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ABSTRACT

Cycling has been increasingly popular in many cities over the past decades because of its
benefits for both environment and human health. However, there is still lack of knowledge on
the characteristics specific to this traveler group and recent promotion of bicycle use in
transport policies has even expanded the demand for understanding cyclist behavior and bicy-
cle dynamics. It is believed that such understanding can further facilitate the evaluation and
improvement of cycling safety as well as accessibility on the network. This paper therefore
presents an essential methodological framework for processing and analyzing naturalistic data
collected by commuter cyclists in Stockholm equipped with portable GPS devices. On one
hand, the GPS coordinates are filtered by the Kalman smoothing algorithm to obtain accurate
and consistent estimates of cyclists’ position, speed and acceleration. On the other locally
weighted regression is applied to abstract gradient profiles of cycling paths using data of both
altitude and travel distance. After information estimation, the characteristics of cyclist acceler-
ation behavior are then analyzed using statistical approaches. The results show that the accel-
eration profiles have a linear correlation with the total variance in speed during acceleration or
deceleration. The data is finally applied to identify cyclist acceleration models proposed for the
development of cycling simulation.

Keywords: cyclist behaviour, naturalistic cycling GPS data, information filtering, bicycle accel-
eration model and simulation.

1 INTRODUCTION

Many cities in Europe and US have witnessed the growing cyclist population over the past
decades. Although the size of this community is still small in comparison to motorized vehicles,
its high level of vulnerability has been recognized in traffic safety research. Meanwhile, new
policy trends for sustainable transport development have also created a tremendous demand
for more knowledge on the characteristics specific to this traveler group [1,2]. As the populari-
ty of cycling keeps increasing in most urban areas, both traffic planners and policy makers are
seeking useful analytical tools, which can assist in addressing bicycle-related planning and op-
erational issues. The fact that the development of these tools, such as the bicycle traffic simu-
lation models, highly depends on sufficient understanding of cyclist behavior makes it even
more urgent for researchers to initiate related studies. To compensate for this shortage, this
paper presents a study on the cyclist behavior based on naturalistic bicycling data. Inspired by
the previous approach on driver behavior, the naturalistic data from commuter cyclists in



Stockholm are employed for the research. It is believed that the insight into the cyclist behav-
ior illustrated in this study may promote the development of this economical, healthy and en-
vironmentally friendly mode of transport.

1.1 Literature Review

Naturalistic data has so far been widely accepted as the most accredited tool for analyzing
road user behaviors. The trend of using this type of data started in the field of driver behavior
studies around ten years ago [3-4], and now has been driving the development and evaluation
of intelligent in-vehicle systems. Compared with traditional data sources, such as data from ac-
cident databases or data recorded at certain spots, naturalistic data is more capable of provid-
ing researchers with detailed and consistent information, thus contributing to better solutions
to the problems.

Despite the prevalence of naturalistic data in driver behavior studies, a counterpart in bi-
cycle-related studies has not been observed yet, with merely a few papers available to the
public. For example, Johnson et al. [5] used videos filmed by cyclists’ helmet-mounted cameras
to identify risk factors for collisions or near-collisions involving on-road drivers and commuter
cyclists. Parkin et al. [6] utilized naturalistic GPS data from ordinary cyclists to determine the
design speed and acceleration for the cyclists in UK. Furthermore, Gustafsson et al. employed
both GPS devices and video cameras [7]. Two data sources were combined in their developed
data-analysis software, and issues as well as conflicts occurred during cyclists’ trips were sub-
sequently identified. More recently, newer and more intelligent elements have also been ap-
plied to the cycling data collection. For instance, by designing and using a well instrumented
bicycle with multiple devices and sensors, Dozza et al. [8] gathered a large amount of natural-
istic data which contained various information, such as the longitudinal acceleration, lateral
acceleration and so on. In addition, a computer-based technique was developed, which can au-
tomatically perform cyclist data collection [9].

