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ABSTRACT 

Common deterrents to cycling in North America are the real and/or perceived concerns on the safety, 
comfort, and practicality of choosing cycling over other modes of transportation, concerns that may be 
addressed by improved cycling facilities.  The challenge lies in effectively quantifying the desirability of 
cycling facilities to assess return on investment for bicycle infrastructure decisions.  In this paper an 
ordinal logit regression model is proposed as a potential Bicycle Comfort and Safety Prediction Model 
(BCSPM) to quantitatively predict a cyclist’s perceived safety and comfort.  These BCSPMs were 
developed by conducting experiments utilizing an Instrumented Probe Bicycle (IPB).  The IPB used in this 
study was developed using research from around the world.  Many sensors were used, including: a 
3DM-GX3 inertial sensor collecting time-stamped, position, velocity, and roll/yaw/pitch angles; and, a 
Microsoft Kinect sensor (still being operationalized) to record time-stamped eye/head positions, facial 
expressions, pulse, and ambient noise levels.  Data for the BCSPM was collected from IPB sensors 
(numeric), field assessments (subjective numeric and categorical), and IPB rider questionnaires 
(categorical, Likert scales of comfort/safety).  This paper outlines the potential applications of the 
BCSPM, the early modeling results of the study, the challenges faced, potential improvements that can 
be made to the IPB, and the next steps in this research. 

Keywords:  Bicycle Comfort and Safety Prediction Model (BCSPM), Instrumented Probe Bicycle (IPB), 
Naturalistic Bicycling Studies, Bicycle Safety, Vulnerable Road Users. 
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1 INTRODUCTION 

Cycling has many advantages, including environmental, social and economic [1, 2, 3, 4]. In 2010, the 
transport sector was responsible for 22% of global CO2 emissions [5], with nearly 60% of greenhouse gas 
(GHG) emissions originating from cars and light trucks [6].  A study of Latin American cities suggests that 
increasing bicycle trips from a 1% to 10% mode share could reduce greenhouse gas emissions by 8.4% 
[2].  The health benefits for cycling are also significant, increased physical activity from cycling can 
increase total life span by 3 to 14 months, outweighing any negative effects such as exposure to air 
pollution and risk to traffic accidents [3].  Economically, cars are affordable to only 10% of the world’s 
population while 80% can afford bicycles.  Bicycles can be more cost effective than driving for trip 
lengths less than 20 kilometers [4].  Moreover, the benefits of investing in cycling infrastructure 
networks are estimated to outweigh the costs by more than four-to-one [7].   

In view of these social, economic, and environmental benefits, communities and transportation 
professionals are seeking ways to promote greater use of bicycles.  However, there is a wide gap 
between the number of car and bicycle users in many cities.  In Chicago, 63% of commuters use private 
transport, only 1% use bicycles [8]. Similarly, in Melbourne, 77% use private transport and only 2% use 
bicycles [9]. As cycling can be integrated with public transit modes such as buses and trains, the major 
disincentive to cycling comes from personal vehicles. 

Mental barriers to cycling originate from the real and perceived concerns for its safety, comfort, and 
practicality relative to driving.  Comparisons of exposure-based, traffic crash injury rates show that 
motor vehicle occupants have lower fatality rates compared to bicyclists per billion kilometers travelled 
[10, 11].  A lesser but still significant mental barrier is the perceived longer travel time sometimes 
associated with cycling relative to driving. However, an Adaptive Stated Preference (ASP) survey 
conducted in Minnesota concluded that commuters are willing to ride an average of 23 more minutes in 
order to switch from riding on a road with on-street parking to an off-road bicycle trail [12], suggesting 
that the travel time is not the main concern for cyclists.   

To increase ridership in North America, a better understanding of perceived rider safety and comfort is 
needed so that more desirable bicycle facilities and effective policies can be introduced.  However a 
there is a lack of reliable empirical tools that can evaluate planned projects and predict the level of 
perceived rider safety and comfort.  University of British Columbia (UBC) researchers at the Sustainable 
Transport Safety Research Laboratory (STS) were requested by local industry with research funding to 
develop bicycle comfort and safety prediction models (BCSPM) to address these needs.  To collect data 
for model development, an Instrumented Probe Bicycle (IPB) was developed in order to allow for the 
collection of real-time and continuous data.   

The study is in its early stages, with only a small sample of field tests conducted to date.  However, these 
tests have allowed for development of the IPB, and for proof-of-concept data for model development 
methodology.  Therefore, the threefold purpose of this paper is to present early results: 
1) A review of previous work on IPB’s and bicycle safety and comfort modelling, including the potential 
applications of BCSPMs; 
2) Progress to date on the development of the IPB, and potential improvements that can be made to the 
IPB; and, 
3) Early UBC STS progress on BCSPM results in a North American context, including models, challenges, 
and next steps in this research. 
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2 LITERATURE REVIEW 

Harkey et al. [13] identified Davis in 1987 as the first person to model bicycle safety and comfort.  Davis 
proposed the Bicycle Safety Index Rating (BSIR), which based bicycle safety on the physical and 
operational features of roadways.  Two safety indexes were developed, one for road segments and one 
for intersections.  In 1994, Sorton and Walsh incorporated the perceptions of non-researchers by 
presenting video recordings of known road conditions to cyclists who were then asked to provide a 
stress level rating between 1 and 5.   These stress levels were found to correlate with geometric and 
traffic operating conditions.  In 1997, Turner et al. [14] defined the Bicycle Suitability Score (BSS) of 
roadways in Texas using four factors: roadway cross-section (shoulder or travel lane width), pavement 
surface quality, traffic volumes, and vehicle speeds. Each factor was divided into three or five ranges of 
values, with each range assigned a score.  In 1998, Harkey et al. [13] utilized survey data and regression 
modelling to develop the Bicycle Compatibility Index (BCI), a comprehensive approach to quantifying the 
Bicycle Level of Service (BLOS).  The BCI utilizes eighteen geometric and traffic related variables.  Among 
the variables utilized are speed limit, presence of on-street parking, bicycle lane width, and driveway 
density.  However, since data collection techniques were outdated and since there was no consideration 
given to rider-related variables, the models went out of practice. 

More recently, Leden et al. (2000) [15] developed a risk index model by incorporating expert judgments 
and a Bayesian method to evaluate the safety effect of new bicycle crossings.  Allen-Munley et al. (2004) 
[17] constructed an ordinal logistic route safety-rating model based on injury severity data from Jersey 
City. Petritsch et al. (2006) [17] used stepwise regression analysis to develop a safety model that 
predicts the relative bicycle and motor vehicle crash rates between on-street facilities and shared-use 
paths located next to roadways. Du et al. (2009) [18] proposed a model simulation using 
MATLAB/SIMULINK of an electric bicycle in order to estimate the rider’s comfort. Yao et al. (2011) [19] 
developed a partial proportional odds model to identify the most significant contributing factors for 
cyclists comfort.  The model was developed using comfort ratings provided by interviewing a total of 
730 cyclists riding on 29 designated bicycle roadway segments in Nanjing, China.  The researchers found 
that the geometric planning of bicycle roadways has a significant impact on rider comfort.  The study 
found that the width of the bike path, separation from pedestrian lanes, the number of uncontrolled 
access points, the presence of bus stops and the land type adjacent to the bicycle path were the most 
significant variables.  Unfortunately, these models were not developed from the collection of reliable 
real-time individual rider data, leading to the lack of consistency in empirical predictions of rider 
perceptions of comfort and safety.  This, in turn stranded many bicycle infrastructure decisions in 
indefensible positions when compared against other, better researched budget needs.   

