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ABSTRACT

This paper deals with an important component of driver inattention, namely driver sleepiness,
in the particular case of truck drivers. Analysis of data obtained from driving sessions involv-
ing ten test subjects shows that, contrary to some results found in the literature, the standard
deviation of lateral position is unable to predict driver sleepiness.

By contrast, using a generic variability indicator, with different parameter settings during
daytime and nighttime driving, respectively, a performance score (after optimization) of 0.80
(on a scale from 0 to 1) was obtained (compared to 0.54 for the standard deviation of the lateral
position). Furthermore, an optimized sleepiness detection system combining several indicators
achieves a score of 0.88, showing that different types of indicators can work together to achieve
a better prediction of sleepiness than any indicator alone.
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INTRODUCTION

Inattention to the road ahead while driving is a primary cause for vehicle accidents [15]. An
important reason for driver inattention is eye closure due to driver sleepiness [12]. In fact,
driver sleepiness has been estimated to be a contributing factor in around 20 % of all vehicle
crashes [10, 13, 20]. Truck drivers, in particular, suffer ahigh risk of having a fatal crash due
to sleepiness; it has been suggested that as many as 30 % of allfatal truck crashes are related
to sleepiness [3].

The present paper describes research aimed at devising driver support systems capable of
robust and reliable sleepiness detection in truck drivers.Such systems, in turn, typically consist
of several sleepiness indicators. The research problem thus involves formulating and optimiz-
ing sleepiness indicators, as well as finding (also through optimization) useful combinations of
such indicators.
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DATA

The data used in the present analysis were collected during astudy performed in 2008 in eastern
Sweden, involving ten test subjects who drove a truck from the city of Linköping to the town of
Målilla and then back, along the road Riksväg 34, for a combined period of around 80 hours.

Study design

A within-subject design was used where each test subject performed two driving sessions:
one day session from 12:00 to 16:00 and one night session from00:00 to 04:00. The test
subjects were instructed to have normal nights of sleep prior to the study and were monitored
during the days before the study as well as on the day of driving. The goal of the study was
twofold: to evaluate a driver sleepiness warning system developed within the framework of a
Swedish research project1 and to collect data for further research. Hence, during parts of the
four-hour driving sessions a sleepiness warning system wasactive and may have affected the
driving behavior. Thus, only data collected during the parts where that system was inactive
have been used in the research presented here. The warning system was active on the way back
to Linköping from Målilla on both the day and night sessions. Hence, the remaining data, used
here, was about half of the total amount of data collected.

Driving behavior signals

The truck was equipped with a lateral position sensor2 (sampled at 16 Hz) providing the lateral
position of the truck and the heading angle (i.e. the headingof the vehicle relative to the tan-
gent of the driving lane). Furthermore, the steering wheel angle and the speed of the vehicle
(sampled at 50 Hz), were obtained from the controller-area network (CAN).

Since the lateral position sensor was mounted at the lateralcenter of the vehicle, the mea-
surements obtained from this sensor represent the distancefrom the center of the vehicle to
either driving lane boundary; in the work presented here, the lateral position has been taken as
the distance to the right lane boundary. The lateral position sensor also provides a confidence
signal, taking values in the range[0,100], such that each sample represents the quality (0 be-
ing the lowest quality and 100 the highest) of the corresponding samples in the other signals
obtained from the lateral position sensor.

Eyelid recordings

A Driver State Sensor (DSS) system3 was used throughout the study to record eyelid move-
ments. The DSS also produced a confidence signal, indicatingthe reliability of the recorded
eyelid movement signals.

1The study was conducted within the Drowsi research project,in which several industrial, academic and
Swedish government agency partners collaborate to furtherthe research on driver sleepiness. Seehttp:
//www.ivss.se/drowsi for more information.

2The lateral position sensor used in the study is a camera, mounted between the rear view mirror and the
windshield. Machine vision techniques are applied in orderto identify the driving lane boundaries, from which
the position of the vehicle (within the driving lane) can be computed.

3The DSS is manufactured by Seeing Machines (http://seeingmachines.com).
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Subjective measurements of sleep

Prior to driving, the test subjects had been instructed to estimate their level of sleepiness ac-
cording to the Karolinska sleepiness scale (KSS) [2] which has been shown to correlate well
both with the physiological level of sleepiness [2] and witha deterioration in driving perfor-
mance [17]. While driving, the test subjects were required to provide a KSS estimate every five
minutes, taking the preceding five minutes into account. TheKSS estimates obtained from each
test subject (TS) were taken as the ground truth, and were used for distinguishing between alert
driving (KSS≤ 6) and sleepy driving (KSS≥ 7). The problem of estimating driver sleepiness
was then cast as a binary classification problem, with the twoclassesalert (C1) andsleepy(C2)
containing driver behavior data from samples with KSS≤ 6 and KSS≥ 7, respectively.

