

Presentation of EU Horizon 2020 project "OSCCAR"

Johan Davidsson

Vehicle Safety, Mechanics and Maritime Sciences, Chalmers University of Technology

PROJECT PARTNERS

AUSTRIA

- TECHNISCHE UNIVERSITÄT GRAZ
- VIRTUAL VEHICLE RESEARCH GMBH

BELGIUM

- SIEMENS INDUSTRY SOFTWARE NV
- TOYOTA MOTOR EUROPE

CHINA

- TSINGHUA UNIVERSITY
- CHINA AUTOMOTIVE TECHNOLOGY AND RESEARCH CENTER

FRANCE

- ESI GROUP
- UNIVERSITE DE STRASBOURG

GERMANY

- BUNDESANSTALT FUER STRASSENWESEN
- ROBERT BOSCH GMBH
- LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
- MERCEDES-BENZ AG
- RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
- UNIVERSITAET STUTTGART

- VOLKSWAGEN AG
- ZF GERMANY AUTOMOTIVE GMBH

NETHERLANDS

SIEMENS DIGITAL INDUSTRIES SOFTWARE

SPAIN

IDIADA AUTOMOTIVE TECHNOLOGY SA

SWEDEN

- AUTOLIV DEVELOPMENT AB
- CHALMERS TEKNISKA HOEGSKOLA AB
- VOLVO PERSONVAGNAR AB

WP	WP Title	Lead beneficiary	Person- months
1	Determination of future accident scenarios	DAIMLER	85
2	Development of advanced occupant protection principles	RWTH	175
3	Human Body Models for assessment of new safety systems in future vehicles	CHALMERS	240
4	Development of robust and efficient crash simulation tools for integrated assessment & overall impact demonstration	VIF	93
5	Standardization of virtual testing	LMU	50
6	Project Communication, dissemination and exploitation	VIF	32
7	Project Management	VIF	34
8	Ethics requirements	VIF	
Total			710

OSCCAR main aims

Brief description of WP1

Objectives:

To apply **accident research** and to combine it with **future trend analysis** and insights from other real-world data to derive an **outlook to future remaining accident scenarios**

- Assessment methodology to use real-world crash data for future predictions
- Crash configuration specification & analysis for HAV interiors and seating positions
- OSCCAR pulses harmonized, future relevant crash pulses for selected crash configurations
- Traffic-based simulation method to obtain and evaluate AD crashes in future mixed traffic in openPASS / COVISE

Deliverables:

- D1.1 Remaining accidents, crash configurations and crash pulses for virtual assessments
- D1.2 OpenPASS-based tool to assess AD use case motorway traffic
- D1.3 Discussion of validity & robustness of work presented in D1.1 and D1.2

EU weighted results for OSCCAR L4/L5 urban AD

Crash configurations - OSCCAR pulses SCP & LTAP/OD

- For AD vehicles in urban areas, two crash configurations were identified and evaluated
- Aim: reveal new challenges for occupant safety in AD vehicles
- Generic pulses were derived and are publicly available

SCP 1 (N = 106)

- AD 37km/h Opponent 68km/h
- AD 63km/h Opponent 58km/h
- AD 74km/h Opponent 33km/h

Brief description of WP2

- Objectives
 - ☐ Defining future occupant positions and postures in HAV
 - ☐ Defining future test cases
 - □ Development and demonstration of protection principles (pre-crash & in-crash phase) for these test cases

Protection Principles

#1 Pre-Rotated Seat #2 Seat Inertia (seat rotation initiated by braking pulse) #3
Reclined Occupant
- Pelvis & Lumbar
Aspects

#4 Mushroom Airbag #5 Active Seat Backrest #6 Far-Side Load Case

Protection Principle 3 - Reclined occupant

- Working Group 3:
 - ☐ **Autoliv**, Mercedes-Benz, Toyota, Volvo Cars, Volkswagen, ZF
- Avoiding submarining:
 - Increased pelvis loading from the lap belt
 - Increased lumbar spine loading due to unfavourable kinematics
- Protection Principle:
 - ☐ Restraint system: Seat load limiter, forward positioned seat belt anchor points, lap belt pretensioning, etc.
 - ☐ Seat integrated: Crush element, energy absorption in x / xz direction
- Initial sitting postures