Most recently, researchers have utilized Instrumented Probe Bicycles (IPBs) to collect better quality data 
on user perceptions, in efforts to build more reliable models of cyclist comfort, safety and level of 
service.  Vanwalleghem et al. (2013) [20] was concerned with comfort estimation due to rough surfaces 
and proposed a vibrational comfort evaluation method. An IPB, configured with acceleration, velocity 
and force sensors was used to collect data for the model. The method evaluated the vibration at all the 
contact points of man-machine interaction, in this case, handle-bar, seat and pedals.  No models have 
been developed to date.  Twisk et al (2013) [21] studied the safety of electrical assist bicycles on the 
elderly, utilizing IPBs equipped with a speedometer, a GPS, a camera, an inertial measurement unit, and 
a potentiometer to record steer angle and steer acceleration, but no models have been produced to 
date.  Dozza and Fernandez (2013) [22] developed one of the most well equipped IPBs to date to study 
bicycle dynamics and cyclist behavior.  Their vision for the future is the development of models and 
intelligent applications to improve the safety and mobility of bicycles and cycling (i.e. curve speed 
warning) in the same way that similar applications have been developed for vehicles and driving.   
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Joo et al. (2013) [23] used an IPB to develop the Bicycle Monitoring Index (BMI), which utilizes binary 
logistic regression modelling and fault tree analysis.  The BMI evaluates two aspects of the bicycle 
environment: safety and mobility, where a failure in either aspect would constitute a failure of the 
bicycle environment.  The data was collected along a 1.4km route with 4 chosen links (2 bicycle/car links 
and 2 bicycle/pedestrian links).  Twenty university students were chosen as volunteers and asked to rate 
each link as ‘satisfactory’ or ‘unsatisfactory’. To evaluate safety, the Cycling Stability Index (CSI) was 
developed as shown in equation (1): 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝑆𝐼) = 𝑃𝑟(𝑆𝑇𝐴𝑛 = 1|𝑋𝑛) =
𝑒𝑥𝑝(𝑓(𝑋𝑛,𝛽)

1+𝑒𝑥𝑝[𝑓(𝑋𝑛,𝛽)]
            (1) 

The variable STAn represents cycling stability.  STAn = 1, indicates satisfactory stability while 0 represents 
unsatisfactory stability.  The CSI provides the probability of STAn = 1, which is dependent on the 
independent variables Xi and coefficients β.  The CSI is an input in equation (2) below, where the 
threshold CSI value (k1) was subjectively chosen as 0.39. For mobility modelling, bicycling speed was 
assessed, with a threshold speed of 5 km/hr (k2) chosen since it can be considered a ‘comfortable’ 
walking speed.  Thus if the bicycle environment cannot provide cyclists with a means of travelling above 
a ‘comfortable’ walking speed (5 km/hr), it has failed.  From Fault Tree Analysis, final the BMI was given 
by equation (2): 

𝐵𝑀𝐼 = 𝜙 = 1 − {1 − Pr(𝐶𝑆𝐼 < 𝑘1)} ∗ {1 − Pr (𝑆𝑝𝑒𝑒𝑑 < 𝑘2)}              (2) 

The most recent and comprehensive published IPB comfort and safety research was by Yamanaka et al. 
(2013) [24]. The study developed one model addressing each of the five topics of interest: ‘safe sense to 
other traffic’, ‘discomfort in roughness of road surface’,’ discomfort of narrow bicycle space’, ‘comfort of 
cycling speed’ and ‘total level of comfort.’   To develop the models Yamanaka et al. conducted a total of 
1432 IPB trials using a total of 74 street segments, 4 to 6 riders, 7 cities, and 3 countries.   Riders rode 
each segment between 4 and 8 times, resulting in each segment being ridden between 16 and 32 times.   
Due to measuring system errors, from the 1432 trials, a total of 1164 samples were obtained.  To 
evaluate the riders’ sense of safety and comfort, subjects were asked to provide ratings on a five point 
Likert scale through a microphone as they passed each road segment for each of the topics of interest.  
More than 30 independent variables assessing parameters such as speed, braking, acceleration, and 
traffic volume were evaluated for model development.  To assess pedestrian, cyclist, and vehicle 
density, the investigators analyzed records from a video camera mounted on the front of the bike.  The 
number of road-users (pedestrians, cyclists and vehicles) within 10 m in front of the bicycle was counted 
every 4 seconds to estimate density. Depending on the bicycle lane type, vehicles beside bicycle lanes 
were also counted.  Distances were estimated using the size of people, bicycles and cars and the final 
flow rate was estimated using assumed bicycle, pedestrian, and vehicle travelling speeds.   The aim of 
Yamanaka’s IPB research was to determine key factors that influence a cyclists’ perception.   

Factor and correlation analyses were utilized to observe the relationships between variables and 
between variables and the 5 topic questions.  From the results of the factor analysis, variables were 
grouped into one of six factors named: speed stability, stop, vibration, steering, density, and braking.  
Variables that are grouped together from factor analysis indicated that they are highly correlated with 
each other.  The correlation between each variable and the ratings provided for each of the five topic 
questions was also calculated.    The variables utilized in the regression model for each topic were 
selected accordingly from the results of the factor analysis and correlation analysis.  Since all comfort 
and safety scores were given on a scale of 1 to 5, the ordinal logit regression model (equation 3) was 
deemed appropriate and utilized in order to calculate the β values for the chosen variables. 
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𝑃𝑟𝑜𝑏(𝑠𝑐𝑜𝑟𝑒 ≤ K ) =   1/ {1 + exp (−𝛽𝑜 +  ∑ 𝛽𝑖𝑋𝑖)𝑛
𝑖=1 }               (3) 

Using the β values obtained from the regression modelling, the final models were constructed to 
provide a Level of Service (LOS) index for each topic of interest.  Yamanaka et al. concluded that the LOS 
can be predicted by the speed of cycling with regard to the desired cycling speed, the standard deviation 
of steering angle (wobble), bicycle vertical vibration level (pavement roughness), braking behavior, 
traffic density in front of the cyclist, and the distance to side objects (buffer zone). 

3 METHODOLOGY 

3.1 Instrumented Probe Bike 

Figure 1 shows the IPB used to collect data for UBC STS model development.  It was a 2011 Marin Alpine 
Trail 29er 17” mountain bike, equipped with a BionX electric assist motor (its battery was removed and 
not used in this research until the IPB and BCSPM methodology are confirmed).   Instruments mounted 
on the bicycle included a frame-mounted 3DM GX3 -45 GPS-Aided Inertial Navigation System, a straight 
line potentiometer mounted to the rear-wheel hand-brake lever, and a Hall effect sensor mounted onto 
the steering column near the handlebar, in conjunction with a rare-earth magnet. Additionally, a 
forward strut extension was attached to the bicycle frame in order to hold a front-facing web camera 
and a rider-facing Microsoft Kinect camera.  The Kinect camera was mounted at a position 
approximately 40 cm above the front tire and 60 cm in front the handle bar. Instruments were 
connected via USB cable to a laptop computer which recorded data and was carried in a panier mounted 
on the rear rack of the bicycle.  The total operating weight of the IPB was measured to be approximately 
35 kg (compared to approximately 15 kg for a typical bicycle).  The data streams provided by each 
sensor and their refresh rates are summarized in Table 1. 

