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What is AMLAS?

* AMLAS provides

ASSURING * Defined process

AUTONOMY
INTERNATIONAL PROGRAMME

* Set of safety case patterns

urance of Machine Learning in Autonomous Systems

* AMLAS enables

1. Integration of safety assurance into
development of ML components

2. Generation of evidence base for
justifying acceptable safety

* Resulting in structured safety
case for ML component

https://www.york.ac.uk/assuring-autonomy/guidance/amlas/



AMLAS Overview
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Guidance Structure

Stage 1. ML Safety Assurance Scoping

Objectives
1. Define the scope of the safety assurance process for the ML component.

2. Define the scope of the safety case for the ML component.

3. Create the top-level safety assurance claim and specify the rel [. | infor ion for
the ML safety argument.

Inputs to the Stage
[A] : System Safety Requirements

[B] : Description of Operating Environment of System
[C] : System Description
[D] : ML Component Description

[F] : MLA e Scoping Arg! Pattern
Outputs of the Stage
[E] : Safety Requirements Allocated to ML Component
[G] : ML Safety A e Scoping A
Description of the Stage

As shown in Figure 27, this stage consists of two activities that are performed to define the safety assur-
ance scope for an ML component. The artefacts generated from this stage are used to instantiate the

ML safety e SCOpIng arg: pattern as part of Activity 2. An ML component comprises an ML
model, e.g. a neural network, that is deployed onto the i ded ¢ sting platform (i.e. comprising
both hardware and software).

Additional guidance on the use of ML for autonomous systems can be found at [9).

Activity 1: Define the Safety Assurance Scope for the ML Component [E]

This activity requires as input the system safety requirements ([A]), descriptions of the system and
the operating environment ([B], [C]), and a description of the ML component that is being considered
([D]). These inputs shall be used to determine the safety requirements that are allocated to the ML
component.

The safety requir I d to the ML comp ushzllbe“’ d to control the risk of the
identified contributions of the ML P 1t to system h . This shall take account of the defined
system architecture and the operating environment. At this stage the requi is ind dent of

any ML technology or metric but instead reflects the need for the component to perform sale!v with
the system regardless of the technology later deployed. The safety requirements allocated to the ML
component generated from this activity shall be explicitly documented ([E]).

*In the AMLAS process diag activities. symbols input or output artefacts.
bchdocmtmnbolhaam-quelD(lnnM)Mnusedlorefalomeaneh((mlhep-dmmalhemmﬂl
pattern, e.g. [A] is a reference to artefact A
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Figure 2: AMLAS ML Assurance Scoping Process

Consider an autonomous driving application in which a subsystem may be required to identify
pedestrians at a crossing. A component within the perception pipeline may have a requirement
of the form “When Ego is 50 metres from the crossing, the object detection component shall
identify pedestrians that are on or close to the crossing in their correct position.”

The allocation of safety requirements must id chity | fe such as redundancy
when allocating the safety requirements to the ML component. Where redundancy is provided
by other, non-machine-learnt components, this may reduce the assurance burden on the ML
component that should be reflected in the allocated safety requirements.

The contribution of the human as part of the broader system should be considered. A human
mmmmw«thmedﬂndmmth

ributions, and any ciated human factors issues, e.g. automation bias [59], should
be reflected when allocating safety requi to the ML component.

Artefact [A]: Sy Safety Requi

The safety requi are g d from the system safety assessment process. Such a process
covers hazard identification and risk analysis. Importantly, it shall determine the contribution, i.e. in
the form of concrete failure conditions, that the output of the machine learning component makes to
potential system hazards. A simplified linear chain of events that links a machine learning failure with
a hazard is illustrated in Figure 3.
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Scoping Example

* Understand and define
» System Architecture (see next slide)
* System Operating Environment (see below)
* System Safety Requirements
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Allocating safety requirements

Consider an autonomous driving application in which a subsystem may be required to identify
pedestrians at a crossing. A component within the perception pipeline may have a requirement
of the form “When Ego is 50 metres from the crossing, the object detection component shall
identify pedestrians that are on or close to the crossing in their correct position.”
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2. ML Safety Rgts Assurance
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Environment Context
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Peocrds:

What are the key features of the operating
environment?

* People, Vehicles, weather conditions, lighting,
road type, etc., etc.




