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I1SO 26262: FUNCTIONAL SAFETY

Absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems

Risk associated with
malfunctioning behaviour

Random Hardware Errors Systematic errors (HW and SW)
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WHATS CHANGING? SYSTEM COMPLEXITY AND UNCERTAINTY

https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/ Source: https://www.bbc.com/new;/wor‘ld—35|a—lndla—38155635

v o s o »
Increasing complexity of E/E Complex behavioural interactions Self-organization and ad-hoc
Architectures between systems systems-of-systems

-
o5 |

| .
S & d . b . I f Source: https://velodynelidar.com Source https://www.cityscapes-dataset.com/examples/
Fope| q ””F’Te |cdta ' |'ty|o Inaccuracies & noise in environmental Heuristics or machine learning
operational domain and critical events sensors and signal processing techniques with unpredictable results
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Failure to regulate accountability for
safety of automated driving

Governance

[
' Crash location

Pedestrian
positions

Inadequate engineering and

Management operating processes,
lack of oversight of safety driver

Failure of safety driver to detect that
system was not operating correctly

Interaction

Through ;
lanes <

Failure of system to correctly detect

Technical

pedestrian and avoid collision

Source: National Transportation Safety Board. Collision between
vehicle controlled by developmental automated driving system and
pedestrian Tempe, Arizona march 18, 2018. 2019.
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THE SAFER COMPLEX SYSTEMS FRAMEWORK

Exacerbating factors

Interacting, holistic perspectives:
— Governance and Regulation
— Management and Operation
— Task, Interaction and Technical

Common factors impacting
complexity and safety identified

Framework refined through
analysis of 30+ Case studies

Causes of
complexity

Design-time controls

See also: https://www.raeng.org.uk/publications/reports/safer-complex-systems
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Consequences
of complexity

Systemic
failures

Operation-time controls
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UNDERSTANDING THE IMPACT OF COMPLEXITY

Uber Tempe Accident

Exacerbating factors
Politicised decision making, Casualisation of labor, ...

Causes of complexity Consequences of
Lag between regulation and complexity Systemic failures
technological change, Competing objectives, Inadequate regulation,
unpredictable behaviour of accountability gaps, semantic gaps, unanticipated risks, model
environment (pedestrians), emergent properties, coupled mismatch, decision mismatch, ...
automation complacency, ... feedback and inertia, ...

Design-time controls (ineffective) Operation-time controls (ineffective)
Safety Management System, redundant technical systems, Regulatory oversight, regular test of operator capabilities,
human supervision, ...

Burton, S., McDermid, J. A., Garnett, P., & Weaver, R. (2021). Safety, Complexity, and Automated Driving: Holistic
Perspectives on Safety Assurance. Computer, 54(8), 22-32.
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What ectatlon must the system fulfill

to be con5|dered trustworthy and safe?

Which evidence can be prowded regarding the potential and
limitations of the system for it to be con5|dered trustworthy and safe?

SOCIETAL EXPECTATIONS
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What happens if component R213 breaks? What impact will the system have on overall risk
for a given operational domain?
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SEMANTIC GAPS

Semantic Gap* - discrepancy between the
intended and specific functionality, caused by:

— Complexity and unpredictability of the operational
domain

— Complexity and unpredictability of the system itself

— Increasing transfer of decision function to the
system

Leads to moral responsibility, legal accountability and
safety assurance gaps

*Burton, Simon, et al. "Mind the gaps: Assuring the safety of autonomous systems from
an engineering, ethical, and legal perspective." Artificial Intelligence 279 (2020): 103201.

Photo by Artur Tumasjan on Unsplash
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CLOSING THE GAPS

Aligned social expectations, interdisciplinary definition of desirable properties j

Agile, outcome-based standards and regulations

[ Harmonised safety acceptance, qualification and test criteria ]

Resilient system designs
From simulation, to test track to open road and back again

Continuously identify and close assurance gaps, use adversarial arguments

Ethics-informed
engineering

Iteratively increasing scope of domain, interactions and system

Photo by Artur Tumasjan on Unsplash
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BUT HOW SAFE IS SAFE ENOUGH?
ISO TR/4804 — SAFETY AND CYBERSECURITY FOR AUTOMATED DRIVING SYSTEMS

Positive Risk Balance Avoidance of unreasonable risk
Net fewer hazardous situations than human Definition of active and pro-active behaviour to
driving (e.g. collision every 300.000km) avoid high-risk situations,

Application of engineering best practices and

— Definition of average human driver? o~
existing standards

— How appropriate is the comparison with

human abilities? — State-of-the-art still needs to be established
_ What about systematic failures? — How to define safe pro-active behaviour?

