

BRAVE: BRidging gaps for the adoption of Automated VEhicles

SAFER Partner Day, 11 March, 2022

Ingrid Skogsmo, BRAVE Coordinator

VTI Swedish National Road and Transport Research Institute

7 countries

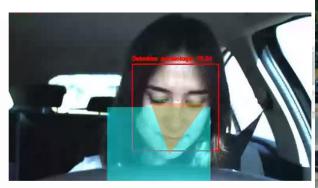
France, Germany, Slovenia, Spain, Sweden, Australia, US

45 MONTHS

1 June 2017 - 28 Feb 2021

≈3 M€

2,990,538 € funding



Understanding and identify acceptance gaps for highly automated vehicles

Addressing the gaps – develop solutions & demonstrate functionality

Identifying mechanisms to encourage application of solutions into vehicles

What we did

Multidisciplinary study –

requirements & expectations; all road user types & organised stakeholders

Develop innovative HMI-paradigms --

bridge gap between users & automation technologies

Enhance current ADAS by new predictive algorithms --

increase accuracy of paths prediction (of vehicles, VRU) to reduce the reaction time in emergency maneuvers

Evolve validation protocols & propose enhancements --

for assessments (regulation, consumer testing)

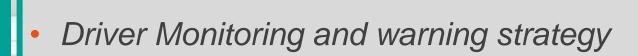
BRAVE Population Survey

Online Dec'19 – Feb'20

≈1000 respondents in each of 7 BRAVE countries

- Focus: acceptance of and the trust in level 3 AV from the perspective of
 - vulnerable road users (VRU)
 - drivers of conventional cars

- Results:
 - Acceptance is positive, not yet widespread
 - Lack of trust, scepticism to own use
 - Road users favour communication with AVs through eHMI
 - Differences between distinct road user groups & country of residence



Addressing acceptance/trust

BRAVE HMI guidelines

Simulator studies

- General guidelines
- If system in control, drivers do not want to be disturbed.
- System transparency on what the vehicle does, and why, can enhance trust.
- Amount of information provided (e.g. car's intentions) should be adjustable (e.g. depending on the driver's trust and experience with the system).
- To inform driver about the vehicle & the environment: mainly use visual feedback.
- Auditory and haptic feedback only if driver reaction is necessary.

 Different warning alarms depending on driver's distraction level and type of distraction Addressing acceptance/trust

External HMI (pedestrian)

VR – pedestrian simulator studies

Population Survey

State of the Art

User Workshop

General recommendations

- System transparency about what the vehicle does e.g. deceleration
- Visual modality to inform
- Auditory modality to warn familiar sounds! (e.g. horn)
- Vehicle movement as part of the eHMI
- Careful integration
 - timing of vehicle dynamics & messaging
 - early & visible decelerations

