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ABSTRACT

This paper deals with an important component of driver exdton, namely driver sleepiness,
in the particular case of truck drivers. Analysis of dataaoiedd from driving sessions involv-
ing ten test subjects shows that, contrary to some resultsdfin the literature, the standard
deviation of lateral position is unable to predict drivexegdiness.

By contrast, using a generic variability indicator, wittifelient parameter settings during
daytime and nighttime driving, respectively, a perform@ascore (after optimization) of 0.80
(on a scale from 0 to 1) was obtained (compared to 0.54 forttrelard deviation of the lateral
position). Furthermore, an optimized sleepiness detestystem combining several indicators
achieves a score of 0.88, showing that different types a€atdrs can work together to achieve
a better prediction of sleepiness than any indicator alone.

KEYWORDS

Sleepiness detection, stochastic optimization, slespimetruck drivers.

INTRODUCTION

Inattention to the road ahead while driving is a primary eaigs vehicle accidents [15]. An
important reason for driver inattention is eye closure dudriver sleepiness [12]. In fact,
driver sleepiness has been estimated to be a contributihgy fen around 20 % of all vehicle
crashes [10, 13, 20]. Truck drivers, in particular, sufférigh risk of having a fatal crash due
to sleepiness; it has been suggested that as many as 30 %aifbtruck crashes are related
to sleepiness [3].

The present paper describes research aimed at devisirgy dupport systems capable of
robust and reliable sleepiness detection in truck driveush systems, in turn, typically consist
of several sleepiness indicators. The research problemitikalves formulating and optimiz-
ing sleepiness indicators, as well as finding (also throymimozation) useful combinations of
such indicators.



DATA

The data used in the present analysis were collected dustuglg performed in 2008 in eastern
Sweden, involving ten test subjects who drove a truck froarcity of Linkdping to the town of
Malilla and then back, along the road Riksvag 34, for a ciomd period of around 80 hours.

Study design

A within-subject design was used where each test subjeébrpeed two driving sessions:
one day session from 12:00 to 16:00 and one night session @G0 to 04:00. The test
subjects were instructed to have normal nights of sleep prithe study and were monitored
during the days before the study as well as on the day of dyivirhe goal of the study was
twofold: to evaluate a driver sleepiness warning systeneld@ed within the framework of a
Swedish research projéaind to collect data for further research. Hence, duringspafrthe
four-hour driving sessions a sleepiness warning systemastage and may have affected the
driving behavior. Thus, only data collected during the pavhere that system was inactive
have been used in the research presented here. The warstegisyas active on the way back
to Linkdping from Malilla on both the day and night sessiohlence, the remaining data, used
here, was about half of the total amount of data collected.

Driving behavior signals

The truck was equipped with a lateral position sefi¢eampled at 16 Hz) providing the lateral
position of the truck and the heading angle (i.e. the headirige vehicle relative to the tan-
gent of the driving lane). Furthermore, the steering whegleaand the speed of the vehicle
(sampled at 50 Hz), were obtained from the controller-asgaork (CAN).

Since the lateral position sensor was mounted at the laterdér of the vehicle, the mea-
surements obtained from this sensor represent the disteoroethe center of the vehicle to
either driving lane boundary; in the work presented here/dteral position has been taken as
the distance to the right lane boundary. The lateral pasgEnsor also provides a confidence
signal, taking values in the rang@ 100, such that each sample represents the quality (O be-
ing the lowest quality and 100 the highest) of the correspandamples in the other signals
obtained from the lateral position sensor.

Eyelid recordings

A Driver State Sensor (DSS) systémas used throughout the study to record eyelid move-
ments. The DSS also produced a confidence signal, indictitengeliability of the recorded
eyelid movement signals.

The study was conducted within the Drowsi research projactyhich several industrial, academic and
Swedish government agency partners collaborate to futtierresearch on driver sleepiness. 3¢ép:
[/ waw. i vss. se/ drowsi for more information.