Figure: Volvo Cars

Torso

Up. Extremities

Head

Protection Principle 3 - Reclined occupant

- ☐ Demonstrator test case is on a reclined seating position
- ☐ Three sled test series at BASt with THOR-50M dummy:
- ☐ Validation of sled and environment model in three codes:
 - o LS-Dyna, VPS & Madymo

Brief description of WP2

■ Provide <u>Human Body Models</u> (HBMs) for the design of superior restraints ☐ Develop sub-models and methods to be used in the developments of HBMs ☐ Analyse biomechanical data and make this and models of original test setup available Active HBMs ☐ Improve existing or develop new HBMs for pre-crash phase ☐ Provide harmonized injury criteria for HBMs modeling Representatio n of separate muscle, skin and fat tissues Population heterogeneity aspects included State of the Art Multidirectiona **HBM** biofidelity for new sitting positions Improved and standardized injury criteria

Some results in WP2

- Material modelling soft tissues
 - Skin LS-DYNA + VPS
 - Fat LS-DYNA + VPS
 - Advanced <u>muscle</u> LS-DYNA + VPS
 - Simplified <u>muscle</u> LS-DYNA + VPS
 - Ligaments LS-DYNA + VPS
- Advanced FE-models for HBMs
 - Neck
 - Lumbar spine

Some results in WP2

- Validation data for <u>Active</u> HBM
 - ☐ Test data analyzed and shared via https://zenodo.org/x
 - ☐ Models of original test environments generated and shared via
 - □ https://openvt.eu/osccar/precrash seat models/x
 - □ Advanced statistical analysis of volunteer data validation data for Active HBMs of any sex, stature and age

analyses of volunteer data

OSCCAR

■ Effect of AHBM positions on response in pre-crash simulations – a guide for future volunteer test and use of data

Achievements and results WP4 Homologation testcase - Combining OSCCAR results

Achievements and results WP4 Tools for handling HBMs – Transition

Enhancement of Dynasaur

- Open source tool "DynaSaur" (by TU Graz available under GPL v3 license) is enhanced
 - □ https://gitlab.com/VSI-TUGraz/Dynasaur
- Postprocessing can be done without using the GUI
 - csv file is created based on simulation output files for selected output
- Routine for Madymo results
- Routine for selected VPS result files
- Numerical quality check criteria
- Rib injury criteria (incl. OSCCAR update)

11.03.2022 OSCCAR

Achievements and results WP4 Homologation testcase

Simcenter AHM v3.1

THUMS TUC v2020.01 VPS

THUMS v6.1

THUMS TUC v2020.01 LS-Dyna

Achievements and results WP4 Homologation testcase

Kinematic depiction by anatomical landmarks

Main objectives WP5

- Make recommendations for substantial use of virtual testing for complex testing scenarios
 - ☐ To complete proposal for Virtual Testing procedure
 - ☐ To provide elements of harmonised model preparation (pre-processing)
 - ☐ The validation of occupant environment models
 - ☐ To address the challenges specific for the validation of HBMs
 - ☐ To show which result assessment can be harmonised (post-processing)
 - ☐ To make recommendations for use of Injury Criteria (AIS2)

- Harmonisation in Rib fracture risk estimation
 - ☐ First definition of excluded rib cortical bone elements
 - ☐ Outer surface for strain extraction instead of mid-surface
 - ☐ Weibull risk curve instead of step-function
 - ☐ Strain-time gradient 0.4 as indicator for element removal (filtering)
 - ☐ Highlighted need for further multi-level model validation

Example TUC tool

johan.davidsson@chalmers.se www.osccarproject.eu

Protection Principle 5 - Active Seat Backrest

- Working Group 5:
 - □ ika/fka, Bosch, Siemens, Volvo Cars, ZF
- Motivation:
 - □ Reclined forward-facing: Submarining tendency, unfavourable head neck kinematics due to increased distance to airbag
 - □ Reclined rearward-facing: Ramping & a reduced effective restraint area of the backrest leading to higher occupant displacements
- Protection Principle:
 - ☐ Occupant repositioning from a reclined seating position to an upright position prior to a crash
 - □ Backrest is actively rotated/upraised
 - ☐ Electric Reversible Retractor and optimised seat base energy absorption

Video: Volvo Cars

27/01/2022 OSCCAR

Challenges in WP2

- Repositioning of the occupant into a conventional or "safer" seating configuration prior to a crash
- Considering occupant variety
- Considering omnidirectional occupant loading