With various approaches of collecting cyclist data, however, deep analyses and models
for cyclist behavior are still absent. Many studies only focus on cyclists’ performance at inter-
sections since it is known that vehicle-bicycle collisions occurred at intersections are the most
common issues due to the insufficient clearance time for cyclists traveling at their ordinary
cruising speed [10]. Pein [11] investigated cyclist performance both on multiuse trails and at
three-leg intersections. The study found that the cyclists did not accelerate uniformly, with the
acceleration rate decreasing after an initial increase. Nevertheless, the research was not con-
tinued and no more detailed results were available. Figliozzi et al. [12] developed a methodol-
ogy for estimating cyclist acceleration and speed distributions at intersections. They employed
a basic video setup to collect field data and further presented some statistical analyses on cy-
clist acceleration and cruising speed performance at intersections. In addition, some studies,
e.g. [6], also tried to figure out whether cyclist demographics have an influence on cycling per-
formance and cyclist behavior, yet no consensus so far has been reached.

1.2 Objectives and Structure

The main objective of this study is to evaluate the cycling characteristics of normal cyclists
based on naturalistic data collected by portable GPS devices. The primary goals are to
- Establish valid approaches to process raw data and estimate information of cyclist
speed, acceleration and altitude;
- Analyze cyclist behavior (acceleration, deceleration and cruising) and infer its charac-
teristics by statistical analysis;
- Show the potential of such data-driven approach in the application of modeling cyclist
behavior.
The remainder of this article is organized as follow: in the second section the data collection
and preprocessing are outlined, including the GPS data estimation and altitude data smooth-
ing; then section 3 presents the methods and results in further data analysis; in the fourth sec-



tion, an application of naturalistic data in acceleration model is briefly introduced; finally, the
research was summarized with conclusions drawn in the fifth section.
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Figure 1. A demonstration for four candidate devices (a); a demonstration for several representative cy-
cling trajectories completed in the urban area of Stockholm, shown in Google Earth (b).



2 Data Collection and Preprocessing

2.1 Data Collection

The data collection so far has been organized twice in the autumn 2013 and the spring 2014
respectively. Eleven commuter cyclists in Stockholm, three female and eight male, were volun-
teered for the data collection. At the beginning four different types of devices were prepared
for the data collection (see Figure 1a), yet practical testing results showed that the Garmin
60CSx and iPhone APP were neither capable of providing high quality data nor logging required
information consistently. Therefore neither of them was employed for the data collection and
all participants were later provided with handlebar mountable Garmin Edge 500 GPS devices
except one who used his own Garmin Oregon GPS device. All participants were required to
record their normal cycling trips as many as possible using the provided devices. Devices were
regularly retrieved by the authors in order to upload the data. At last, 126 available cycling
trips completed in the urban area of Stockholm were sorted out and the raw data was further
stored and managed in a PostgreSQL database. Several representative cycling trajectories can
be then viewed in Figure 1b.

Both applied Garmin devices were able to measure and record GPS data and altitude data
with a time interval of one second depending on the high-sensitivity integrated GPS receivers
and the internal barometric altimeters, respectively. The GPS data included not only the origi-
nal measurements of latitude and longitude with eight digits in the fractional part, but also the
derived information of distance and speed. Moreover, the altitude data turned out to be rela-
tive measurements instead of absolute measurements in most cases due to the limitation of
the internal barometric altimeters.

2.2 GPS Data Estimation

The recorded GPS data contained information about the latitude, longitude, traveling distance
and even instantaneous speed of each cyclist. It was, however, found that missing observa-
tions and noise involved turned out to be an obstacle for abstracting information for applica-
tion. In fact, this issue is not rare in the tracking problems by GPS and other devices in which
the loss of signal and noise inclusion have to be solved by signal processing technique.

During our data collection, participant cyclists were mostly traveling within the urban ar-
ea, thus it is not unexpected that sometimes the functioning of GPS receivers were limited by
the ambient buildings or shelters logging blank tuples in the data file. After trying some esti-
mation approaches from the simple ARMA filters to more advanced adaptive filters, the Kal-
man filter (KF) based approaches finally brought the most consistent estimation results. The KF
is an advanced method, which is able to give optimal estimates of discrete data [13]. The ap-
proach has been widely used in signal processing and control systems over the past few dec-
ades. In this study, application of the method allowed us to take advantages of high-frequency
GPS measurements. As a result, not only the problem of missing observations could be ad-
dressed depending on the “Predict” procedure of the filter, but also the measurement noise in
the GPS data could be largely removed simultaneously.