2The lateral position sensor used in the study is a camerantedbetween the rear view mirror and the
windshield. Machine vision techniques are applied in otdédentify the driving lane boundaries, from which
the position of the vehicle (within the driving lane) can loerputed.

3The DSS is manufactured by Seeing Machiries (: / / seei ngmachi nes. con).



Subj ective measurements of sleep

Prior to driving, the test subjects had been instructed tionese their level of sleepiness ac-
cording to the Karolinska sleepiness scale (KSS) [2] whiak been shown to correlate well
both with the physiological level of sleepiness [2] and watkleterioration in driving perfor-
mance [17]. While driving, the test subjects were requiceprbvide a KSS estimate every five
minutes, taking the preceding five minutes into account. &8 estimates obtained from each
test subject (TS) were taken as the ground truth, and wetkfasdistinguishing between alert
driving (KSS< 6) and sleepy driving (KSS 7). The problem of estimating driver sleepiness
was then cast as a binary classification problem, with thectasseslert (C1) andsleepy(Cy)
containing driver behavior data from samples with K§8 and KSS> 7, respectively.

Two of the test subjects, namely TS3 and TS10, reported noma&sts with KSS> 7,
implying that they provided no data to claSs Thus, the data obtained from TS3 and TS10
were discarded altogether, leaving data from a total ofteegt subjects for use in the analysis.

DETECTING SLEEPY DRIVING

Several indicators of driver sleepiness, and sleep in géream be found in the literature; some
are formed using driving behavior signals (such as thedhfosition of the vehicle or the

steering wheel angle), while others are based on eyelid memts and physiological signals
(such as brain waves, i.e. EEG). Furthermore, it is alsoplest® combine several indicators of
driver sleepiness to form a system for driver sleepinessctien. For example, in [7], several
measures of driving performance were combined using liregression techniques; in [8] an
indicator based on blink behavior was combined with a lamiéirty measure using a lookup

table.

The indicators of driver sleepiness considered in this papebased either on (i) driving
behavior, (ii) eyelid behavior or (iii) a mathematical mbdésleepiness. Several indicators of
type (i) are studied whereas only one indicator of type figmely Perclos, and one indicator
of type (iii), namely the Sleep/Wake Predictor, are congde

Indicator s based on driving behavior

Quite a few indicators of driver sleepiness have been iigegstd and proposed in the literature.
Perhaps the most common indicator is 8tandard deviation of the lateral positiomhich
simply measures the average lateral deviation. The rdadoehind this indicator is that a high
degree of lateral deviation is supposedly indicative o¥ealrisleepiness, as indeed has been
demonstrated in [23, 21, 4, 18].

Of course, standard deviations can be computed for othealsigis well; here, in addition
to the standard deviation of the lateral position, the saashdieviations of the heading angle
and the steering wheel angle have been considered.

Also quite common in the literature on driver sleepinessistudy the steering wheel
behavior, often measured using tsteering wheel reversal rad 4], defined as the number
of reversalé r, during a given period, that fall within a certain range< r < c,. Three gap
sizes for reversals, proposed in the literature, have beasidered in the present analysis:
small reversalsgg = 0.0087 andc,; = 0.0873) [16], medium reversals)(= 0.1396 andc, =
0.2618) [23] and large reversals;(= 0.2618 andc, = «) [23]. Of course, the values af

4A reversal is given by two local optima in the steering whewggla signal, with the size of the reversal being
the difference in angle between the two local optima.



andc; affect the performance of the steering wheel reversal aidic These parameters can
therefore be optimized in order to improve the indicatomsething that has been done in the
present study.