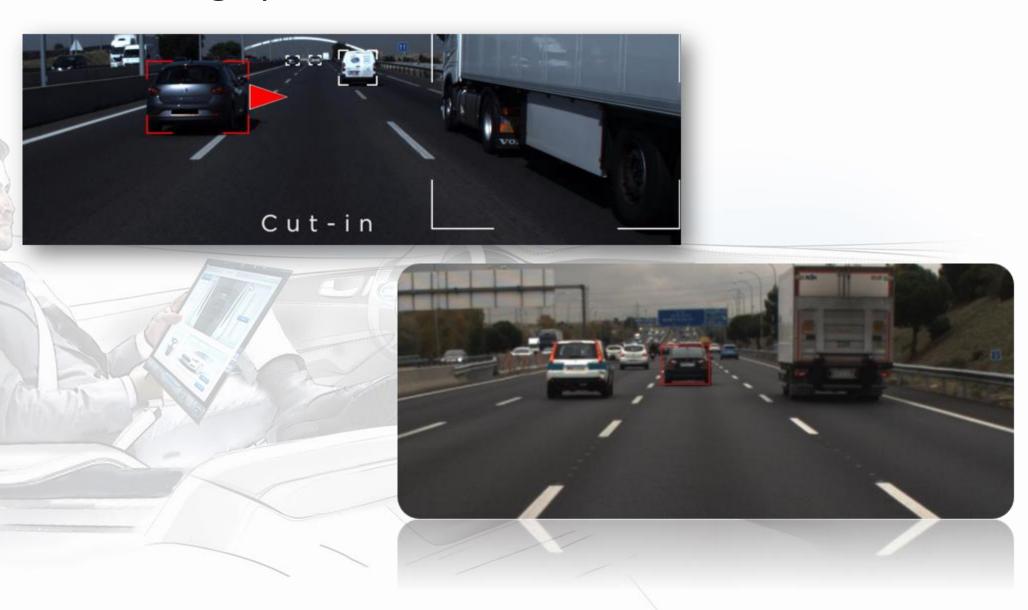
New prediction algorithms

General approach

- Enhancing ADAS through a robust system for predictive intelligent, efficient, and safe interaction between vehicles.
- Development of a robust VRU predictive model based on body language, motion, and contextual information.
- Creation of PREVENTION Dataset containing vehicles & VRU for prediction purpose.

New prediction algorithms

Predictive system


Anticipating pedestrians' intention to cross.

Lane change prediction

New prediction algorithms

Predictive system

Assessment of Predictive Performance

New prediction algorithms

Predictive system

Comparison with BRAVE Predictive system:

Accuracy: 85%

Average Human delay: 1.08 s

Average BRAVE delay: 0.66 s

BRAVE predictive system overcomes humans' anticipation in lane changes by 0.42s.

Addressing acceptance/ trust

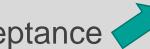
Simulator studies

System predicting possible **VRU** conflict

Predicting / Anticipating system → →

Driver trust in AV

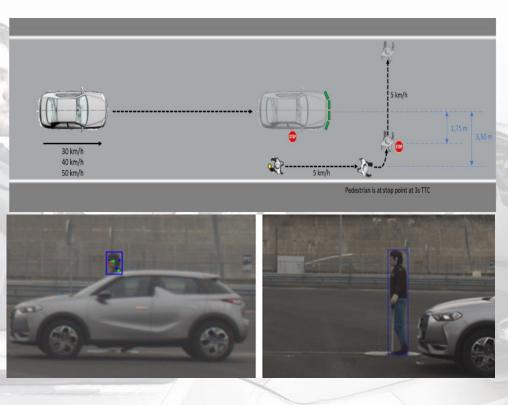
Driver ability to react to sudden pedestrians


Supports driver to determine when to engage in other task

Additionally:

- Predicting systems that increase the time for motion planning
 - \rightarrow smoother deceleration

→ Safety & Comfort



Starting point: EuroNCAP test protocols

1. Articulated pedestrian dummy (H2020 project PROSPECT) - more realistic human representation & enable anticipation-oriented scenarios.

Methods for evaluating trust enhancing systems

4 proposals

Scenarios to identify pedestrian & anticipation maneuver

- Car-to-Pedestrian Longitudinal to Nearside crossing Adult New scenario
- 3. Partially obscured pedestrian scenario

4. Smooth driving assessment (currently not assessed) proposal for criteria to complement current EuroNCAP AD protocol

CONCLUDING REMARKS

What are the gaps for acceptability of highly automated vehicles?

Examples of solutions that aim at bridging the gaps?

- Transparency of automation status is important to occupants, other road users
- Interior HMI guidelines and concept
- Driving monitoring and warning strategy
- Vehicle's deceleration etc as part of eHMI for VRU
- Predicting / Anticipating system for better and faster reaction
- PREVENTION Dataset containing vehicles & VRU for prediction purpose
- Development of VRU detection (CNN-based) and prediction (RNN-based) system.

CONCLUDING REMARKS

What are the gaps for acceptability of highly automated vehicles?

Examples of solutions that aim at bridging the gaps?

- Transparency of automation status is important to occupants, other road users
- Interior HMI guidelines and concept
- Driving monitoring and warning strategy
- Vehicle's deceleration etc as part of eHMI for VRU
- Predicting / Anticipating system for better and faster reaction
- PREVENTION Dataset containing vehicles & VRU for prediction purpose
- Development of VRU detection (CNN-based) and prediction (RNN-based) system.

And how can they reach wider application?

 Test protocols to recognise predictive systems – recommendations to EuroNCAP and regulatory WG's

THANK YOU for your attention!

http://www.brave-project.eu/

Questions?