Kalman Filter based Method

The specific implementation of the KF in our case referred to a previous study [4], in which
the extended Kalman smoothing algorithm, also called Rauch-Tung-Striebel smoother was ap-
plied to estimate the driver behavior data collected by an instrumented vehicle. In general, the
state space model for the tracking problem can be written as follows:

X(t+1)=A-X(t)+ V() (1)

Y(t) = H-X(t) + W(t) (2)
where X(t) and Y(t), respectively, denote the state vector and measurement vector at time t;
A denotes the state transition matrix; H denotes the relation matrix between the measure-
ment and state vector; V(t) and W(t), respectively, denote the process noise and measure-
ment noise and both of them are also assumed to be white noises.



Table 1 The Kalman smoothing algorithm

Forward Filtering
State update
)_(t|t—1 = Ait—1|t—1
Py = Apt—1|t—1AT +0Q
Measurement Update
K = pt|t—1HT(HPt|t—1HT + R)_l
Xt|t = )_(t|t—1 + K. (Y — H)_(t|t—1)
pt|t =(- KtH)Pﬂt—l
Backward Smoothing
th = Xt|t + Qt(xt+1|N - Xt+1|t)
Py = P + e (Prsayy — Pesq)2F

— D Tp—1
0y = PyeA Pyt

As Table 1 shows, the extended Kalman smoothing algorithm virtually consists of a conven-
tional forward filtering process and a backward smoothing process. The backward process
benefits from the offline smoothing in a sense that given the entire observation
quence Yy, Y, ..., Yy, researchers can use the non-causal information to improve the estima-
tion. For the forward filter, )_(t|t_1 and Isﬂt_l, respectively, denote propagated state estimation
(that is, the prediction of the state at t using observation before that instant) and its estimated
covariance prior to time t; Xtu and Pt|t, respectively, denote the a posteriori state estimate
and error covariance; K; denotes the Kalman gain at time t. For the backward smoothing,
XHN denotes the estimation of X; given the whole data sequence Y;,Y,, ..., Yy is available;
Py denotes the error covariance matrix.

Practical Results

Given the abundance in the available GPS information contained the latitude, longitude, dis-
tance and speed in the current case, the study decided to take advantage of it by performing
two types of KF. Specifically, the distance and speed information was used for a one-
dimensional filter while the latitude and longitude information for another two-dimensional
filter. Both filters could then yield processed speed data as well as acceleration data, and fur-
ther by comparing the results of two different filters the authors were also able to figure out
whether the automatic derivation of distance and speed by the Garmin devices was accurate
and which result from the filter was more suitable for subsequent research. This scenario
turned out to be applicable in the current case owing to the high-accuracy latitude and longi-
tude geodetic coordinates documented by the Garmin devices. There were eight digits in the
fractional part for both latitude and longitude geodetic coordinates so that the authors could
use them as the raw measurements for the KF.

The specific operation for the one-dimensional filter used the distance and speed infor-
mation refers to the procedures outlined in [4] and the authors here will only illustrate details
about the two-dimensional filter. One important thing that has to be pointed out before con-
ducting the KF is that the geodetic coordinates (latitude and longitude) have to first converted
to Cartesian coordinates, specifically Universal Transverse Mercator (UTM) [15] in the current
case. This is because geodetic coordinates are not appropriate for the desired data processing
so that only through this transformation can the position appear on a rectangular grid in the x-
y format. The state space model was then formulated based on the physical state relation
shown as follow:

se(t+ 1) = s,.(0) + v (DAL + %ax(t)Atz (3)

sy(t+1) = 5,(t) + v, (DAL + 2 a, (DAL (4)



v (t+ 1) = v, (t) + a,(t)At (5)
v, (t+1) =v,(t) + a, (DAt (6)