Generic variability indicator

A general measure of variability, called the generic valitgbndicator (GVI), was introduced
in [19] with the aim of providing a general and optimizablelicator of driver sleepiness.
The GVI was designed to include many of the indicators ofatrsleepiness proposed in the
literature as special cases, depending on the parameiagsetsed. The GVI is defined as
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As mentioned above, some indicators considered in thelues for driver sleepiness are spe-
cial cases of this generic variability indicator. By saiftithe parameters appropriately, the
following indicators of driver sleepiness (based on digMoehavior, measured using the lateral
position) can be obtained: the number of lane exits (abatediiLanex); the mean squared
error from a given poinp in the driving lane; the standard devation and, finally, therage
of the lateral position (provided that the origin has bedrsseh that the signal only contains
positive values). For example, by settifg=Pr= 0,0 =0ar=0,c. =cr=1,0=1,k=2
the (square of the) standard deviation is obtained.

Perclos

The DSS mentioned above was used to red¢@rtlos[23], which is a measure of slow eye-
closures. Perclos is defined as the proportion of a givelogefitime (here set to 60 seconds)
for which the eyes are at least 80% covered by the eyelidss Mieasure has been found to
correlate well with driver sleepiness [6].

Sleep/Wake Predictor

In addition to the indicators described above, which arethas driving behavior signals and
eyelid movement signals,raodel of sleepinessamely theSleep/wake PredictqiSWP) [1],
has also been considered as an indicator of driver sleepiiiée SWP takes as input the time
of day and information on previous sleeping periods andedas this information, outputs an
estimated level of sleepiness. In this work, only time of,dhg time since awakening and the
length of the most recent sleeping period have been usegastmthe model.



Figure 1. An example of an artificial neural network with three inpugreils and one output signal.
The neurons are shown as circles. The squares are input aterttet simply transfer the input signals
without carrying out any computation. The network weighesiadicated by lines connecting (from left
to right) input elements to the hidden layer of neurons tivaturn, is connected to the output layer
(which, in this case, contains a single neuron). The biasesat shown.

Combinations of indicator s

A combination of several indicators may provide a betteineste of sleepiness than any indi-
vidual indicator alone. Indicators can be combined in sswgays, ranging from simple linear
combinations of indicator values to much more complex fiometl forms. In order to capture
as many functional forms as possible, artificial neural oeks (ANNs) have been used here
(as in earlier work; see [18, 19]).

An ANN consists of a number of elementary computational eletsireferred to aseurons
Each neuron takes inputsand generates an outpuaccording to

y=o0 (iwm + b) , (4)

wherew; are the connection weightsjs the bias, andhis the number of inputs to the neuron.
o is a non-linear squashing function that, in addition, kegsoutput values in a given range
(e.g.[0,1]). One can show that an ANN with two layers of weights can, ingple, represent
any continuous function [5]. A common special case is the-layered feedforward neural
network, an example of which is shown in Fig. 1. As can be sedha figure, in addition to
the inputs, there are two layers of neurons: a hidden laygraanoutput layer. The tunable
parameters, which determine the computation carried ouh&yANN, are the weights and
biases. In this paper, particle swarm optimization (PS@&g¢ (low) has been used for tuning
the network parameters.

METHOD

Clearly, the performance of an indicator, i.e. its abilibyrheasure driver sleepiness (or the
absence thereof), will depend on the values of its parasietéus, in the work presented here,
stochastic optimization methods have been used for finti@@pést parameter settings for each



indicator, and for setting the weights of the ANNs used fombming several indicators to
form a detection system.

Optimization algorithms

Two kinds of population-based stochastic optimizationtrods have been used, namely a ge-
netic algorithm (GA) [9] and particle swarm optimizatior§®) [11]. Unlike several classical
optimization methods, these algorithms do not rely on gnatdi and therefore are less likely
to get stuck in local optima. The limited space availableehgoes not permit a complete
description of population-based stochastic optimizatimethods. Suffice it to say that such
methods maintain a population of candidate solutions firedeto asndividualg to the prob-
lem in question. After evaluating all individuals, and tlassigning fitness values according to
the objective function (described in detail in the next g0t new individuals are formed by
modifying the existing ones. The procedure for modifyindiduals distinguishes GAs from
PSO. In a GA, individuals are selected stochastically irpprbion to the fitness values. The
properties of the selected individuals are then combinedarocedure referred to asssover
that results in new individuals, which are then slightly nfied (randomly), in a process re-
ferred to asnutation before being inserted into the population. By contrastsiandard) PSO,
there is no selection step. Instead, the notion of velosiiptroduced in the parameter space.
After evaluation, new velocities are calculated (accagdman equation that will not be given
here) for each individual, and the new individuals are faifrbg moving the existing ones in
parameter space, according to the computed velocities.aFoore thorough description of
stochastic optimization algorithms, see e.g. [22].