— Engineering judgement still required to

— How to measure before start of production?
determine whether system is “safe enough”
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NO FREE LUNCH

Where's the catch?

— Semantic Gap / Specification Paradox:
No explicit definition of “safe” behaviour

— Uncertainty: Confidence scores not
necessarily indication of probability of
correctness

— Lack of explainability: Learnt concepts
are in general not understandable by
humans

Schmoeller da Roza et al., Beyond mAP: Reassessing the Evaluation of Object Detectors @ECCV 2020

A safety engineer’s nightmare!
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BENCHMARK PERFORMANCE # SAFETY

Precision: e.g. 90%

— Could mean 1/10 detected pedestrian are not
really there > too many emergency stops

— Does not tell us how many pedestrians are
never detected (bad)

Reca": e-g- 90% D o D Image: Waymo
= Predicted Bounding Box = Ground Truth Bounding Box

— Could mean 1/10 pedestrians are never

detected (bad) or Precision = ——F— =L _4
"TP+FP 140

— For each pedestrian 1 in 10 frames are

incorrect (might be o.k.) Recall = —— !

TPHFN 141 °
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—  Current performance benchmarks for ML- : i g
based perception are many, many orders of :
magnitude worse than current accident

rates

— Optimizing from 87% to 90% for metric X
isn’t going to solve the problem

44.6 mph ;
2.6 s to impa
|

Through
lanes

—  Which set of performance benchmarks
could have predicted the Uber Tempe crash?

. e N \ Al (448 mph ;
— How good should the object classifier have NRN& : ;'
\ h | Qoogle Earth ©
been? ;
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Impact Speed Classification and Path
(seconds) | (mph) Prediction* Vehicle and System Actions®
9.9 351 - Vehicle begins to accelerate from 35 mph
in response to increased speed limit.
58 441 - Vehicle reaches 44 mph.
56 443 Classification Vehicle—by Radar makes first detection of pedestrian

radar

Path_prediction: None; not on
path of SUV

(classified as vehicle) and estimates
speed

52 448 | Classification: Other—by lidar | Lidar detects unknown object. Object is
Path prediction 2 considered new, tracking history is
path of SUV Stati; noton | | avaitable, and velocity cannot be
determined. ADS predicts object’s path as
static.

42 448 Classification: Vehicle—by lidar | Lidar classifies detected object as vehicle,
Path prediction” Static; noton | this is a changed classification of object
path of SUV and without a tracking history.

predicts object’s path as static.
38 448 Classification: Vehicle—by lidar | Lidar retains classification vehicie. Based

Path prediction: Left through
lane (next to SUV), not on path
of SUV

on tracking history and assigned goal, ADS
predicts object’s path as traveling in left
through lane.

-38t0-27 (447

Classification- alternates.
between vehicie and other—by
lidar

Path prediction: alternates.
between static and left through

lane; neither considered on path
of SUV

Object's classification altemates several
times between vehicie and other. At each
change, tracking history is unavailable;
ADS predicts object's path as static. When
detected object’s classification remains
same, ADS predicts path as traveling in left
through lane.

26 446 | Classification® Bicycle—by lidar | Lidar classifies detected object as bicycie;
Path prediction Static, noton | this is a changed classification of object
path of SUV & and object is without a tracking history.

ADS predicts bicycle's path as static
25 446 | Classification: Bicycle—by lidar | Lidar retains bicycle classification; based

Path prediction: Left through
lane (next to SUV); not on path

on tracking history and assigned goal, ADS
predicts bicycle’s path as traveling in left
through lane.

