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Autonomous systems

are inherently complex
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ISO 26262: FUNCTIONAL SAFETY 

11/8/20213

Absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems

Risk associated with 

malfunctioning behaviour

Random Hardware Errors

Photo: Christian Taube - Own work

Systematic errors (HW and SW)

Picture: Mathworks
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WHATS CHANGING? SYSTEM COMPLEXITY AND UNCERTAINTY
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Inaccuracies & noise in environmental 
sensors and signal processing

Source: https://velodynelidar.com Source https://www.cityscapes-dataset.com/examples/

Heuristics or machine learning 
techniques with unpredictable results

Increasing complexity of E/E 
Architectures

https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/

Complex behavioural interactions 
between systems

Self-organization and ad-hoc 
systems-of-systems

Source: https://www.bbc.com/news/world-asia-india-38155635

Scope & unpredictability of 
operational domain and critical events
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MORE THAN JUST A TECHNICAL CHALLENGE
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Source: National Transportation Safety Board. Collision between 
vehicle controlled by developmental automated driving system and 
pedestrian Tempe, Arizona march 18, 2018. 2019. 

Governance Failure to regulate accountability for 
safety of automated driving

Failures

Inadequate engineering and 
operating  processes,

lack of oversight of safety driver
Management

Failure of system to correctly detect 
pedestrian and avoid collisionTechnical

Failure of safety driver to detect that 
system was not operating correctlyInteraction



www.iks.fraunhofer.de

THE SAFER COMPLEX SYSTEMS FRAMEWORK

Causes of 
complexity

Consequences 
of complexity

Systemic 
failures

Exacerbating factors

Design-time controls Operation-time controls

08.11.20216

Interacting, holistic perspectives:

− Governance and Regulation

− Management and Operation

− Task, Interaction and Technical

Common factors impacting 
complexity and safety identified

Framework refined through 
analysis of 30+ Case studies

See also: https://www.raeng.org.uk/publications/reports/safer-complex-systems
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UNDERSTANDING THE IMPACT OF COMPLEXITY

Systemic failures
Inadequate regulation, 

unanticipated risks, model 
mismatch, decision mismatch, …

Causes of complexity
Lag between regulation and 

technological change, 
unpredictable behaviour of 
environment (pedestrians), 

automation complacency, …

Consequences of 
complexity

Competing objectives, 
accountability gaps, semantic gaps, 

emergent properties, coupled 
feedback and inertia, …

Exacerbating factors
Politicised decision making, Casualisation of labor, …

Design-time controls (ineffective)
Safety Management System, redundant technical systems, 

…

Operation-time controls (ineffective)
Regulatory oversight, regular test of operator capabilities, 

human supervision, …

08.11.20217

Uber Tempe Accident

Burton, S., McDermid, J. A., Garnett, P., & Weaver, R. (2021). Safety, Complexity, and Automated Driving: Holistic 
Perspectives on Safety Assurance. Computer, 54(8), 22-32.
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Research perspectives

There is a need to extend current safety management and 

engineering approaches to consider the impact of 

complexity and uncertainty within the overall system 

context and to establish effective control measures.
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Mind the gaps: How to 

define an adequately 

safe system?
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RECAP: SAFETY - YESTERDAY AND TOMORROW
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What happens if component R213 breaks? What impact will the system have on overall risk  

for a given operational domain?
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Which evidence can be provided regarding the potential and 
limitations of the system for it to be considered trustworthy and safe?
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What expectations must the system fulfill 
to be considered trustworthy and safe?
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SEMANTIC GAPS

08.11.202111

Semantic Gap* – discrepancy between the 

intended and specific functionality, caused by:

⎯ Complexity and unpredictability of the operational 

domain

⎯ Complexity and unpredictability of the system itself

⎯ Increasing transfer of decision function to the 

system

Leads to moral responsibility, legal accountability and 

safety assurance gaps

Photo by Artur Tumasjan on Unsplash

*Burton, Simon, et al. "Mind the gaps: Assuring the safety of autonomous systems from 
an engineering, ethical, and legal perspective." Artificial Intelligence 279 (2020): 103201.
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CLOSING THE GAPS

08.11.202112

Aligned social expectations, interdisciplinary definition of desirable properties

Agile, outcome-based standards and regulations

Harmonised safety acceptance, qualification and test criteria

Continuously identify and close assurance gaps, use adversarial arguments

Iteratively increasing scope of domain, interactions and system

Engineering-informed 

ethical debate

Ethics-informed 

engineering

From simulation, to test track to open road and back again

Resilient system designs

Photo by Artur Tumasjan on Unsplash
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Positive Risk Balance

Net fewer hazardous situations than human 

driving (e.g. collision every 300.000km)

⎯ Definition of average human driver?

⎯ How appropriate is the comparison with 

human abilities?

⎯ What about systematic failures?

⎯ How to measure before start of production?

Avoidance of unreasonable risk

Definition of active and pro-active behaviour to 

avoid high-risk situations,

Application of engineering best practices and 

existing standards

⎯ State-of-the-art still needs to be established

⎯ How to define safe pro-active behaviour?