Regardless of the optimization algorithm used, one mustabeful to avoid the problem
of overfitting resulting from excessive training on a data set of limiteeé.sReal-world data
sets are generally of limited size and invariably contaiis@oThus, if the optimization algo-
rithm is allowed to run for too long, it will eventually stditting the parameters to the noise,
i.e. adapting the parameter settings to obtain excellefbimeance on the limited amount of
data used during training, but also, gradually, mudrseperformance on previously unseen
data. Of course, itis the performance on the latter kind td teat matters. There exists several
methods for avoiding overfitting. Inoldout validation some of the data is placed in a separate
validation set and, during optimization, the performantne optimization algorithm is mea-
sured both over the training set and the validation set,Hmiitgorithm is provided feedback
only regarding its performance on the training set. Thedadion set, by contrast, is used for
determining when to stop the training; the best parameteisgaken as the one giving best
performance over the validation set. It is also common tatai a third data set, the test set,
which is not used until after the optimization has been cetapl, and therefore measures the
performance over previously unseen data.

Optimization procedure

As described in the previous section, the data were dividkedhree separate data sets, namely
a training set (used to guide the parameter search carridaydbe optimization algorithm), a
validation set (used for determining when to terminate thténaization), and a test set (used to
obtain the performance on previously unseen data).

The data sets were generated as follows: as mentioned admmte TS estimated the level
of sleepiness every five minutes. Thus, for each KSS estjrinageninutes of driving behavior
data were available. The data corresponding to each KS@astwere divided into five 60-
second intervals, such that the interyal- 60,t] was used in the test set, the interyal
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120t — 60] in the validation set, and the three intervéls- 300t — 240, (t — 240,t — 180 and
(t—180,t — 120 in the training set.

Intervals during which the speed dropped below 60 km/h wieseadded in order to remove
episodes where a small town or a roundabout was passedvdistéor which more than 20%
of the samples had a confidence level below 20 were also reindugthermore, individual
samples with confidence level below 20 were discarded as wibte that no samples were
removed from the time series sampled from the steering wdregde signal as this signal was
always available and reliable. After this data reductitwe, total number of retained samples
equalled 1244, distributed in such a way that the trainiradidation and test sets contained
753, 247, and 244 elements, respectively. C@asgalert) contained a total of 837 elements,
andC,, therefore, 407 elements.

As the indicators and detection systems considered hemealrgalued, a threshold func-
tion was used to assign a 60-second driving interval to edahthe two classe§; or C,. Based
on the valué/ obtained from an indicator or a detection system, the €ags the correspond-
ing interval, was assigned as

(5)

C— C ifv<T
| C, otherwise

whereT is the threshold value separating the two classes.

The objective functiofr was computed as follows: first, the averdgef sensitivity (i.e. the
number of correctly classified samples in cl&ss divided by the number of samples @)
and specificity (i.e. the number of correctly classified sl C; divided by the number of
samples irCy), was calculated for each test subje@ccording to

1/ni2 N1
fo o (2, M 6
. 2<M2+M4)’ 6)

wheren; j denotes the number of correctly classified samples in Gafer test subject) and
Ni j denotes the total number of samples in cl@ggalso for test subjedf). Finally F was
formed as the average of tiemeasures:

F:%iifi, (7)

wherek denotes the number of test subjects.