ML Safety Requirements

The ML safety requirement presented in Example 1 may now be refined into performance and
robustness requirements [22]. Example performance requirements may include:

* The ML component shall determine the position of the specified feature in each input
frame within 5 pixels of actual position.

* The ML component shall identify the presence of any person present in the defined area
with an accuracy of at least 0.93

Example robustness requirements may include:

* The ML component shall perform as required in the defined range of lighting conditions
experienced during operation of the system.

* The ML component shall identify a person irrespective of their pose with respect to the
camera.
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3. Data Management

[H] p—
ML Safety
Requirements

6. Define Data
Requirements

Data
Requirements

Data
Requirements
Justification
Report

Development
Data

Internal Test
Data

[O] RN

[P] N

Verification Data | .

Q] >

-----# Data Generation
Log

ML Data

Argument
Pattern

- =] .
. 9. Instantiate ML
7. Generate ML I -2 Validate ML I » Data Argument
Data Data
> Pattern |

[S] ML Dats [T]
""" Valida;:; ‘----m ML Data
Argument
Results g
| ML Component Dmhpm-n
=S

Feedback and Iterate




Data Requirements

. *ML data requirements shall include
consideration of:

* Relevance

* Completeness
* Accuracy

* Balance




Generate ML data
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4. Model Learning

[H]
ML Safety
Requirements

[N]

Development
Data

10. Create ML
Model

[O]
Internal Test
Data

11. Test ML Model ———® Learning Argument

... Candidate ML
Model
U
(U] Model
™ Development
Log

ML Model

X
“...pe Internal Test
Results

[W]
ML Learning
Argument Pattern

12.. Instantiate ML

Pattern

[Y] =

. ...p ML learning
Argument

. ,b‘ ML Component Development

g
Feedback and Iterate




4. Model Learning Assurance
Key Assurance Artefacts

Model Development Log

Q1. What forms of model were considered and on
what basis was the model type selected?

Q2. What approaches were used for hyper
parameter tuning e.g. meta learning?

Q3. What techniques were applied to increase the
generalizability of the model e.g. drop out?

Q4. ..
Internal Test Results

Why was this particular model chosen?
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5. Model Verification
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Test-based Verification

* Use verification data to demonstrate model
generalises to cases not present in model learning

stage.

* Examine cases on boundaries or which are known
to be problematic within the deployment context

Example 34.

Since we know that material on a camera lens can lead to blurring in regions of an image, we may
make use of ‘contextual mutators’ [52] to assess the robustness of a neural network with respect
to levels of blur. In this way the level of blur which can be accommodated can be assessed and

related to contextually meaningful measures.




Formal Verification

* Use mathematical techniques to prove that the
learnt model satisfies formally specified properties

* Formal properties must be derived from the ML

safety requirements.
* Crucial to justify the sufficiency of the translation

* Formal results must be mapped to operating context

Example 36.

Formal verification of neural networks are able to demonstrate that a perturbation of up to
threshold value, €, on all the inputs leads to a classification that is the same as the original sample
class [36, 35]. Such a result is only meaningful when the value of € is translated into contextually
meaningful values such as steering angles. It is of little value when it simply provides a range of

variation in pixel values for a single input sample (point wise verification).
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6. Model Deployment
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Integrate ML Model

* Monitor

* Validity of key system and environment
assumptions

* output and internal states of ML model
during operation
* erroneous inputs to the ML model

* noise and uncertainty in other components
environmental uncertainty

* adversarial behaviours

* Can use statistical techniques to check
inputs are close to the training data
distributions



Integrate ML Model

* System must be designed to maintain safety even in
face of predicted erroneous outputs from ML
model

Example 46.

The ML model for pedestrian detection deployed in a self driving car has a performance require-
ment of 80% accuracy. Due to uncertainty in the model this performance cannot be achieved
for every frame. The model uses as inputs a series of multiple images derived from consecutive
image frames obtained from a camera. The presence of a pedestrian is determined by consid-
ering the result in the majority of the frames in the series. In this way the system compensates
for the possible error of the model for any single image used.




Test the integration

* Following integration must check the system
safety requirements are satisfied

* Requires operational scenarios against which
oehaviour implemented in ML can be tested

* Integration testing may include:
* Simulation

* Hardware in the loop

* Shadow deployment
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On-Going Work

* Case studies
* Wildfire Detection
* Sepsis Diagnosis

* Interactive Website
* Tooling
* Similar Guidance for System level
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