For each IPB field test run, the software was manually initiated before the rider could proceed onto the 
selected pathway. The data provided was time stamped for all sensors, other than the front-facing 
camera. In order to synchronize the video with the rest of the data, a visual signal was displayed in front 
of the camera in conjunction with the initialization of one of the other sensors, to serve as a reference 
point in processing.  

Table 1. Summary of sensors mounted on IPB 
Sensor Type Sensor Name Data streams Provided  

Camera Logitech HD Pro Webcam C910 RGB Video 

Time-of-Flight sensor Microsoft Kinect Depth Video, RGB Video, IR Video 

Potentiometer Hand-brake sensor (PTB6043-2010BPB103) Hand-Brake Depression 

Hall Effect Sensor Handle-bar sensor (A1324) Handlebar Position 

GPS-Aided Inertial 
Navigation System 

3DM GX3 -45 GPS position, NED velocity, Roll/Pitch/Yaw, Elevation 

 

3.2 Road Segments 

Table 2 outlines 19 scenarios of interest, labelled A through S, based on varying three types of road 
conditions: road hierarchy, bike path type, and on-street parking.  Street segments were selected from 
within Kelowna, BC to cover the 18 theoretical scenarios.  Based on other research methodologies, the 
length of each road segment ranged from a minimum of 300 to 800 meters [24].  Each IPB test run 
performed on a given street segment represents a single data point or sample for modelling purposes.  
In some situations, multiple road segments were selected for a single scenario.  Individual road 
segments were grouped into test routes consisting of one or two road segments.  In this way, multiple 
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segments could be tested immediately preceding (or following) each other on the ride [21, 24].  A total 
of 26 segments were utilized.  

 
Figure 1. IPB and Mounted Sensors 

Table 2.Summary of test scenarios 

Scenario 
Road Hierarchy Bike Path Type 

On Street  
Parking 

Local Collector Arterial On Road Bike Lane Separated Shared Yes No 

A x     X     x   

B   x   X     x   

C     x X     x   

D x       x   x   

E   x     x   x   

F     x   x   x   

G x         x x   

H*   x       x x   

I*     x     x x   

J x     X       x 

K   x   X       x 

L     x X       x 

M x       x     x 

N   x     x     x 

O     x   x     x 

P x         x   x 

Q   x       x   x 

R     x     x   x 

S NA     x   x 

*No segments were found for scenarios H and I  
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3.3 Participant Sample Size 

For these proof-of-concept test rides, participants were researchers from the UBC STS research lab.  
Seven test riders were involved in this study; all between the ages of 21 and 29, consisting of 6 males 
and 1 female.  Each of the route segments was ridden between 3 and 7 times no more than once by 
each rider.  In total 26 road segments were examined between 3 and 7 times each to account for a total 
102 samples.  Admittedly, a much larger sample size was required; however, in the time available over 
100 samples was reasonable to test IPB technology and BCSPM methodology. 

3.4 Test Data 
Data for over 30 independent variables were successfully collected by the IPB, rider surveys, and field 
assessments.  Table 3 provides definitions for all 36 variables for which initial data were collected and 
tested in model development. 
 

Table 3. Variable Definitions for comfort and safety data collected for BCSPM development  

# Variable Name Units Description 

1 T_SPD_V 
km/h 

 

Mean Travel Speed.  Mean travel speed describes the speed at which 
the segment was traversed using travel time which indicates the total 

time elapsed for traveling a road segment. Calculated from front-
mounted video camera 

 
2 

C_SPD_V 
km/h 

 

Mean cycling speed describes the speed at which the segment was 
traversed using cycling time, where cycling time describes the time 

spent in motion.  Calculated from front-mounted video camera 

3 R_STP 
sec/sec 

 
Total stopped time divided by travel time.  Stopped time describes the 

amount of time spent stationary (waiting for red-light, etc.). 

4 F_STP #/km Number of stops divided by segment length. 

5 NOIS Indicator  
Environmental noise (classified based on the judgment of the 

investigator as “quiet”, “medium” or “loud”). 

6 CAR_SPD Indicator 
Speed limit of the road (classified as “0 km/h”, “40 km/h”, “50 km/h”, 
“60 km/h”, or “70 km/h”)  A speed limit of 0 km/h are assigned to bike 

paths not adjacent to a road. 

7 CAR_VOL Veh/min 

Perceived vehicle volume travelling in the same direction as the 
participant (applies only to participants cycling on road or within a bike 
lane).  This parameter is calculated by counting the number of vehicles 
to pass the participant (in the same direction), divide by cycling time. 

8 CLS_VOL Veh/min 

Perceived close vehicle pass volume travelling in the same direction as 
the participant.  Vehicles passing the participant within the same lane or 
within the immediately adjacent lane are considered a close pass. This 
parameter is calculated by counting the number of vehicles to pass the 
participant and dividing that value by the cycling time. (Applies only to 

participants cycling on road or within a bike lane). 

9 PTYPE Indicator  Path type (classified as “on road”, “bike lane”, and “separated path”). 

10 F_OBS #/km 

Obstruction frequency (per kilometer of the length of the segment).  
Obstructions are defined as objects placed within the participants 

cycling path that causes the participant to execute a maneuver in order 
to avoid it. 

11 SLOP % Average slope. 

12 PAV_CON Indicator 
Pavement condition (classified as “very poor”, “poor”, “fair”, “good” or 

“very good”).  Classifications are based on the Pavement Condition 
Rating outlined within the FHWA Highway Performance Monitoring 
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System [14] 

13 R_MAIN Indicator 

Road maintenance describes the amount of debris such as sticks, leaves, 
sand or gravel on the path (classified based on the judgment of the 

investigator as “poor”, “fair”, “good”, or “very good”) 
A “very good” rating indicates no debris on the path, rating of “good” 
indicates that there is some debris on path but it is minor and easily 

overlooked. A “Fair” rating indicates that there are noticeable patches 
of debris that may cause some discomfort.  Finally, a “poor” rating 

indicates that there is an abundant amount of debris on the path that 
significantly disturbs the riding experience. 

14 F_UND #/km 
Undulations frequency (per kilometer of the length of the segment).  

Undulations are defined as a sudden rise or drop of 20 cm in height or 
more. 

15 MIN_LN m 
Minimum lane width of the bike path in the road segment (a lane width 
of 0 is assigned when riding on the road).  On-street bicycle lanes were 

assumed to have the minimum specified width of 1.5 m. 

16 MAJ_LN m 
Lane width of the bike path in the majority of the road segment (a lane 
width of 0 is assigned when riding on the road).  On-street bicycle lanes 

were assumed to have the minimum specified width of 1.5 m. 

17 F_CURV #/km 
Curve frequency (per kilometer of the length of the segment).  Based on 
the judgment of the investigator, a curve was loosely defined within this 

study as any non-gradual change in the alignment of the bike path. 

18 F_INS #/km 
Intersection frequency (per kilometer of the length of the segment).  

Intersections frequency describes the number of intersections that the 
participant crossed during the riding of each segment. 

19 TEMP Indicator 
Temperature (classified as “below 0 °C”, “0-10 °C”, “10-20 °C”, “20-30 

°C” or “Above 30°C”). 

20 HIER Indicator 
Road hierarchy (“none” in the case where no roads are adjacent to the 

bike path, “local”, “collector” or “arterial”). 

21 WIND Indicator 
Wind strength (classified based on the judgment of the investigator as 

“none/light”, “medium” and “strong”). 

22 PRK_CAR #/km 
Parked car density (the number of parked cars per kilometer of length 

of the segment). 