Source: National Transportation Safety Board. Collision between
vehicle controlled by developmental automated driving system and
pedestrian Tempe, Arizona march 18, 2018. 2019.
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

g, [ =
Safety Goal:

Each pedestrian potentially within the path of the vehicle shall be safely detected
A D Letww Sy )
Assumptions (environment): E.g.: Size, position, movement, occlusion of pedestrians -
< T Definition of

Assumptions (system): E.g.: Image quality, capabilities of monitoring components quantitative

AN i

acceptance criteria,
decomposed to ML

Acceptance criteria: Each pedestrian within the is correctly functions
detected with a sufficient to confirm their within What level of
of images in which the pedestrian fulfils the . performance is required?

Picture: https://www:.ki-absicherung-projekt.de/
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

Direct measurement
of failure rate of

ML function Definition of
quantitative
Evaluation of overall performance for a given sample space of the acceptance criteria,
input domain.
Example Metrics: decomposed to ML
Remaining Error Rate (certain but incorrect), functions

Remaining Accuracy rate (certain and correct),

What level of

I performance is required?

EFE%%

Source: , Benchmarking Uncertainty Estimation Methods for Deep Learning
With Safety-Related Metrics”, Henne et al., SafeAl 2020
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

21 | 08.11.2021

Direct measurement

of failure rate of
ML function

How accurate and
representative are our
performance predictions?

www.iks.fraunhofer.de

Definition of
quantitative
acceptance criteria,

decomposed to ML
functions

What level of

I performance is required?
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

®

Evaluation of impact of : Direct measurement
ML insufficiencies on of failure rate of
performance ML function

Definition of
How accurate and

: quantitative
representative are our

_Dlrect_ly_ measure the presence or argue the absence of specific rformance predictions? acceptance criteria,
insufficiencies.
Example Metrics:

decomposed to ML

Adversarial frequency, consistency, occlusion sensitivity, functions
uncertainty quantification,

What level of

I performance is required?

Source: , Confidence arguments for evidence of
performance in machine learning for highly automated
driving functions “, Burton et al., WAISE 2019
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

© ®

Direct measurement
of failure rate of
ML function

Evaluation of impact of
ML insufficiencies on
performance

How accurate and
representative are our
performance predictions?

Is there a correlation to
the residual failure rate?
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Definition of
quantitative
acceptance criteria,

decomposed to ML
functions

What level of

I performance is required?
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

How rigorously were design-time measures for reducing
insufficiencies applied?

Example Metrics:

Training data selection criteria, test scenario coverage, adversarial
confidence loss, ensemble diversity...

[ ravms Definition of
B How accurate and quantitative
NP N ;ﬂ representative are our

Source: ,Measuring Ensemble Diversity and Its Effects on

L‘-‘_l I—L \k—‘ Model Robustness”, Heidemann et al., AlSafety 2021

©

srformance predictions? acceptance criteria,

decomposed to ML
functions

Evaluation of effectiveness

of design-time methods to

What level of

I performance is required?

minimise insufficiencies
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

©

Evaluation of impact of
ML insufficiencies on
performance

Is there a correlation to
the residual failure rate?

Evaluation of effectiveness@>
of design-time methods to

minimise insufficiencies

What level of rigor in
the development
process is required?
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Direct measurement
of failure rate of
ML function

How accurate and
representative are our
performance predictions?

www.iks.fraunhofer.de

Definition of
quantitative
acceptance criteria,

decomposed to ML
functions

What level of

I performance is required?
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

To what extent do run-time and architecture measures reduce
residual failure rate?

: Example Methods:

AEIVELlINe] Out of distribution detection, monitors, sensor fusion...

Definition of
quantitative

== il — SA ir : :

Source: ,,From Black-box to White-box: Examining Confidence Calibration under different ns? accepta nce Crlterla,

Conditions”, F. Schwaiger et al., SafeAl 2021

Evaluation of effectiveness : Evaluation of effectiveness
of design-time methods to of operation-time methods

minimise insufficiencies to eliminate residual failures

What level of rigor in
the development

process is required?

decomposed to ML
functions

What level of

I performance is required?
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

©

Evaluation of impact of
ML insufficiencies on
performance

Is there a correlation to
the residual failure rate?

Evaluation of effectiveness®
of design-time methods to

minimise insufficiencies

What level of rigor in
the development
process is required?
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Direct measurement

of failure rate of
ML function

How accurate and
representative are our
performance predictions?