Task 3.1 - Improved HBMs for injury risk prediction

- Assess the effect of soft tissue thickness and updated soft tissue models
 - ☐ Integration of fat and skin material models and abdomen fat geometry update
 - □ Application to a generic crash at 7.8 m/s
 - □ Variation in submarining risk, depending on loading/boundary conditions and thickness and material models used

Task 3.1 - Improved HBMs for injury risk prediction

- Representation of diversity using HBMs
 - ☐ Morphed SAFER HBM to match Age, Sex, Stature and Weight of PMHSs used in past tests
 - □ Apply boundary conditions from test
 - ☐ Compare responses to assess the quality of morphing tools
- Special HBMs were developed for selected markets

Task 3.2 - Improved HBMs for pre-crash simulations

- Model developments
 - ☐ Stability and evaluations of integrated muscle controllers
 - ☐ Kinematic controllers

- New shoulder muscle control system
 - ☐ Required to model steering wheel interactions

□ Capacity to model antagonist and synergist

11.03.2022

Task 3.3 - Injury prediction in new sitting positions and new crash scenarios

■ Injury Criteria

- □ Neck injury
- SUFEHNM* evaluated under an array of accident cases to develop injury criteria
- First omnidirectional neck injury criteria for HBMs

□ Muscle

- Strain-based injury criteria; predicts the risk of muscle stretch
- Based on the extended Hill-type material model**

^{*}SUFEHNM -Strasbourg University Finite Element Head Neck Model

^{**}Kleinbach et al 2017

Overall Objectives of WP4

- Develop...
 - □ a **quality check** method tool for virtual testing with HBMs tool independent software
 - ☐ an integrated **assessment tool chain** for crash simulation using **HBMs**
 - for MBS and for FEM simulation
 - o using the same general input and assessment method
- Demonstrate...
 - ☐ the effectiveness of the new advanced protections system when developed with adequate HBMs

Objectives WP4

- Development of a positioning method for HBMs
- Development of a method / tool to handover HBM kinematic information from pre- to in-crash simulation
- Homologation testcase
 - □ Partners conduct HBM simulation under harmonized boundary conditions + harmonized assessment
 - ☐ Application and enhancement of OSCCAR results

- Injury indicators
 - ☐ Lumbar spine forces / moments
 - ☐ ASIS forces
- Injury risk parameters
 - ☐ Head injury risk (analysed with SUFEHM)

■ Rib strain determination according to OSCCAR Task 3.3

Model	HIC15	HIC 15 AIS 2+	BRIC	BriC MPS AIS2+	SUFEHM [kPa]	SUFEHM_RISK [%]	A3MS
SAFER HBM v9	102	3%	0.68	75%	6.29	7%	37
Madymo AHM	136	7%	0.72	81%	5.27	6%	40
THUMS TUC LS-Dyna	117	5%	0.51	47%	5.02	6%	37
THUMS v6.1	202	19%	0.82	91%	5.01	6%	47
THUMS v3	108	4%	0.67	74%	4.96	6%	36
THUMS TUC VPS	106	4%	0.60	62%	5.87	6%	37

Harmonized simulation result processing with Dynasaur (https://gitlab.com/VSI-TUGraz/Dynasaur)

Phase 1: Vehicle Model **Development**

Vehicle Environment Simulation Model development by OEM)

Code-specific quality requirements (numerical correctness, discretisation, convergence, element quality, control settings etc.)

Model calibration/validation based on previous models, data (e.g. material data base) and validation tests

Calibrated Vehicle **Environment** Model status frozen (ready for VT)

Phase 2: Vehicle Model **Validation**

Validation Simulations performed by (OEM)

Simulation data

Test data

Objective

Hardware Validation Tests (performed or witnessed by **Technical** Service)

Officially Admitted/ Certified Vehicle **Environment** Model

Phase 3: Homologation / Assessment

Full Virtual Testing with HBM in new load case:

Simulations performed by **OEM**

- Test tool: HBM certified for new load case
- Standardised virtual test procedure (Occupant positioning, belt installation,...)
- HBM based assessment criteria (kinematics/injury)

11.03.2022 **OSCCAR**

- Comparative simulations in brain injury risk estimation
 - ☐ Differences observed and recommendations for next steps derived
 - ☐ Importance of underlying data

- □ Abdomen/Submarining measurement proposed:
 - Kinematic based on position of lap-belt centre line relative to ASIS
 - Complemented by Section forces through iliac wing