23 ADJ_DRWY  #/km 
Adjacent driveway density (per kilometer of the length of the segment, 

includes parking lot accesses and alley ways). 

24 AGE Indicator Age (“19-29 yrs”, “30-39 yrs”, “50-59 yrs” or “over 60 yrs”) 

25 FIT  Indicator  
Fitness is described as hours of exercise per week (“less than 2 hrs”, “2 

to 5 hrs”, “5 to 10 hrs” or “greater than 10 hrs”). 

26 GEN Indicator Gender (classified as “male” or “female”). 

27 R_EXP  Indicator  
Riding experience is described by the length of time of which the 

participant has known how to ride a bicycle (classified as “less than 1 
year”, “1 to 5 years”, “5 to 10 years” or “greater than 10 years”). 

28 BMI  BMI Body mass index (BMI)  

29 S_EXP  Indicator 
Segment experience describes the number of times the participant has 

previously ridden on the segment (classified as “none”,”1 time”,”1-3 
times”, “3-5 times”, or “more than 5 times”). 

30 ROL_SDEV Degrees 
The standard deviation of the rotation about the roll axis (axis about the 

direction of travel of a bicycle).  Calculated from Inertial sensor data. 

31 PCH_SDEV Degrees 
The standard deviation of the rotation about the pitch axis (axis parallel 

to the wheel axles).  It is hypothesized that pitch can be used to infer 
surface roughness. Calculated from Inertial sensor data.  

32 T_SPD_INS Km/h Mean Travel Speed.  Calculated from Inertial sensor data. 

33 T_SPD_SDEV Km/h 
The standard deviation of mean travel speed.  Calculated from Inertial 

sensor data. 
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34 M_SPD Km/h Maximum cycling speed 

35 C_SPD_INS Km/h Mean Cycling Speed.  Calculated from Inertial sensor data. 

36 C_SPD_SDEV Km/h 
The standard deviation of mean cycling speed.  Calculated from Inertial 

sensor data. 

3.5 Data Collection 

Upon completion of the test rides, participants provided a rating for the safety and comfort level they 
experienced during each road segment.  These ratings were provided based on a Likert scale from 1 to 5, 
with 1 representing an extremely unsafe or uncomfortable riding experience to 5 representing an 
extremely safe or comfortable riding experience.  A rating of 3 represents a neutral experience.  Cycling 
safety was defined as the risk of physical or psychological damages due to cycling accidents.  Cycling 
comfort was defined as the physical or psychological ease and convenience of cycling.  The sense of 
safety can be summarized to be the feeling of potential danger, while comfort can be summarized to be 
the feeling of enjoyment.  Participants were asked about their previous experience with the ridden 
segments, personal characteristics (age, fitness, BMI, gender), and riding experience.  Other route data - 
pavement condition, road maintenance, temperature, wind strength, environmental noise, speed limit 
and lane widths - were recorded separately by the investigators.  Video data collected from the forward 
facing camera on the IPB was post-processed to obtain the remaining variables associated with traffic 
volumes, obstructions, curves, parked cars, intersections and driveways.  Google Earth maps were also 
utilized to assist with the counting of intersections and driveways.  Finally, data collected by the GPS-
Aided Inertial Navigation System (3DM-GX3-45) was post-processed to obtain real-time bicycle 
orientation and velocity data.  
 
From the 102 samples collected, video recording errors were observed for 15 samples.  Additional 
operational and technical challenges with the GPS-Aided Inertial Navigation System (3DM-GX3-45), 
Microsoft Kinect sensor, handle-bar sensor and hand-brake sensor resulted in discontinuous data and 
missing data for many more samples.  As a result of these challenges samples often did not contain a 
complete set of data from all sensors.  These challenges were noted for future work and preliminary 
BCSPM were developed from two separate analyses (Part 1 and Part 2) utilizing data collected from the 
3DM-GX3-45 and the webcam.  Of the 102 samples collected, a total of 27 samples contained complete 
webcam and the 3DM-GX3-45 data.  These 27 samples were utilized in Part 1.  A total of 87 samples 
contained complete webcam data; these samples were utilized in Part 2.  The model developed in Part 2 
used 63 of those data points (roughly 75% of the 87 data points) referred to as model data.  The 
remaining 24 data points were chosen randomly and kept to validate the developed model.   
 
Table 4 summarizes the continuous variable data.  Table 5 summarizes indicator variable data, and Table 
6 summarizes dependent variable data. Although more IPB test runs using non-staff participants would 
have been ideal (and will be carried out in phase 2), this was sufficient data to run model development 
using SPSS software and Categorical Principle Component Analysis (CatPCA).  Future research (Phase 2 
Spring 2015) would then refine and use this methodology with a substantially larger and complete data 
set. 
 
4 MODEL DEVELOPMENT AND RESULTS 
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4.1 Principle Component Analysis (PCA) and Correlation Analysis 
First, a brief assessment of the data resulted in the removal of 3 variables from further analysis.  Gender 
variables were removed from the analysis as the demographics consisted of 6 male participants and 1 
female participant which is inadequate for measuring gender differences.  WIND and AGE were also 
removed as they remained constant throughout data collection.  

 
Table 4. Numeric (Continuous) Data Summary Part 1 / 2 (Values for 27 / 87 Data Points) 

 
Variables Units of Measure Minimum Maximum Mean Std. Deviation 

T_SPD_V Km/h 6.53 / 6.53 27.43 / 27.43 15.81 / 15.84 4.10 / 4.29 

C_SPD_V km/h 7.83 / 7.83 41.74 / 41.74 16.60 / 16.54 5.97 / 5.01 

R_STP sec/sec 0.00 / 0.00 0.34 / 0.35 0.03 / 0.04 0.08 / 0.09 

F_STP #/km 0.00 / 0.00 8.89 / 8.89 0.66 / 0.52 1.84 / 1.35 

CAR_VOL Veh/min 0.00 / 0.00 14.88 / 14.88 1.96 / 1.92 3.25 / 3.17 

CLS_VOL Veh/min 0.00 / 0.00 5.08 / 8.37 1.32 / 1.37 1.69 / 2.07 

F_OBS #/km 0.00 / 0.00 6.67 / 6.67 1.00 / 0.74 2.05 / 1.81 

SLOP % -1.38 / -1.38 1.13 / 1.25 -0.06 / -0.02 0.60 / 0.40 

F_UND #/km 0.00 / 0.00 9.23 / 9.23 0.68 / 0.59 2.46 / 1.85 

MIN_LN m 0.00 / 0.00 3.80 / 3.80 1.48 / 1.37 1.18 / 1.29 

MAJ_LN m 0.00 / 0.00 3.80 / 3.80 1.54 / 1.53 1.23 / 1.44 

F_CURV #/km 0.00 / 0.00 6.67 / 6.67 1.24 / 0.72 2.26 / 1.78 

F_INS #/km 0.00 / 0.00 12.00 / 12.00 4.89 / 4.70 4.14 / 3.66 

PRK_CAR #/km 0.00 / 0.00 88.89 / 125.71 12.02 / 19.93 21.51 / 32.22 

ADJ_DRWY #/km 0.00 / 0.00 46.67 / 46.67 20.58 / 13.49 17.00 / 16.89 

BMI BMI 20.28 / 20.28 28.59 / 31.75 24.82 / 24.51 3.02 / 3.06 

ROL_SDEV* Degrees 1.39 7.47 2.68 1.45 

PCH_SDEV* Degrees 0.67 1.73 1.14 0.28 

T_SPD_INS* Km/h 6.77 22.94 15.08 3.64 

T_SPD_SDEV* Km/h 1.55 6.96 3.82 1.47 

M_SPD* Km/h 13.10 29.12 20.52 4.24 

C_SPD_INS* Km/h 7.52 22.94 15.37 3.47 

C_SPD_SDEV* Km/h 1.55 8.60 3.70 1.58 

*Variables only available for Part 1 (27 data points) 
 