Two of the test subjects, namely TS3 and TS10, reported no estimates with KSS≥ 7,
implying that they provided no data to classC2. Thus, the data obtained from TS3 and TS10
were discarded altogether, leaving data from a total of eight test subjects for use in the analysis.

DETECTING SLEEPY DRIVING

Several indicators of driver sleepiness, and sleep in general, can be found in the literature; some
are formed using driving behavior signals (such as the lateral position of the vehicle or the
steering wheel angle), while others are based on eyelid movements and physiological signals
(such as brain waves, i.e. EEG). Furthermore, it is also possible to combine several indicators of
driver sleepiness to form a system for driver sleepiness detection. For example, in [7], several
measures of driving performance were combined using linearregression techniques; in [8] an
indicator based on blink behavior was combined with a lane drifting measure using a lookup
table.

The indicators of driver sleepiness considered in this paper are based either on (i) driving
behavior, (ii) eyelid behavior or (iii) a mathematical model of sleepiness. Several indicators of
type (i) are studied whereas only one indicator of type (ii),namely Perclos, and one indicator
of type (iii), namely the Sleep/Wake Predictor, are considered.

Indicators based on driving behavior

Quite a few indicators of driver sleepiness have been investigated and proposed in the literature.
Perhaps the most common indicator is thestandard deviation of the lateral positionwhich
simply measures the average lateral deviation. The rationale behind this indicator is that a high
degree of lateral deviation is supposedly indicative of driver sleepiness, as indeed has been
demonstrated in [23, 21, 4, 18].

Of course, standard deviations can be computed for other signals as well; here, in addition
to the standard deviation of the lateral position, the standard deviations of the heading angle
and the steering wheel angle have been considered.

Also quite common in the literature on driver sleepiness is to study the steering wheel
behavior, often measured using thesteering wheel reversal rate[14], defined as the number
of reversals4 r, during a given period, that fall within a certain rangec1 < r < c2. Three gap
sizes for reversals, proposed in the literature, have been considered in the present analysis:
small reversals (c1 = 0.0087 andc2 = 0.0873) [16], medium reversals (c1 = 0.1396 andc2 =
0.2618) [23] and large reversals (c1 = 0.2618 andc2 = ∞) [23]. Of course, the values ofc1

4A reversal is given by two local optima in the steering wheel angle signal, with the size of the reversal being
the difference in angle between the two local optima.
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andc2 affect the performance of the steering wheel reversal indicator. These parameters can
therefore be optimized in order to improve the indicator, something that has been done in the
present study.

Generic variability indicator

A general measure of variability, called the generic variability indicator (GVI), was introduced
in [19] with the aim of providing a general and optimizable indicator of driver sleepiness.
The GVI was designed to include many of the indicators of driver sleepiness proposed in the
literature as special cases, depending on the parameter settings used. The GVI is defined as

G=
1
n

n

∑
i=1

w(zi)∣zi∣
κ
, (1)

wheren is the number of samples and

zi = xi − (δx+(1−δ)p)). (2)

δ and p are two tunable parameters.δ is constrained to the interval[0,1], whereasp may, in
principle, take any value.xi is theith sample of the time series. The weight functionw(zi) is
defined by

w(zi) =
cL

1+e−αL(zi−βL)
+

cR

1+e−αR(zi−βR)
. (3)

As mentioned above, some indicators considered in the literature for driver sleepiness are spe-
cial cases of this generic variability indicator. By setting the parameters appropriately, the
following indicators of driver sleepiness (based on driving behavior, measured using the lateral
position) can be obtained: the number of lane exits (abbreviated Lanex); the mean squared
error from a given pointp in the driving lane; the standard devation and, finally, the average
of the lateral position (provided that the origin has been set such that the signal only contains
positive values). For example, by settingβL = βR= 0,αL = αR = 0, cL = cR = 1, δ = 1, κ = 2
the (square of the) standard deviation is obtained.

Perclos

The DSS mentioned above was used to recordPerclos[23], which is a measure of slow eye-
closures. Perclos is defined as the proportion of a given period of time (here set to 60 seconds)
for which the eyes are at least 80% covered by the eyelids. This measure has been found to
correlate well with driver sleepiness [6].