The performance of an indicator (or a detection system)pgdéent not only on its param-
eters; it also depends on the threshold valuesed for classifying all the 60-second driving
intervals. Whereas the parameters were optimized usimtpastic optimization, the threshold
value (for any given set of parameters) was set by exhaustirech such that the chosen value
provided the best possible performance on the training set.

A more detailed description of the data reduction procedarebe found in [19] (in which
the same objective function was used).

RESULTS

Using the data presented above, several indicators froriténature were evaluated. Next,
following the procedure described above, a large numbepitinization runs were carried out.

SDiscarding individual samples was possible, since nonéefindicators considered here depends on the
availability of consecutive samples.



Indicator Training | Validation | Test
1. Standard deviation of lateral position 0.53 0.52 0.54
2. Standard deviation of heading angle 0.56 0.57 0.53
3. Standard deviation of steering wheel angle0.56 0.58 0.60
4. Large steering wheel reversals 0.53 0.58 0.61
5. Medium steering wheel reversals 0.58 0.60 0.60
6. Small steering wheel reversals 0.52 0.51 0.51
7. Optimized steering wheel reversals 0.64 0.64 0.64
8. GVI of lateral position 0.70 0.69 0.70
9. GVI of steering wheel angle 0.58 0.62 0.60
10. GVI of heading angle 0.58 0.59 0.55
11. GVI2 of lateral position 0.81 0.81 0.80
12. Perclos 0.50 0.50 0.50
13. SWP 0.85 0.85 0.84

Table 1. The performance F of the individual indicators. Rows 1-&didgators from the literature;
Rows 7-11. optimized indicators (GVI = Generic variabilitydicator. GVI2 = GVI with different
parameter settings for daytime and nighttime driving, exgjvely); Row 12: the Perclos blink indicator;
Row 13: the Sleep/Wake Predictor.

The results are summarized in Table 1. The table shows ttierpemceF of each indicator
over the training, validation, and test sets.

As can be seen, the performance of the indicators from t@tiire (rows 1 through 6) was
not very impressive. The performance of the optimized iattics on rows 7 through 10 was a
bit better in some cases, particularly the GVI applied tol#teral position.

Note that a random prediction would, on average, give a padace score of 0.50. In
fact, the poor performance of the first indicator (the staddiviation of lateral position) was
especially puzzling, since several studies [23, 21, 4)Jutiag one of our own [18, 19], have
shown a better performance score than the measly 0.54 achimre, for previously unseen
test data. In fact, in our earlier study, for which the samégomance measure was used, this
indicator obtained a score of 0.71 on test 8ata

After careful analysis of the data, it was discovered thstshmple measure is not suitable
for data obtained from trucks. Presumably, this is so, san@arge) truck responds less rapidly
to a movement of the steering wheel than a passenger carnAseceen in the upper left panel
of Fig. 2, there is no discernible trend in the standard dmnaof lateral position as a function
of the KSS value.

On the other hand, the standard deviation ofieering wheel angleeaches a score of 0.60,
comparable to the values 0.55 and 0.63 obtained using tearsievheel angle and steering
wheel velocity, respectively, in the study involving pasger cars [18, 19].

The data analysis provided yet another interesting pieaafofmation; perhaps not so
surprisingly, it turned out that the average lateral positsummarized in Table 2, varied sig-
nificantly bothwith the driver’'s state (sleepy or aleghdwith time-of-day, in such a way that
a sleepy driver, at night, places the vehicle closer to tim¢eceof the road than an alert driver
during day time. The difference in average lateral posibetween these two cases is signi-

SNote that, in our earlier study, samples corresponding t6 K3 were excluded. However, repeating the anal-
ysis from that study, with those samples included, a sinviddue (0.69) was obtained for the standard deviation
of lateral position, i.e. still much higher than the valué¢adbed in the present study.
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Figure 2: The indicator values for the standard deviation of laterakjpion (StdLp), for all 1244 data
samples. The solid line shows the mean of the indicator sdtuethe various KSS values.