Categorical Principle Component Analysis (CatPCA) was then performed in order to observe the 
relationship between the remaining independent variables.  As noted, using CatPCA allows logit 
regression analysis to be conducted in SPSS without the need for normality, so long as variables are fully 
disclosed as either Scale (e.g. Speed), Ordinal (e.g. Likert Scale), or Nominal (e.g. Gender).  It should be 
noted that path type (PTYPE) and road hierarchy (HIER) were treated as ordinal variables rather than 
nominal throughout the preliminary analysis as categories within each variable can be ranked.  Tables 10 
and 11 contain the results of the component loading dimensions from the CatPCA and Spearman 
correlation analyses between each of the independent variables and the safety and comfort ratings.  The 
results reveal 7 dimensions or latent variables.  The correlation target level of confidence of 95% was 
desired, in some cases 85% was accepted (Part 1), within Part 2 many cases exceeded 99%. 

The cells highlighted in Table 7 and Table 8 under component loading dimensions indicates variables 
with the highest correlation to their respective dimensions.  In future model development, all well 
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correlated (i.e. 95% or more) variables in each factor could be combined and the model re-run.  For 
example, in part 2, dimension 1 we could introduce a new variable in SPSS called PATH=MAJ_LN + 
MIN_LN + PTYPE, because all variables are significantly correlated but collinear, thus avoiding the 
problem of collinear model variables.  For each case of the analysis (Part 1 and Part 2) the most 
important component dimensions are discussed.  

Table 5. Numeric (continuous) data summary Part 1 / 2 (Values for 27 / 87 Data Points) 

NOIS Frequency Percent HIER Frequency Percent 

Quiet 12 / 46 44.4 / 52.9 
none 
Local 

0 / 8 
16 / 42 

0 / 9.2 
59.3 / 48.3 

Medium 14 / 35 51.9 / 40.2 Collector 2 / 11 7.4 / 12.6 

Loud 1 / 6 3.7 / 6.9 Arterial 9 / 26 33.3 / 29.9 

Total 27 / 87 100 / 100 Total 27 / 87 100 / 100 

FIT Frequency Percent CAR_SPD Frequency Percent 

2-5 hrs 15 / 48 55.6 / 55.2 
0 km/h 

40 km/h 
0 / 8  
4 / 8 

0 / 9.2 
14.8 / 9.2 

5-10 hrs 12 / 39 44.4 / 44.8 50 km/h 19 / 63 70.4 / 72.4 

Total 27 / 87 100 / 100 60 km/h 4 / 8 14.8 / 9.2 

PTYPE Frequency Percent Total 27 / 87 100 / 100 

On Road 8 / 35 29.6 / 40.2 R_EXP Frequency Percent 

Bike Lane 10 / 20 37.0 / 23.0 less than 1 year 2 / 6 7.4 / 6.9 

Separated 
Path 

9 / 32 33.3 / 36.8 10+ years 25 / 81 92.6 / 93.1 

Total 27 / 87 100 / 100 Total 27 / 87 100 / 100 

PAV_CON Frequency Percent TEMP Frequency Percent 

Fair 3 / 12 11.1 / 13.8 11-20 C 6 / 17 22.2 / 19.5 

Good 11 / 26 40.7 / 29.9 21-30 C 21 / 70 77.8 / 80.5 

Very Good 13 / 49 48.1 / 56.3 Total 27 / 87 100 / 100 

Total 27 / 87 100 / 100 GEN Frequency Percent 

R_MAIN Frequency Percent Male 18 / 65 66.7 / 74.7 

Fair 
Good 

0 / 10 
5 / 11 

0 / 11.5 
18.5 / 12.6 

Female 9 / 22 33.3 / 25.3 

Very Good 22 / 66 81.5 / 75.9 Total 27 / 87 100 / 100 

Total 27 / 87 100 / 100 S_EXP Frequency Percent 

AGE Frequency Percent none 19 / 60 70.4 / 69.0 

19-29 27 / 87 100 / 100 once 6 / 13 22.2 / 14.9 

WIND Frequency Percent 1 to 3 times 2 / 2 7.4 / 2.3 

None/Light 27 / 87 100 / 100 Total 27 / 87 100 / 100 
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In part 1, dimension 1 includes variables that can be related in some way to mobility and the physical 
cycling environment.   T_SPD_V, C_SPD_V, C_SPD_INS, M_SPD and T_SPD_INS are all variables that 
describe speed, while F_OBS and ADJ_DRWY both describe situations where the cyclist would be 
inclined to slow down to watch for other road users or to maneuver around an obstacle as shown by the 
variable ROL_SDEV.   Further, F_STP directly describes the frequency of stops during the ride and R_EXP 
and BMI are both rider characteristics that can greatly affect their mobility and speed through a 
segment.  The second dimension includes variables such as SLOP, PAV_CON, F_UND, PTYPE, MAJ_LN 
and MIN_LN.  All of these variables describe the physical features of cycling path.  Dimension 3 contains 
variables that describe the stability of the bicycle and speed (PCH_SDEV, T_SPD_SDEV, R_STP and 
C_SPD_SDEV) and dimension 4 contains variables that are related to traffic volume (HIER, CLS_VOL, 
CAR_VOL and NOIS). 

 
Table 6.Dependent variable data summary  

 

Part 1 (27 Data Points) Part 2 (87 Data Points) 

SAFETY Frequency Percent SAFETY Frequency Percent 

Extremely Unsafe 0 0 Extremely Unsafe 3 3.4 

Unsafe 2 7.4 Unsafe 10 11.5 

Neutral 5 18.5 Neutral 17 19.5 

Safe 7 25.9 Safe 19 21.8 

Extremely Safe 13 48.1 Extremely Safe 38 43.7 

Total 27 100.0 Total 87 100.0 

CMFRT Frequency Percent CMFRT Frequency Percent 

Extremely Uncomfortable 0 0 Extremely Uncomfortable 1 1.1 

Uncomfortable 1 3.7 Uncomfortable 10 11.5 

Neutral 6 22.2 Neutral 11 12.6 

Comfortable 7 25.9 Comfortable 30 34.5 

Extremely Comfortable 13 48.1 Extremely Comfortable 35 40.2 

Total 27 100.0 Total 87 100.0 

 

 
Within Part 2 the majority of variables are split between dimension 1 and dimension 2. Dimension 1 
includes variables that describe traffic volume and speed (CAR_SPD, CLS_VOL, CAR_VOL), and the type 
of corridor (MAJ_LN, MIN_LN, PTYPE, R_MAIN, PAV_CON, PRK_CAR , HIER and F_INS.)  Dimension 2 
contains variables that are associated directly (T_SPD_V, R_STP and F_STP) or indirectly (FIT, BMI, R_EXP 
and S_EXP) with cycling speed and speed stability. 