Evaluation of effectiveness
of operation-time methods

to eliminate residual failures

What level of diagnostic

coverage can be
achieved?

www.iks.fraunhofer.de

Definition of
quantitative
acceptance criteria,

decomposed to ML
functions

What level of

I performance is required?
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ONGOING RESEARCH - HOLISTIC ARGUMENTS FOR ML SAFETY

@

Evaluatiom®fimpact of
Miginsufficierméies on
perfefmance

Is there a correlation to
the residual failure rate?

FvalUation of effectiveness@>
of ‘design-timéimethods to

minimise Asutficiencies

What level of rigor in
the development
process is required?
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Direct measurement
of failure rate of
ML function

How accurate and
representative are our
performance predictions?

Evaluation of effectiveness
of operationstimie methods

to eliminate residualfailures

What level of diagnostic

coverage can be
achieved?

www.iks.fraunhofer.de

Definition of
quantitative
acceptance criteria,

decomposed to ML
functions

What level of

I performance is required?
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STANDARDISATION - NEXT STEPS
ISO/PAS 8800 ROAD VEHICLES - SAFETY AND Al

PN
ISO ISO/TC 22 N 4142
v

Context

Currently fragmented and incomplete standards w.r.t.
Al and safety for automotive applications

Generic standard ISO/TR 5469 Functional safety and Al
systems under development

ISO PAS 8800

ISOITC 22 "Road vehicles”
Secretariat: AFNOR . » e "
Committee Manager: Maupin Valérie Mme rElh ﬁ,n--

N4142_NWIP on ISO PAS 8800_For ballot before 2021-09-01 (SC32)

New Publicly Available Specification to provide
guidance on applying automotive safety standards to
Al-based functions

ISO/TC 22/SC32/WG 14 founded, Kick-off 2021-12-07

Project lead: S. Burton, Fraunhofer IKS
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Document type Related content Document date Expected action
Ballot / Reference 2021-06-30  VOTE by 2021-09-01 L

document

Road Vehicles - Safety and Artificial Intelligence

1 Scope

This document defines safety-related properties and risk factors impacting insufficient performance and
malfunctioning behaviour of Artificial Intelligence (Al) within a road vehicle context. It describes a
framework that addresses all phases of the development and deployment lifecycle. This includes the
derivation of suitable safety requirements on the function, considerations related to data quality and
completeness, architectural measures for the contral and mitigation of failures, tools used to support Al
verification and validation techniques as well as the evidence required to support an assurance argument
for the overall safety of the system.
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RESEARCH DIRECTIONS FOR Al SAFETY AND AUTONOMOUS SYSTEMS

Acknowledge system complexity:

— Address the problem not only from a
technical perspective

— by engaging in an engineering-informed
interdisciplinary dialog

— and applying ethically-informed
engineering practices

»Any sufficiently advanced |
.__technology is indistinguishabl”g
.. from magi
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RESEARCH DIRECTIONS FOR Al SAFETY AND AUTONOMOUS SYSTEMS

Acknowledge system complexity:

— Apply systems engineering approaches
that use an optimal combination of domain
understanding as well system design,
verification and validation measures to
mitigate risk

11‘"

»Any sufficiently advanced |
technology is indistinguishablg
. from magi

A

Z Fraunhofer
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RESEARCH DIRECTIONS FOR Al SAFETY AND AUTONOMOUS SYSTEMS

Take the magic out of Al:

— Which levels of performance are actually
required of the machine learning function?

— Can an acceptable level of performance
ever be met?

— How effective are different methods of
collecting evidence?

»Any sufficiently advanced |
.__technology is indistinguishabl”g
.. from magi
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RESEARCH DIRECTIONS FOR Al SAFETY AND AUTONOMOUS SYSTEMS

Take the magic out of Al:
This requires...

— A structured, iterative process for
ensuring a systematic application of
appropriate methods during development
is required

— ...and a fundamental understanding of the
limitations of Al-methods and a
formalisation of safety-relevant
measurements and metrics

»Any sufficiently advanced |
.__technology is indistinguishabl”g
.. from magi
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