Day Night
Alert | 1.79 1.90
Sleepy| 1.86 2.02

Table 2: The drivers’ average lateral position, shown in four diffet circumstances. The average
lateral position is measured as the distance from the sidbefoad to the front center of the vehicle,
such that the values become larger as the vehicle movesdewlae center of the road. Note also that
the entry for sleepy drivers during daytime (1.86) is baseanly 41 samples, compared to more than
150 for the other three entries.

ficant with ap-value of 0.05. For the other two combinations, namely alekting at night
and sleepy driving during day time, the drivers tend to ptaeavehicle at intermediate lateral
positions.

This observation has important implications for some iathcs, for example Lanex which
depends on excursions from the lane and is therefore sengitine value of the average lateral
position. Thus, since the GVI indicatoanrepresent (generalized) Lanex (if the parameters
are set appropriately) the GVI indicator may also be affétig differences in average lateral
position.

As indicated in Table 2, using only the average lateral pwsiit is not possible to disen-
tangle the effects of driver state (sleepy or alert) fromedfiects of the time-of-day. In other
words, in order for an indicator to distinguish between @sjedriver and an alert driver, the
parameter settings may have to be different depending othehéhe driving session takes
place during the day or at night. Since the time-of-day ga&sih be measured, it is not difficult
to apply two different parameter settings. As a complemeiiable 2, Fig. 3 shows the values
of the mean lateral position obtained for all of the 1244 edeta in the three data sets (training,
validation, and test), each element corresponding to ae66rsl driving interval. As can be
seen, there is a rising trend (albeit a weak one) in the mearalgosition for increasing KSS
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Figure 3. The mean values of the lateral position (MeanLp) for all 1244a samples, each corre-
sponding to a 60-second driving interval. The solid linetum, shows the mean of the mean values
obtained for each KSS value.

Detection system | Training | Validation | Test|
1. {GVI2Lp, ConfLp, SWAReyv, Perc, ConfPérc 0.82 0.81 0.82
2. {GVI2Lp, ConfLp, SWARev, SWP 0.86 0.86 0.85
3. {GVI2Lp, ConfLp, SWARey, Perc, ConfPerc, SWFP 0.88 0.87 0.88

Table 3. The performance of the various optimized detection syst&Ws$2Lp = the GVI2 indicator
(with different parameter settings for day and night, regjpwely) applied to the lateral position sig-
nal, ConfLp = the confidence signal for the lateral positi@\WARev = steering wheel angle reversals
(optimized, corresponding to row 7 in Table 1); Perc = Peg;l@€onfPerc = the confidence signal for
Perclos; SWP = The Sleep/Wake predictor.

values.

Returning to Table 1, row 11 shows the performance of the GMiitator, which uses two
different parameter settings. As can be seen, includiraymmétion regarding the time-of-day
increases the performance on unseen test data to 0.80.

By contrast, the overall performance of the Perclos indicgbw 12), is very poor indeed,
reaching the same level as would a random prediction. Howesgewill be shown below,
when combined with its corresponding confidence signal¢clBgrcan give a valuable (but
small) positive contribution to a sleepiness detectioesys Finally, the Sleep/Wake Predictor
obtains a score of 0.84 on previously unseen test data. Jii®ibest result obtained by any
single indicator, outperforming the GVI2 indicator by 08drformance units.

The results obtained for detection systems (combiningraévsdicators, using an ANN)
are shown in Table 3. Note that some of the indicators usgd®/12Lp) have been optimized
themselves, before being included in the detection systdra.first system (row 1) combines
indicators based on driving performance with the Percldeator, whereas the second system
(row 2) combines indicators based on driving performandh thie Sleep/Wake predictor. The
final system (row 3) includes all four indicators. In all sysis, the confidence signals are in-
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cluded, when available. As can be seen, the third systermaeshihe best result, outperforming
the best single indicator (SWP) by 0.04 performance unitgrexiously unseen test data.