Variables were selected for modelling based on their correlation with SAFTY and CMFRT.  Models were 
initially constructed utilizing all the variables marked with an asterisk within the Spearman’s rho 
correlation column in Table 7 and Table 8.  Variables were then subsequently removed based on the 
appropriateness of the sign of the resulting β value estimates, the sig. value of the β value estimates, 
and in some cases to achieve an acceptable goodness-of-fit sig. value above 0.05.  The highlighted 
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Spearman’s values correspond with the variables used in the final model.  As MAJ_LN and MIN_LN as 
well as CLS_VOL and CAR_VOL were highly collinear, they were summed into variables LN and VOL 
respectively for modelling purposes.  It should be noted that PAV_CON and R_MAIN is significantly 
correlated with safety and comfort, however, in a negative correlation which is not intuitive.  This is 
likely due to the positive correlation that PAV_CON and R_MAIN has with CAR_SPD, CLS_VOL and 
CAR_VOL over powering its intuitively positive effect on comfort and safety.  It can be reasoned that 
roads with more traffic volume and higher speeds are more frequently maintained.  Additionally, it was 
observed during test riding that shared paths were often less well maintained than bike lanes or roads.   

Table 7. Component Loadings and Correlation Values - Part 1 (27 Data Points) 
 

Variables 
Component Loadings Dimension Spearman's rho 

1 2 3 4 5 6 7 8 9 SAFTY CMFRT 

T_SPD_V .896 -.085 -.170 .243 .163 -.056 .020 -.199 -.039 -.100 .283 

C_SPD_V .883 -.076 -.200 .246 .168 -.046 .037 -.189 -.080 -.074 .282 

BMI .872 -.144 -.092 -.081 -.232 .191 .011 .124 -.204 .231 .166 

C_SPD_INS .871 -.108 -.195 .345 .158 -.151 .053 -.047 .015 -.043 .312* 

T_SPD_INS .871 -.111 -.276 .257 .166 -.196 .010 -.048 .018 -.063 .218 

R_EXP .861 -.152 -.124 -.081 -.184 .174 .039 .125 -.229 .303* .245 

F_STP -.792 .122 .481 -.024 -.113 .127 .069 .227 -.081 .106 .036 

ROL_SDEV -.682 -.335 .278 -.020 .246 -.118 -.126 -.261 .248 .045 -.071 

ADJ_DRWY -.671 .086 -.105 .290 .315 -.487 .161 .032 -.058 0.000 .104 

F_OBS -.669 .086 -.099 .293 .321 -.485 .161 .036 -.058 -.405** -.026 

M_SPD .615 -.537 .095 .241 -.042 -.224 -.004 .299 .034 -.066 .359* 

SLOP .004 .859 -.039 .373 -.233 -.093 .036 .065 -.156 -.135 -.205 

PAV_CON .014 .806 .009 .401 -.316 -.142 .007 .175 -.099 -.205 -.277 

F_UND -.046 -.566 -.181 -.504 .248 .224 .145 .089 .289 .078 -.049 

PTYPE -.435 -.550 -.465 .110 -.381 -.098 .226 -.235 -.107 .210 .283 

MAJ_LN -.434 -.550 -.466 .112 -.381 -.098 .225 -.235 -.109 .266 .335* 

MIN_LN -.433 -.547 -.467 .112 -.383 -.098 .225 -.237 -.108 .271 .319* 

C_SPD_SDEV -.072 -.471 .694 .354 -.070 -.025 -.253 -.037 -.044 -.310* .083 

T_SPD_SDEV .002 -.350 .681 .388 -.073 .278 -.019 -.323 -.169 -.239 .150 

PCH_SDEV .189 -.515 .666 .138 -.170 -.198 -.112 -.084 .073 -.161 .131 

PRK_CAR .288 .418 .600 .066 .321 .144 .206 -.232 -.046 -.033 -.040 

R_STP -.435 .132 .568 .205 -.137 .465 .229 -.091 -.175 .151 .054 

S_EXP .352 -.241 .549 .431 -.162 .036 .316 -.104 .234 .054 .056 

HIER -.336 -.303 .068 .696 .139 -.249 -.325 .217 -.151 -.394** .025 

F_CURV .193 -.337 .200 -.608 .555 .095 -.058 -.007 -.083 .151 .180 

CLS_VOL -.068 .298 -.388 .575 .024 .421 -.214 -.238 .330 -.297* -.436** 

FIT .403 -.118 .365 .573 .179 -.212 .346 .137 .107 -.103 .217 

CAR_VOL -.069 .290 -.406 .567 -.016 .416 -.280 -.215 .286 -.315* -.401** 
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NOIS -.318 -.473 -.246 .486 .221 .057 -.335 .334 .134 -.424** -.287* 

R_MAIN .085 -.339 .113 .061 -.563 .283 .041 .486 .221 .138 -.112 

CAR_SPD -.263 -.211 -.208 .244 .534 .477 .010 .075 -.458 .146 .188 

F_INS .337 .364 .331 -.422 -.217 -.473 -.087 -.175 .204 -.053 -.183 

TEMP -.114 .120 -.139 .231 .312 .236 .723 .216 .269 .166 -.025 

**Correlation is significant at the 0.05 level (i.e. 95% level of confidence) 
* Correlation is significant at the 0.15 level (i.e. 85% level of confidence) 

Table 8. Component Loadings and Correlation Values - Part 2 (87 Data Points – 75% of data) 
 

Variables 
 

Component Loadings Dimension Spearman's rho 

1 2 3 4 5 6 7 8 9 SAFTY CMFRT 

MAJ_LN -.901 -.042 .177 -.082 .113 .330 -.096 .038 .021 .517** .375** 

MIN_LN -.879 -.016 .274 -.093 .096 .248 -.082 .062 -.045 .522** .382** 

PTYPE -.874 .003 .253 -.152 .023 .307 -.101 .080 -.010 .494** .373** 

PAV_CON .766 .221 .014 -.112 -.077 .401 .236 -.134 -.129 -.412** -.330** 

CAR_SPD .751 .405 .204 -.294 -.203 .248 -.058 -.010 -.041 -.186 -.203 

HIER .738 .408 .378 -.214 -.133 .205 -.109 -.010 .028 -.468** -.364** 

F_INS .673 -.069 -.401 -.071 .025 .275 -.136 .160 -.101 -.238 -.191 

R_MAIN .592 .497 .139 -.340 -.257 .210 .045 -.185 -.090 -.284* -.226 

PRK_CAR .573 -.116 -.508 .215 -.213 -.056 -.298 -.068 .079 -.302* -.188 

CLS_VOL .570 -.058 .482 .470 .343 -.032 .108 .055 .132 -.602** -.536** 

CAR_VOL .536 -.028 .483 .435 .382 -.046 .143 -.023 .201 -.619** -.554** 

T_SPD_V -.318 .627 -.009 .541 -.151 -.046 -.003 -.258 -.233 .287* .406** 

BMI .129 .627 -.270 -.035 .552 -.114 -.136 .392 -.104 -.008 -.056 

R_EXP .130 .626 -.269 -.037 .552 -.116 -.135 .390 -.109 -.019 -.133 

F_STP .322 -.623 .198 .317 -.287 .137 -.367 .256 -.207 -.138 -.144 

R_STP .327 -.617 .206 .320 -.269 .136 -.370 .283 -.193 -.138 -.159 

FIT -.223 .606 -.142 .514 -.274 .103 -.163 .035 .173 .247 .324** 

S_EXP -.194 .476 -.228 .430 -.265 .287 -.195 .048 .263 .285* .286* 

NOIS .288 .166 .773 .190 .225 -.057 -.209 .012 .263 -.519** -.494** 

F_OBS -.103 .284 .528 -.035 -.526 -.299 .174 .321 .015 -.106 .145 

C_SPD_V -.295 .497 .001 .649 -.113 -.088 -.040 -.133 -.385 .265* .371** 

TEMP -.104 -.052 -.288 .513 -.327 .118 .327 .194 .325 .158 .185 

F_CURV .086 .166 -.407 -.443 -.366 -.414 -.220 .101 .293 .158 .173 

ADJ_DRWY -.226 .318 .429 -.296 -.464 -.223 .268 .337 -.137 .025 .099 

F_UND -.178 .105 -.149 -.141 .042 .780 .184 .205 .121 .103 .030 

SLOP .318 -.285 -.343 .335 -.005 .018 .651 .222 -.135 -.225 -.216 

**Correlation is significant at the 0.01 level (i.e.99% level of confidence) 
*Correlation is significant at the 0.05 level (i.e. 95% level of confidence) 
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4.2 Ordinal Logit Regression Model 