Moreover, two independent random walk processes were created for the acceleration in order
to complete the state space model. These random walk models worked in a way that the ac-
celeration of next time stamp was determined by that of the current time stamp plus a ran-
dom noise term denoted by £(t) which was assumed to be white noise. Models are shown as
follows:

A (t+1) = ax(t) + & (1) (7)

ay(t+1) = a,(t) +&,(t) (8)
In summary, with At equal to 1s, the matrices in (1) and (2) can be written as follow:

X(1) = [52(8) 5,(5) ve(8) vy(8) ax(®) @, (]

YO =[50 8,0];

V() =[0000 &®e@®]

W(t) = [Ssx Esy ]T;

_ 1000007,
H_[010000]’
1 0 1 0 1 0
010101}
A=l0 0 1 0 1 0]
000101
000010
o 00 0 0 U

Assuming that all state variables were independent from each other, and that the covariance
matrices were time-invariant, the covariance matrices Q and R became diagonal ones. Since
the power levels of the noise term for the random walk models as well as geodetic coordinates
were unknown, the filter was designed based on a principle that the performance of the filter
is mainly determined by the ratio of the covariance matrices. By adjusting the ratio, more de-
sirable smoothing results were obtained accordingly. The outcomes of both one-dimensional
and two-dimensional filters are then compared in Figure 2. As Figure 2a shows, the trajectory
resulted from the two-dimensional Kalman smoothing algorithm almost overlaps the meas-
ured one completely, indicating that this filter is highly reliable. Figure 2b and 2c, respectively,
portray the smoothed speed profiles and derived acceleration profiles. Notably, the speed pro-
files resulted from two different filters (the red and green lines) are quite identical to each
other. As for the acceleration profiles, the red curve representing the one-dimensional case in
Figure 2c turns out to be smoother than the green one representing the two-dimensional case.
Consequently, the result infers that one-dimensional filter is, though simple, already dependa-
ble enough. Hence the speed and acceleration profiles resulted from the one-dimensional
Kalman filter was used for subsequent research.
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Figure 2. Comparison between the estimated and observed trajectories (a); Comparison between fil-
tered speed profiles and observed profiles (b); Comparison between filtered speed profiles (c).



2.3 Altitude Data Smoothing

It has been mentioned that the present altitude data were relative observations in most
cases. Moreover, its quality was not of high level either. For instance, measurement noises
could be easily observed while plotting the original altitude profiles (see Figure 3b). Consider-
ing these drawbacks, it was therefore necessary to perform data smoothing on the altitude
measurements so that the later derivation of gradient profiles could profit from the smoothed
ones. At last, locally weighted regression [16] was applied to solve the smoothing problem in
this study. Local regression is an approach that has so far been widely used to handle data fil-
tering and smoothing. While performing local regression, a local curve to each point of interest
is fitted using the observations around it. Extended from this very basic one, locally weighted
regression then additionally takes into account a procedure of assigning weights for every in-
volved neighbor point, so that important points can play more significant roles in the estima-
tion.
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Figure 3. The tricube weight function (a); Comparison between the observed altitude data and
smoothed altitude data (b).



Locally Weighted Regression

In the current application, the time series of altitude measurements for a single trip were
denoted as: x(t),t = 1,2, ..., N. The fitted value at x(t) was then estimated as a polynomial fit
to R observations (window) in the neighborhood of t, and the general form of polynomial
function is specified by:

x(t) = ft, (t' Bto) + &t (9)

where B¢, denotes a vector of parameters to be estimated for the fitted curve; & . denotes a
normally distributed error term; f; (t, ﬁto) denotes the fitted altitude at time t estimated by a
local regression function centered at time ¢,.

The weighted least squares estimation was then applied in order to obtain the parame-
ters of local function f; (¢, By,). Notably, the weights w, (t) assigned to ty’s neighbor points
were computed based on the normalized time difference d (between t and the point of inter-
estty). As d decreased, the weight of an observation in the window increased, implicating
those points close to the target were more significant than those far away from the center.
Furthermore, the following minimization problem was formulated. By solving this problem, a
local altitude function centered at ¢, could be developed.

minﬁto [Xto o fto (t’ B150)]T‘leo [Xfo - fto (t’ Bfo)] (10)

where f; (t, Bto) denotes a corresponding vector of fitted values; X, denotes a column vec-
tor of R observations adopted for the estimation; Wy denotes a N X N diagonal matrix of
which elements coincide with the time difference based weights.