DISCUSSION AND CONCLUSION

The main conclusion from this study is that, when appliecheogroblem of driver sleepiness
classification, our optimization framework is capable baitki) improving, through stochastic
optimization, individual sleepiness indicators and (gngrating and optimizing sleepiness de-
tection systems, that combining several indicators noedlily. For the data considered here,
the best detection systems found outperform all individodicators, reaching a top perfor-
mance score of 0.88 on previously unseen test data.

However, one should keep in mind that the data used hereinorggain fundamental
limitations. For instance, the data are derived from dgwsessions involving only eight test
subjects, who all drove on the same road. Furthermore, diggébrequirements, the data do
not include any sleep-deprived test subjects driving irtidag/ conditions. Nevertheless, there
are, in fact, a few samples with high KSS values for daytimeinly sessions, namely from
drivers reporting a high level of sleepiness without beilegjs-deprived.

When analyzing an indicator of driver sleepiness, it is inigoat to make sure that the indi-
cator considered actually measures the quantity thatifgp@sed to measure. For example, as
mentioned above, it was found that the standard deviatidetefal position does not function
very well as an indicator of sleepiness in the case of truckeds, due to the slow response
of a truck (relative to that of a passenger car) to steeringeivimovements. However, when
applying different thresholds for daytime and nighttimeithg, respectively, the performance
of this indicator shoots up to 0.70. Without taking into amebthe time-of-day effects, one
may (incorrectly) conclude that the standard deviatioratéral position indicates sleepiness
rather well, provided that two thresholds are used. Howewverore careful analysis shows that
the procedure for setting the threshold (between the slaegyalert classes) simply generates
an absurdly high threshold for daytime driving, placedythe corresponding data samples in
the alert class, and an absurdly low threshold for nightimeéng, placing all those samples
in the sleepy class. Thus, in this case, it turns out thatithe-of-day, rather than the actual
standard deviation, forms the basis for the sleepinesstitate

The best single indicator, i.e. the SWP, derives most ofitesss simply from distinguish-
ing day from night (giving a score of 0.70), the remaning (qo&&ormance units coming from
the early stages of nighttime driving sessions, where th® $@frectly predicts that the driver
is likely to be alert. The SWP output ranged from 3.76 to 3af3tie daytime driving sessions,
and from 6.52 to 7.50 for the nighttime sessions. The optthralshold for SWP was found to
be 6.8, for which all daytime intervals were assigned tosilas as were the first few intervals
of the nighttime driving sessions. The remaining interfatsthe nighttime sessions were all
assigned t&,.

In addition to the driving behavior data, physiologicalrats (namely EOG and EEG)
were also measured during driving. However, as the anatystse physiological data has yet
to be completed, the KSS estimates, given by the test ssbjete used as the ground truth
instead. However, this choice is well motivated, as KSSeslave been shown to correlate
well with physiological measures of sleepiness [2]. Funtih@re, the use of KSS has allowed
us to compare the results obtained in the simulator studyl[@B for which KSS was used as
well.

In the simulator study [18, 19], the cla€s was based on driving periods for which the
test subject estimated KSS to 8 or larger. By contrast, inptiesent study, driving periods
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with KSS= 7 were included as well. The reason for excluding KSS = 7 irsthmulator study
was to provide a clearer separation between the two clasesgever, as many KSS estimates
(especially during the night sessions) resulted in valdes io the present study, excluding
the corresponding data would result in data sets with muslerfesamples. Furthermore, as
indicated in [2], physiological signs of sleepiness begistliow at KSS = 7, further motivating
the inclusion of the corresponding data.

As a final point, one should note that the optimization andsifecation framework (and the
corresponding software) developed in connection withshisly (and earlier studies; see [18,
19)) is not limited to the study of driver sleepiness. In faloe same framework can be applied
to any classification task involving stochastic optimiaatiFor example, the framework would
be useful in a study of driver inattention based on, say, g#zetion data. This topic is a
promising avenue for future research.
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