The ordinal logit regression model as shown in equation 3 was utilized to construct a safety prediction 
model and a comfort prediction model.   This model, also known as the proportional odds model is 
commonly utilized for ordinal dependent variables and was utilized within Yamanaka’s study [24].  The 
maximum number of iterations for the analysis was set at 200.  It should be noted that the best results 
for the model were obtained when PTYPE was treated as a factor within the analysis and not as a 
covariate variable.  Table 9 and Table 10 outlines the results of the regression analysis including the 
goodness-of-fit and Pseudo R-Square values.  

In order to determine the predicted outcomes the equations developed in this study have been shown 
in equations (4) to (9) below:  

𝑃𝑟𝑜𝑏(𝑘 ≤  K) =   1/ {1 + exp (−𝛽𝑜 +  ∑ 𝛽𝑖𝑋𝑖)𝑛
𝑖=1 }            (4) 

𝑃𝑟𝑜𝑏(𝑘 = 1) =  𝑃𝑟𝑜𝑏(𝑘 ≤ 1)            (5) 

𝑃𝑟𝑜𝑏(𝑘 = 2) =  𝑃𝑟𝑜𝑏(𝑘 ≤ 2) − 𝑃𝑟𝑜𝑏(𝑘 ≤ 1)            (6) 

𝑃𝑟𝑜𝑏(𝑘 = 3) =  𝑃𝑟𝑜𝑏(𝑘 ≤ 3) − 𝑃𝑟𝑜𝑏(𝑘 ≤ 2)            (7) 

𝑃𝑟𝑜𝑏(𝑘 = 4) =  𝑃𝑟𝑜𝑏(𝑘 ≤ 4) − 𝑃𝑟𝑜𝑏(𝑘 ≤ 3)            (8) 

𝑃𝑟𝑜𝑏(𝑘 = 5) =  1 − 𝑃𝑟𝑜𝑏(𝑘 ≤ 4)               (9) 

Where K is the safety or comfort score ranging from 1 to 5,  𝛽𝑜 is the parameter estimate value 
corresponding with each individual threshold for the dependent variable (safety and comfort) as shown 
in Table 9 and Table 10,  𝛽𝑖 is the individual parameter estimate for each independent variable (labelled 
as location within Table 9 and Table 10), and 𝑋𝑖  is the corresponding variable value measured from the 
field. 
 
The significance values for goodness-of-fit for both the Pearson Rank Correlation, and Deviance tests for 
both models show values greater than 0.05.  This indicates that the model fitting using these measures 
could be considered, with 95% confidence level, successful.  Positive  𝛽𝑖 estimates (location) values 
indicate a positive relationship to comfort or safety, the greater its absolute value the greater the its 
effect.  For instance, within Table 9 under the safety model, the estimate of  𝛽𝑖  for LN (LN = MAJ_LN + 
MIN_LN) is 1.89, indicating that a unit increase in this variable corresponds to an increase in the 
predicted safety observed by a participant.  On the other hand a negative  𝛽𝑖 such as -1.74 for NOIS 
indicates that louder environments have a negative impact on the predicted perceived safety of a 
participant.  The absolute value of  𝛽𝑖 for NOIS is less than that for LN indicating that per unit increase in 
each variable, NOIS has less of an effect on the predicted perceived safety.  The odds ratio describes the 
magnitude of the effect of each variable, an increase of 1 in VOL is associated with a 0.11 decrease in 
the ordered log odds of being in a lower level of perceived safety.  Taking the exponential of the 
parameter estimates, this reveals that for a 1 unit increase in VOL, the odds of “extremely safe” versus 
all other categories of SAFETY perception is exp(-0.11) = 0.90 times smaller. 

Some general trends were observed from the model development.  First, increased separation from 
vehicles had a significant positive effect on the rating provided for comfort and safety.   Also, less traffic 
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was positively correlated with increase comfort ratings. As expected, the absence of vehicles within the 
proximity of the participant resulted in higher safety ratings suggesting that the presences of vehicles 
are the primary concern for cyclists’ perception of safety and comfort.  Comfort and safety were also 
observed to be closely correlated suggesting that they share many of the same independent variables.  
Participants have commented the sense of danger prevented them from feeling comfortable. 

Table.9 Results of Ordinal Logit Regression Model Part 1 (27 Data Points) 

Safety Model Comfort Model 

Variables Estimate 
Odds 
Ratio 

Wald Sig. Variables Estimate 
Odds 
Ratio 

Wald Sig. 

Threshold 

[SAFTY = 2.00] -4.528 
 

10.312 .001 [CMFRT = 2.00] -0.93 
 

0.12 0.73 

[SAFTY = 3.00] -3.010 
 

6.594 .010 [CMFRT = 3.00] 1.91 
 

0.63 0.43 

[SAFTY = 4.00] -1.702 
 

2.575 .109 [CMFRT = 4.00] 3.67 
 

2.13 0.14 

Location 

C_SPD_SDEV -.372 0.69 2.353 .125 
C_SPD_INS 0.29 1.33 1.60 0.21 

M_SPD 0.02 1.03 0.02 0.88 

VOL -.122 0.89 2.198 .138 

LN 0.61 1.84 5.07 0.02 

VOL -0.01 0.99 0.01 0.90 

NOIS -1.97 0.14 4.57 0.03 

Goodness-of-Fit Pseudo R-Square Goodness-of-Fit Pseudo R-Square 

Test Chi-Square Sig. 
Cox and 

Snell 
.154 Test Chi-Square Sig. 

Cox and 
Snell 

0.38 

Pearson 82.004 .299 Nagelkerke .170 Pearson 60.29 0.86 Nagelkerke 0.42 

Deviance 60.647 .901 McFadden .069 Deviance 48.10 0.99 McFadden 0.20 

  

4.3 Model Validation 

Finally, the last step of the analysis was to verify the models developed in part 2 against the remaining 
24 data points collected during the IPB runs but not used in model development.  Table 11 summarizes 
the results.   The model developed using 63 data points was on average within 0.23 of the actual rating 
for safety and within 0.95 of the actual rating for comfort.  These are encouraging results, especially for 
a model produced from so few data points.  However, these results also suggest that outliers exist in 
these cases and that a participants feeling of comfort is more subjective than safety.  Outliers can be 
seen by the higher errors in Table 11, and may indicate several notions: first, that there are other 
independent variables (e.g. intersections or driveways) or confounding factors (e.g. speed) not 
accounted for in the models.  Second, they may suggest that additional data is needed to refine model 
parameter estimates.  Finally, these outliers suggest significant variation between individuals, as there 
are on most transportation related models (e.g. Highway capacity, 85 percentile speed profiles).  
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Therefore, careful interpretation of results and statistical validation is required going forward in future 
research.  