Sleep/Wake Predictor

In addition to the indicators described above, which are based on driving behavior signals and
eyelid movement signals, amodel of sleepiness, namely theSleep/wake Predictor(SWP) [1],
has also been considered as an indicator of driver sleepiness. The SWP takes as input the time
of day and information on previous sleeping periods and, based on this information, outputs an
estimated level of sleepiness. In this work, only time of day, the time since awakening and the
length of the most recent sleeping period have been used as input to the model.
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Figure 1: An example of an artificial neural network with three input signals and one output signal.
The neurons are shown as circles. The squares are input elements that simply transfer the input signals
without carrying out any computation. The network weights are indicated by lines connecting (from left
to right) input elements to the hidden layer of neurons that,in turn, is connected to the output layer
(which, in this case, contains a single neuron). The biases are not shown.

Combinations of indicators

A combination of several indicators may provide a better estimate of sleepiness than any indi-
vidual indicator alone. Indicators can be combined in several ways, ranging from simple linear
combinations of indicator values to much more complex functional forms. In order to capture
as many functional forms as possible, artificial neural networks (ANNs) have been used here
(as in earlier work; see [18, 19]).

An ANN consists of a number of elementary computational elements referred to asneurons.
Each neuron takes inputsxi and generates an outputy according to

y= σ

(

m

∑
i=1

wixi +b

)

, (4)

wherewi are the connection weights,b is the bias, andm is the number of inputs to the neuron.
σ is a non-linear squashing function that, in addition, keepsthe output values in a given range
(e.g.[0,1]). One can show that an ANN with two layers of weights can, in principle, represent
any continuous function [5]. A common special case is the two-layered feedforward neural
network, an example of which is shown in Fig. 1. As can be seen in the figure, in addition to
the inputs, there are two layers of neurons: a hidden layer and an output layer. The tunable
parameters, which determine the computation carried out bythe ANN, are the weights and
biases. In this paper, particle swarm optimization (PSO) (see below) has been used for tuning
the network parameters.

METHOD

Clearly, the performance of an indicator, i.e. its ability to measure driver sleepiness (or the
absence thereof), will depend on the values of its parameters. Thus, in the work presented here,
stochastic optimization methods have been used for finding the best parameter settings for each
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indicator, and for setting the weights of the ANNs used for combining several indicators to
form a detection system.

Optimization algorithms

Two kinds of population-based stochastic optimization methods have been used, namely a ge-
netic algorithm (GA) [9] and particle swarm optimization (PSO) [11]. Unlike several classical
optimization methods, these algorithms do not rely on gradients and therefore are less likely
to get stuck in local optima. The limited space available here does not permit a complete
description of population-based stochastic optimizationmethods. Suffice it to say that such
methods maintain a population of candidate solutions (referred to asindividuals) to the prob-
lem in question. After evaluating all individuals, and thusassigning fitness values according to
the objective function (described in detail in the next section), new individuals are formed by
modifying the existing ones. The procedure for modifying individuals distinguishes GAs from
PSO. In a GA, individuals are selected stochastically in proportion to the fitness values. The
properties of the selected individuals are then combined ina procedure referred to ascrossover
that results in new individuals, which are then slightly modified (randomly), in a process re-
ferred to asmutation, before being inserted into the population. By contrast, in(standard) PSO,
there is no selection step. Instead, the notion of velocity is introduced in the parameter space.
After evaluation, new velocities are calculated (according to an equation that will not be given
here) for each individual, and the new individuals are formed by moving the existing ones in
parameter space, according to the computed velocities. Fora more thorough description of
stochastic optimization algorithms, see e.g. [22].

Regardless of the optimization algorithm used, one must be careful to avoid the problem
of overfitting, resulting from excessive training on a data set of limited size. Real-world data
sets are generally of limited size and invariably contain noise. Thus, if the optimization algo-
rithm is allowed to run for too long, it will eventually startfitting the parameters to the noise,
i.e. adapting the parameter settings to obtain excellent performance on the limited amount of
data used during training, but also, gradually, muchworseperformance on previously unseen
data. Of course, it is the performance on the latter kind of data that matters. There exists several
methods for avoiding overfitting. Inholdout validation, some of the data is placed in a separate
validation set and, during optimization, the performance of the optimization algorithm is mea-
sured both over the training set and the validation set, but the algorithm is provided feedback
only regarding its performance on the training set. The validation set, by contrast, is used for
determining when to stop the training; the best parameter set is taken as the one giving best
performance over the validation set. It is also common to maintain a third data set, the test set,
which is not used until after the optimization has been completed, and therefore measures the
performance over previously unseen data.