In the practical application of locally weighted regression, three components were re-
quired to be carefully considered and determined:
- The specification of the polynomial model f; (t, 3t0)F
- Window size R;
- Specific weight assignment for all neighbor points.

The very basic linear polynomial model was finally adopted for the local regression since it
could already provide good estimations for our study. The window size R was set to be 11,
meaning 10 neighbor points (5 points each side) would be included in the local regression. As
for the weight assignment, a tricube weight function recommended in literature [16] was used
to calculate the weight for each neighbor point. This is because the weight function is not only
smooth enough, but also meets the requirement that points closer to the center can be as-
signed higher weights. The weight function is specified below and illustrated in Figure 3a.

W(tO' t) = (1 - d(tO' t)3)3 (11)
d(ty, t) = 'tOD—_” (12)

where w(t, t) denotes the weight assigned to the observation x(t) in the neighborhood of t;
d(ty,t) denotes the time difference between t, and t; D denotes the number of points incor-
porated in the regression each side.

Figure 3b shows an example of smoothed altitude curve in comparison with the original
altitude measurements. According to the plot, the measurement noise is appropriately re-
moved while the profile becomes much smoother than before.

Gradient Profile Derivation

Considering the identified influence of road gradient on cycling performance as well as cy-
clist behavior, the study decided to derive gradient profiles using some available measure-
ments including the distance and altitude. Specifically, the gradient was computed by dividing
the change in altitude by the change in distance. Moreover, a criterion for the minimum mov-
ing distance (10 meters) was used as well, which implies that only when a part of trip covers



longer than 10 meters would the road gradients be calculated for the time stamps involved. In
addition, the initial gradient g, was set to be 0 by default.

3. DATA ANALYSIS
3.1 Profile Selection

In the present study, an assumption that the cyclist behavior mainly consists of acceleration,
deceleration and cruising behaviors was then employed. It could be then inferred based on this
assumption that during a cycling process the cyclist always endeavors to reach and maintain
his or her desired speed also varying on multiple factors, not only external ones (the road gra-
dient and so on) but also internal ones (the cyclist’s age, gender and so on). It is worth men-
tioning that such assumption refers to some driver behavior studies [17] but now similar con-
cepts can also be seen in cyclist behavior studies [11-12] dealing with the estimation of cyclist
acceleration and speed at intersections.

The main objective for data classification in the present study was to realize the identifi-
cation of acceleration and deceleration profiles. The first step was to distinguish consecutively
speeding-up and slowing-down data clusters and these identified clusters would then be re-
garded as the candidate profiles. Subsequently more strict criteria were considered to further
eliminate insignificant profiles. These criteria include:

- The maximum acceleration of a profile a,,,, is smaller than 2 m/s? (or the minimum accelera-
tion a,,;, is greater than —2 m/s? for the deceleration case);

- The final speed of a profile vy is smaller than 15 m/s (or the initial speed v; is lower than 15 m/s’
for the deceleration case);

- The acceleration time of a profile t, is between 4s and 15s;

- The total distance during the acceleration process d, is not shorter than 5 meters;

- The road gradient over the entire acceleration process g, is neither greater than 10% nor smaller
than —10%j;

- The change in speed of an acceleration process is significant. Specifically, an index 7 defined as
follow is not lower than 50%.

r =l 1000 (13)
max(vg,v;)

As a result, a total of 839 acceleration profiles and 613 deceleration profiles were respec-

tively selected for analysis.