 
Table.10 Results of Ordinal Logit Regression Model Part 2 (87 Data Points – 75% of data)   

Safety Model Comfort Model 

Variables Estimate 
Odds 
Ratio 

Wald Sig. Variables Estimate 
Odds 
Ratio 

Wald Sig. 

Threshold 

[SAFTY = 1.00] 2.52 
 

0.16 0.69 [CMFRT = 1.00] -5.49 
 

1.66 0.20 

[SAFTY = 2.00] 4.76 
 

0.58 0.45 [CMFRT = 2.00] -1.51 
 

0.14 0.71 

[SAFTY = 3.00] 6.47 
 

1.08 0.30 [CMFRT = 3.00] -0.66 
 

0.03 0.87 

[SAFTY = 4.00] 8.13 
 

1.68 0.19 [CMFRT = 4.00] 1.70 
 

0.18 0.67 

Location 

LN 1.89 6.63 3.07 0.08 LN 0.20 1.22 0.12 0.73 

VOL -0.11 0.90 2.04 0.15 VOL -0.05 0.95 0.41 0.52 

NOIS -1.74 0.18 8.00 0.00 NOIS -2.18 0.11 11.67 0.00 

C_SPD_V 0.03 1.03 0.24 0.63 C_SPD_V 0.17 1.18 2.33 0.13 

S_EXP 0.31 1.37 1.77 0.18 FIT 0.78 2.18 1.10 0.29 

[PTYPE=1.00] 8.01 
 

1.85 0.17 [PTYPE=1.00] -0.78 
 

0.05 0.83 

[PTYPE=2.00] 4.25 
 

2.27 0.13 [PTYPE=2.00] -0.56 
 

0.07 0.79 

[PTYPE=3.00] 0 
   

[PTYPE=3.00] 0 
   

Goodness-of-Fit Pseudo R-Square Goodness-of-Fit Pseudo R-Square 

Test Chi-Square Sig. Cox and Snell .584 Test Chi-Square Sig. Cox and Snell .511 

Pearson 174.76 1.00 Nagelkerke 0.62 Pearson 160.37 1.00 Nagelkerke 0.55 

Deviance 125.35 1.00 McFadden 0.31 Deviance 114.24 1.00 McFadden 0.28 
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Table 11. Comfort Model and Safety Model Prediction Validations  

Test  
Sample 

Actual  
Safety 

Model  
Prediction 

Error 
Actual  

Comfort 
Model  

Prediction 
Error 

1 3 3.8 0.8 5 1.4 -3.6 

2 5 4.2 -0.8 4 1.4 -2.6 

3 3 4 1 4 1.9 -2.1 

4 4 4.7 0.7 4 4.7 0.7 

5 5 4.5 -0.5 4 2.5 -1.5 

6 2 3.4 1.4 3 1.5 -1.5 

7 2 3.1 1.1 3 1.4 -1.6 

8 4 4.8 0.8 4 4.5 0.5 

9 5 4.8 -0.2 4 4.8 0.8 

10 5 4.8 -0.2 3 4.4 1.4 

11 5 4.8 -0.2 5 4.6 -0.4 

12 3 1.7 -1.3 3 1 -2 

13 3 1.6 -1.4 4 1 -3 

14 5 4.4 -0.6 4 2.5 -1.5 

15 5 3.4 -1.6 3 1.5 -1.5 

16 5 4.9 -0.1 5 4.9 -0.1 

17 4 3.6 -0.4 3 3 0 

18 5 3.6 -1.4 5 2.9 -2.1 

19 4 3.4 -0.6 5 3.8 -1.2 

20 4 3.5 -0.5 5 2.9 -2.1 

21 5 3.4 -1.6 5 3.8 -1.2 

22 5 5 0 5 4.9 -0.1 

23 5 5 0 4 5 1 

24 5 5 0 4 4.9 0.9 

Average 4.21 3.98 -0.23 4.08 3.13 -0.95 

5 CHALLENGES & LIMITATIONS 
Although there is inherent risk in offering preliminary results for publication from modelling with 
incomplete, and small or limited data sets, the value from their disclosure was felt warranted.  
Moreover, all results should be viewed in context of inherent limitations and challenges faced in this 
initial test phase.  
 
First, the participant pool is limited to research assistants working in the STS laboratory. Therefore, their 
individual hypothesis on the results may be reflected in the ratings they provide.  Second, assumptions 
were made in data collection.   For instance, traffic volume was not considered for participants cycling 
on a separated path.  The assumption was that on a separated path, the presence of traffic will have a 
negligible effect on safety and comfort.  Third, the maneuverability of the IPB is a concern as it can affect 
comfort and safety ratings.  It was noted that the forward strut extension on which the Kinect sensor 
and webcam is mounted, made the IPB less maneuverable than a typical bicycle.  Modifications to the 
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IPB for a more ergonomic mounting strut will be made for the next phase of research.  Fourth, during 
the test runs, participants were followed by an investigator for safety and to assist with any issues with 
the IPB should it arise.  It was suspected that safety and comfort ratings provided by the participants 
may have been slightly higher due to the knowledge that the investigator was cycling with them.  To 
minimize this source of error, future tests will specify a minimum following distance of at least 20 m. 
Fifth, during test riding, technical challenges with software operation and hardware resulted in 
discontinuous and missing data in many samples.  Continued development of the IPB and its associated 
software systems will ensure that these issues are resolved for the second phase of testing.  Finally, 
additional variables and/or adjustments to the way current variables are measured will improve the 
models developed.  Additional variables may include driveway visibility, presence of turning vehicles at 
intersections and presence of large vehicles.  Existing variables such as AGE, WIND, NOIS, TEMP, R_EXP 
and CAR_SPD can be adjusted from an ordinal to a scale variable for more accurate modelling.   
 
SUMMARY & CONCLUSIONS 
The intent of the preliminary study on which this paper was based was to prove a proof-of concept 
regarding IPB data collection and model development methodology.  To that end, it would be 
considered a modest success despite not having full sensory data.  These sensors are continually being 
developed and improved in preparation for UBC’s STS Phase 2 data collection program.  This study and 
model development was carried out despite the challenges common to early research programs.   

In order to develop BCSPMs a series of test rides were performed on local roads separated into 
segments of consistent physical characteristics.  Data from the test rides was utilized in the 
development of preliminary models.  The IPB developed in this study shows potential for real-time data 
collection.  To fully utilize all the sensors, additional software development and testing is required.  In 
order to successfully develop the model, a substantial amount of data from the general public is desired.  
More data collected from a wider demographic as well as refinement of the independent variables are 
required for more accurate models to be developed.  After model development, further testing in other 
geographical locations is possible. 

Initial analysis yielded observations comparable to research studied in the literature review.  Similar to 
Yamanaka, Joo and Yao’s study [19, 23, 24] the amount of open space in front of the cyclist ( F_OBS and 
LN), the path type (P_TYPE) and the cycling speed (C_SPD_V, T_SPD_V, C_SPD_INS, T_SPD_INS, M_SPD, 
T_SPD_SDEV, and C_SPD_SDEV) were found to be significant factors for a cyclist’s sense of safety and 
comfort.  Other significant variables revealed in this study include traffic volumes and speeds ( VOL and 
CAR_SPD) as well as cyclists experience and fitness (R_EXP, S_EXP and FIT).  Phase 2 of the study will 
focus on the most significant variables and improvement on the models developed herein. 
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