⎯ Engineering judgement still required to 

determine whether system is “safe enough”

BUT HOW SAFE IS SAFE ENOUGH?
ISO TR/4804 – SAFETY AND CYBERSECURITY FOR AUTOMATED DRIVING SYSTEMS

08.11.202113



www.iks.fraunhofer.de

Research perspectives

A combination of various qualitative and quantitative 

acceptance criteria must be found that provide a convincing 

answer to the question: Is the system safe enough?
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Arguing the safety of 

machine learning
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Where’s the catch?

− Semantic Gap / Specification Paradox: 

No explicit definition of “safe” behaviour

− Uncertainty: Confidence scores not 

necessarily indication of probability of 

correctness

− Lack of explainability: Learnt concepts 

are in general not understandable by 

humans

A safety engineer’s nightmare!

NO FREE LUNCH

08.11.202116

„Assessing box merging strategies and uncertainty estimation methods in multimodel object detection “, 

Schmoeller da Roza et al., Beyond mAP: Reassessing the Evaluation of Object Detectors @ECCV 2020
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Precision: e.g. 90%

− Could mean 1/10 detected pedestrian are not 

really there → too many emergency stops

− Does not tell us how many pedestrians are 

never detected (bad)

BENCHMARK PERFORMANCE ≠ SAFETY

08.11.202117

Image: Waymo

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

1

1 + 0
= 1

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

1

1 + 1
= 0.5

Recall: e.g. 90%

− Could mean 1/10 pedestrians are never

detected (bad) or

− For each pedestrian 1 in 10 frames are 

incorrect (might be o.k.)
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− Current performance benchmarks for ML-

based perception are many, many orders of 

magnitude worse than current accident 

rates

− Optimizing from 87% to 90% for metric X 

isn’t going to solve the problem

BENCHMARK PERFORMANCE ≠ SAFETY

08.11.202118

Source: National Transportation Safety Board. Collision between 
vehicle controlled by developmental automated driving system and 
pedestrian Tempe, Arizona march 18, 2018. 2019. 

− Which set of performance benchmarks 

could have predicted the Uber Tempe crash?

− How good should the object classifier have 

been?
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY

08.11.202119

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Picture: https://www.ki-absicherung-projekt.de/

Safety Goal: 

Each pedestrian potentially within the path of the vehicle shall be safely detected

Assumptions (environment): E.g.: Size, position, movement, occlusion of pedestrians

Assumptions (system): E.g.: Image quality, capabilities of monitoring components

Acceptance criteria: Each pedestrian within the critical range is correctly 

detected with a true positive rate of at least xx% within any sequence of 

images in which the pedestrian fulfils the assumptions

Acceptance criteria: Each pedestrian within the critical range is correctly 

detected with a true positive rate of at least xx% within any sequence of 

images in which the pedestrian fulfils the assumptions

Acceptance criteria: Each pedestrian within the critical range is correctly 

detected with a true positive rate sufficient to confirm their position within 

any sequence of images in which the pedestrian fulfils the assumptions
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Direct measurement 

of failure rate of 

ML function

1

Evaluation of overall performance for a given sample space of the 
input domain.
Example Metrics:

Remaining Error Rate (certain but incorrect), 
Remaining Accuracy rate (certain and correct),

…

Source: „Benchmarking Uncertainty Estimation Methods for Deep Learning 

With Safety-Related Metrics“, Henne et al., SafeAI 2020 
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY

08.11.202121

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Direct measurement 

of failure rate of 

ML function

1

How accurate and 
representative are our 

performance predictions?



www.iks.fraunhofer.de

ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Direct measurement 

of failure rate of 

ML function

1

How accurate and 
representative are our 

performance predictions?

Evaluation of impact of

ML insufficiencies on 

performance

2

Directly measure the presence or argue the absence of specific 
insufficiencies.
Example Metrics: 
Adversarial frequency, consistency, occlusion sensitivity, 
uncertainty quantification, 

…

Source: „Confidence arguments for evidence of 

performance in machine learning for highly automated 

driving functions “, Burton et al., WAISE 2019
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Direct measurement 

of failure rate of 

ML function

1

How accurate and 
representative are our 

performance predictions?

Evaluation of impact of

ML insufficiencies on 

performance

2

Is there a correlation to 
the residual failure rate?
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Direct measurement 

of failure rate of 

ML function

1

How accurate and 
representative are our 

performance predictions?

Evaluation of impact of

ML insufficiencies on 

performance

2

Is there a correlation to 
the residual failure rate?

Evaluation of effectiveness 

of design-time methods to 

minimise insufficiencies

3

How rigorously were design-time measures for reducing 
insufficiencies applied?
Example Metrics:
Training data selection criteria, test scenario coverage, adversarial 
confidence loss, ensemble diversity… 

Source: „Measuring Ensemble Diversity and Its Effects on 

Model Robustness“, Heidemann et al., AISafety 2021 
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Direct measurement 

of failure rate of 

ML function

1

How accurate and 
representative are our 

performance predictions?

