lab, participants were directed to read and sign a consent form. Then, 

participants were verbally administered a motion sickness screening questionnaire and completed 

DAS and the demographic questionnaire. Next, participants sat in the driver’s seat of the 

simulator, while an experimenter attached EMG electrodes to their respective locations on the 

participants’ faces. A 2-minute baseline EMG recording was then conducted while participants sat 

quietly. The participants then completed the DEQ. Participants were read the instructions and 

proceeded to complete the training drive, which lasted for 5 minutes. Included in the instructions, 

Participant’s 

speed 

Countdown 

timer 

Navigational 

directions 
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participants were told to assume they are driving in an unfamiliar place, to abide by all traffic laws, 

avoid collisions, and follow the speed limit of 20 mph. Participants then completed the DEQ the 

second time. Half of the participants then proceeded to experience the control drive, complete the 

DEQ the third time, and then experience the event drive. The other half of the participants 

experienced the event drive, complete the DEQ, and then experience the control drive. Once the 

second experimental drive was completed, participants completed the DEQ the fourth time. On 

average, participants took 40-50 minutes to complete the experimental procedures. 

 

A total of 22 participants (10 females) were recruited, with the mean age being 22.1 (SD = 5.3) 

and years of driving experience being 5.5 years (SD = 5.4). The dependent variables of this 

research were trait driving anger, facial EMG activations, and self-reported emotions. EMG values 

were analyzed using AcqKnowledge 4.3, the raw EMG was processed using the root mean square 

at an interval of 0.03 seconds. Data analysis is on-going and will be completed before the 

conference.  
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