3.2 Descriptive Analysis

While examining the acceleration and deceleration profiles, it was found that the speed-
time profiles for both acceleration and deceleration cases demonstrated S-shape curves (see
Figure 4c and 4d) and the S-shape speed-time curves further resulted in U-shape acceleration-
time curves as illustrated in Figure 4a and 4b. Based on these characteristics, a couple of criti-
cal variables were then extracted or computed for every single profile. These variables include:

- Initial speed v;;

- Final speed Vf;

- Incremental speed Av (or declined speed for the deceleration case);

- Average acceleration rate a,,, (or average deceleration rate d,,, for the deceleration case);

- Maximum acceleration rate a,,,, (or maximum deceleration rate d,,,, for the deceleration

case);

- Acceleration time t,.

10
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Figure 4. Typical acceleration-time and speed-time profiles for both acceleration ((a) and (c)) and decel-
eration cases ((b) and (d)). v(i) and v(f), respectively, denote the initial speed and final speed of a pro-
cess.

Figure shows the distributions of these variables for both acceleration and deceleration cases.
It can be seen both cases resemble to each other except for the sequence (initial speed and fi-
nal speed) and the sign (acceleration rate). These distributions intuitively reveal some detailed
characteristics of cyclist behavior. For example, cyclists hardly accelerated at a relatively high
speed (greater than 4 m/s) and in most cases their speed increased by around 4 m/s. Most
maximum acceleration rates were lower than 1 m/s* while the average maximum acceleration
rate was even smaller (mostly lower than 0.5 m/sz). Moreover, the acceleration time in most
cases is shorter than 10 seconds.

3.3 Statistical Analysis

Correlation and regression analysis were further applied to all variables and it started with the
calculation of correlation coefficient, which accounts for the power level of the linear relation-
ship between two variables. The equation is shown as follow:

_ E[X-p)(Y=pty)]
Ox 0y

Pxy (14)

where uy denotes the mean of variable X; gy denotes the standard deviation of variable X (the
same for variable Y).

In the practical application, instead of the population correlation coefficient, the sample
one was adopted and it is calculated as follow:

1 on

(Xi—)?) Yi—?
n-141=1\ g Sy

where X = %Z?Xi and sy = \[ﬁZ?(Xi - X)2.

(15)

According to the analysis, the variable Av representing the variation of speed in the ac-
celeration or deceleration case had strong linear correlations to both maximum and average
acceleration rates. In the acceleration case, the correlation coefficients between the incremen-
tal speed and the maximum acceleration rate and average acceleration rate respectively
reached 0.7882 and 0.7664, whereas these two values were 0.7806 and 0.7628 in the deceler-
ation case. Besides, the analysis did not find any significant linear correlation between the road

11



gradient and other variables involved in the acceleration process. All related correlation coeffi-
cients turned out to be quite small (around 0.1).
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Figure 5. Distributions of significant variables for cyclists’ acceleration and deceleration performance.
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Figure 6 shows the scatter plots involving three main variables (Av, a,,,4 and d;qy). Notably,
quite similar patterns can be observed in both acceleration and deceleration cases. For exam-
ple, as Av increases in the acceleration case, the maximum acceleration rate and average ac-
celeration rate correspondingly increase. However, the oscillation of both acceleration varia-
bles can be clearly observed in the meanwhile, especially when the variation in Av is
significant, say, between six and ten. This particular observation hence implies the existence of

13



heteroscedasticity in these linear relationships. The corrections for heteroscedasticity were
eventually achieved by transforming the variables to their natural logarithm. Comparisons can
be seen in Figure 6.

4. APPLICATION IN ACCELERATION MODELLING

The naturalistic patterns collected by different methods have been applied to evaluate cycle
traffic performance with respects to safety, mobility and accessibility [5,7,8]. In the meantime,
similar types of data collected for motorized vehicles become a popular approach for behavior
modeling in advanced traffic analysis. Nevertheless, unlike the importance of naturalistic data
for basic driver behavior study, application of such data in cyclist behavior modeling hasn’t
been found in literature. One of the objectives of present research therefore is to overcome
this limitation and demonstrate the applicability of such data.