Evaluation of impact of

ML insufficiencies on 

performance

2

Is there a correlation to 
the residual failure rate?

Evaluation of effectiveness 

of design-time methods to 

minimise insufficiencies

3

What level of rigor in 
the development 

process is required?



www.iks.fraunhofer.de

ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Direct measurement 

of failure rate of 

ML function

1

How accurate and 
representative are our 

performance predictions?

Evaluation of impact of

ML insufficiencies on 

performance

2

Is there a correlation to 
the residual failure rate?

Evaluation of effectiveness 

of design-time methods to 

minimise insufficiencies

3

What level of rigor in 
the development 

process is required?

Evaluation of effectiveness 

of operation-time methods 

to eliminate residual failures

4

To what extent do run-time and architecture measures reduce 
residual failure rate?
Example Methods: 
Out of distribution detection, monitors, sensor fusion…

Source: „From Black-box to White-box: Examining Confidence Calibration under different 

Conditions“, F. Schwaiger et al., SafeAI 2021 
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Evaluation of impact of

ML insufficiencies on 

performance

2
Direct measurement 

of failure rate of 

ML function

1

Evaluation of effectiveness 

of operation-time methods 

to eliminate residual failures

4
Evaluation of effectiveness 

of design-time methods to 

minimise insufficiencies

3

How accurate and 
representative are our 

performance predictions?

Is there a correlation to 
the residual failure rate?

What level of rigor in 
the development 

process is required?

What level of diagnostic 
coverage can be 

achieved?
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ONGOING RESEARCH – HOLISTIC ARGUMENTS FOR ML SAFETY
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Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

Definition of 

quantitative 

acceptance criteria, 

decomposed to ML 

functions

What level of 
performance is required?

Evaluation of impact of

ML insufficiencies on 

performance

2
Direct measurement 

of failure rate of 

ML function

1

Evaluation of effectiveness 

of operation-time methods 

to eliminate residual failures

4
Evaluation of effectiveness 

of design-time methods to 

minimise insufficiencies

3

How accurate and 
representative are our 

performance predictions?

Is there a correlation to 
the residual failure rate?

What level of rigor in 
the development 

process is required?

What level of diagnostic 
coverage can be 

achieved?
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Research perspectives

Derive a set of meaningful safety metrics and methods for AI,

apply within a holistic and iterative approach to building an 

argument for safety within a specific environmental and system 

context.
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STANDARDISATION - NEXT STEPS 
ISO/PAS 8800 ROAD VEHICLES – SAFETY AND AI

08.11.202130

Context

Currently fragmented and incomplete standards w.r.t.
AI and safety for automotive applications

Generic standard ISO/TR 5469 Functional safety and AI 
systems under development

ISO PAS 8800

New Publicly Available Specification to provide 
guidance on applying automotive safety standards to 
AI-based functions

Status

ISO/TC 22/SC32/WG 14 founded, Kick-off 2021-12-07

Project lead: S. Burton, Fraunhofer IKS
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Conclusions
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RESEARCH DIRECTIONS FOR AI SAFETY AND AUTONOMOUS SYSTEMS
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Acknowledge system complexity:

⎯ Address the problem not only from a 

technical perspective 

⎯ by engaging in an engineering-informed 

interdisciplinary dialog 

⎯ and applying ethically-informed 

engineering practices
»Any sufficiently advanced 
technology is indistinguishable 
from magic«

Arthur C. Clarke (1917-2008)
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RESEARCH DIRECTIONS FOR AI SAFETY AND AUTONOMOUS SYSTEMS

08.11.202133

Acknowledge system complexity:

⎯ Apply systems engineering approaches 

that use an optimal combination of domain 

understanding as well system design, 

verification and validation measures to 

mitigate risk

»Any sufficiently advanced 
technology is indistinguishable 
from magic«

Arthur C. Clarke (1917-2008)
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RESEARCH DIRECTIONS FOR AI SAFETY AND AUTONOMOUS SYSTEMS
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Take the magic out of AI:

⎯ Which levels of performance are actually 

required of the machine learning function?

⎯ Can an acceptable level of performance

ever be met?

⎯ How effective are different methods of 

collecting evidence? 
»Any sufficiently advanced 
technology is indistinguishable 
from magic«

Arthur C. Clarke (1917-2008)
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RESEARCH DIRECTIONS FOR AI SAFETY AND AUTONOMOUS SYSTEMS

08.11.202135

Take the magic out of AI:

This requires…

⎯ A structured, iterative process for 

ensuring a systematic application of 

appropriate methods during development 

is required

⎯ …and a fundamental understanding of the 

limitations of AI-methods and a 

formalisation of safety-relevant 

measurements and metrics 

»Any sufficiently advanced 
technology is indistinguishable 
from magic«

Arthur C. Clarke (1917-2008)



www.iks.fraunhofer.de

Thank you for your attention

Any questions?