Using the processed cyclist GPS information, the project further developed a mathemati-
cal approach to model the acceleration/deceleration behavior of this traveler group. The basic
idea follows the aforementioned cycling regime which assumes that the cyclist behavior is
comprised of acceleration, deceleration and cruising, and a cyclist will keep accelerating or de-
celerating before he or she reaches his or her desired cruising speed. Since the data analysis
has figured out that both acceleration and deceleration profiles have U-shape curves despite
the wide variation in individual and external factors (see Figure 4), the cyclist acceleration be-
havior can be modeled depending on the feature. Such way of modeling is also seen in driver
behavior studies. For example, Akcelik et al. [19] proposed an acceleration modeling approach
taking advantage of the characteristics of drivers’ acceleration profiles.

In our model development process, to capture the U-shape of acceleration process be-
came one of the most essential points. The model proposed in our research applied instanta-
neous speed v(t) as the independent variable and other factors playing roles in adjusting es-
timation results were also employed for the mathematical formulation. In general, a nonlinear
acceleration model was developed as follow:

at) = a-AvP -0 (1 - 0(t)™)? + £(t) (16)
6(t) =5 (17)

where a(t) denotes the acceleration rate at time t being modeled; a, n, m and 8 are essential
model parameters to be estimated; At denotes the incremental (or declined) speed; £(t) de-
notes the i.i.d random term which follows a statistical distribution (e.g. normal) with zero
mean. Given the specific assumption of this random term, the model was subsequently esti-
mated using the Maximum Likelihood Estimation (MLE) approach. In fact, the proposed model
follows the stimulus-response principle similar to the GM car-following models [20]. Specifical-
ly, the requirement of adapting the initial speed to the cyclist’s desired speed decides how
much he or she needs to accelerate, while the polynomial of 8(t) makes the acceleration pro-
cess fulfill a U-shape curve.
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Figure 7. Comparison between the observed profiles and estimated acceleration-time profiles and
speed-time profiles for both acceleration ((a) and (c)) and deceleration cases ((b) and (d)).

Previously selected acceleration and deceleration profiles were randomly divided and used for
the model estimation (80%) as well as validation (20%). Examples of close-loop simulation re-
sults for two basic models with 8 fixed to be 1 (Linear) or not (Nonlinear) are then demon-
strated in Figure 7.

5. SUMMARY AND CONCLUSIONS

A good insight into cyclist behavior has never been so desired as now since increasing endeav-
or has been spent to improve the convenience as well as safety of this economical, healthy and
environmentally friendly mode of transport. Given the trend of analyzing the behavior of road
users depending on naturalistic data, researchers have built capacity to obtain more detailed
and accurate characteristic data on bicycle dynamics and cyclist behavior.

This paper presents specific methodologies for collecting, processing and analyzing natu-
ralistic data from commuter cyclists in Stockholm who are provided with portable GPS devices.
Moreover, an application of processed naturalistic data is also briefly illustrated at last to re-
flect the high level of its usability. In the present study, the naturalistic data comes from two
sources: a high-sensitivity integrated GPS receiver and an internal barometric altimeter. Col-
lected raw data is processed by applying the Kalman smoothing algorithm to more reliable GPS
data, and locally weighted regression to more consistent altitude data, respectively. Infor-
mation in cycling speed and acceleration rate is in the meanwhile estimated, and gradient pro-
files are derived by using both altitude and distance data.

Furthermore, given the assumption that the cyclist behavior is comprised of acceleration,
deceleration and cruising, dedicated profiles for acceleration and deceleration are identified
based on the criteria empirically established. Through examining all these profiles, the authors
find that cyclists do not accelerate uniformly. Instead, the acceleration-time profiles show U-
shape curves with both the initial acceleration rate and final acceleration rate being zero. On
the basis of this property, some interesting characteristics of the acceleration behavior are re-
vealed by using statistical approaches. One important result shows that the cyclists’ accelera-
tion has a linear correlation with the variance in speed over the acceleration process. This find-
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ing then promotes the subsequent analytical work in which a stimulus-response type of accel-
eration model is proposed to describe cyclist behavior. While the modeling of cyclists’ acceler-
ation behavior turns out to be the major application of the current research, this paper
demonstrates the potential of the collected naturalistic cycling data for identification of behav-
ioral models. It is expected in our future study that more factors will be considered for behav-
ioral modeling and therefore more naturalistic data will have to be collected.
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