Optimization procedure

As described in the previous section, the data were divided into three separate data sets, namely
a training set (used to guide the parameter search carried out by the optimization algorithm), a
validation set (used for determining when to terminate the optimization), and a test set (used to
obtain the performance on previously unseen data).

The data sets were generated as follows: as mentioned above,each TS estimated the level
of sleepiness every five minutes. Thus, for each KSS estimate, five minutes of driving behavior
data were available. The data corresponding to each KSS estimate were divided into five 60-
second intervals, such that the interval(t − 60, t] was used in the test set, the interval(t −
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120, t−60] in the validation set, and the three intervals(t−300, t−240], (t−240, t−180] and
(t−180, t −120] in the training set.

Intervals during which the speed dropped below 60 km/h were discarded in order to remove
episodes where a small town or a roundabout was passed. Intervals for which more than 20%
of the samples had a confidence level below 20 were also removed. Furthermore, individual
samples with confidence level below 20 were discarded as well5. Note that no samples were
removed from the time series sampled from the steering wheelangle signal as this signal was
always available and reliable. After this data reduction, the total number of retained samples
equalled 1244, distributed in such a way that the training, validation and test sets contained
753, 247, and 244 elements, respectively. ClassC1 (alert) contained a total of 837 elements,
andC2, therefore, 407 elements.

As the indicators and detection systems considered here arereal-valued, a threshold func-
tion was used to assign a 60-second driving interval to either of the two classesC1 orC2. Based
on the valueV obtained from an indicator or a detection system, the classC, for the correspond-
ing interval, was assigned as

C=

{

C1 if V < T
C2 otherwise

(5)

whereT is the threshold value separating the two classes.
The objective functionF was computed as follows: first, the averagefi of sensitivity (i.e. the

number of correctly classified samples in classC2, divided by the number of samples inC2)
and specificity (i.e. the number of correctly classified samples inC1 divided by the number of
samples inC1), was calculated for each test subjecti, according to

fi =
1
2

(

ni,2

Ni,2
+

ni,1

Ni,1

)

, (6)

whereni, j denotes the number of correctly classified samples in classCj (for test subjecti) and
Ni, j denotes the total number of samples in classCj (also for test subjecti). Finally F was
formed as the average of thefi measures:

F =
1
k

k

∑
i=1

fi , (7)

wherek denotes the number of test subjects.
The performance of an indicator (or a detection system) is dependent not only on its param-

eters; it also depends on the threshold valueT used for classifying all the 60-second driving
intervals. Whereas the parameters were optimized using stochastic optimization, the threshold
value (for any given set of parameters) was set by exhaustivesearch such that the chosen value
provided the best possible performance on the training set.

A more detailed description of the data reduction procedurecan be found in [19] (in which
the same objective function was used).

RESULTS

Using the data presented above, several indicators from theliterature were evaluated. Next,
following the procedure described above, a large number of optimization runs were carried out.

5Discarding individual samples was possible, since none of the indicators considered here depends on the
availability of consecutive samples.
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Indicator Training Validation Test
1. Standard deviation of lateral position 0.53 0.52 0.54
2. Standard deviation of heading angle 0.56 0.57 0.53
3. Standard deviation of steering wheel angle0.56 0.58 0.60
4. Large steering wheel reversals 0.53 0.58 0.61
5. Medium steering wheel reversals 0.58 0.60 0.60
6. Small steering wheel reversals 0.52 0.51 0.51
7. Optimized steering wheel reversals 0.64 0.64 0.64
8. GVI of lateral position 0.70 0.69 0.70
9. GVI of steering wheel angle 0.58 0.62 0.60
10. GVI of heading angle 0.58 0.59 0.55
11. GVI2 of lateral position 0.81 0.81 0.80
12. Perclos 0.50 0.50 0.50
13. SWP 0.85 0.85 0.84

Table 1: The performance F of the individual indicators. Rows 1-6: indicators from the literature;
Rows 7-11: optimized indicators (GVI = Generic variabilityindicator. GVI2 = GVI with different
parameter settings for daytime and nighttime driving, respectively); Row 12: the Perclos blink indicator;
Row 13: the Sleep/Wake Predictor.

The results are summarized in Table 1. The table shows the performanceF of each indicator
over the training, validation, and test sets.

As can be seen, the performance of the indicators from the literature (rows 1 through 6) was
not very impressive. The performance of the optimized indicators on rows 7 through 10 was a
bit better in some cases, particularly the GVI applied to thelateral position.

Note that a random prediction would, on average, give a performance score of 0.50. In
fact, the poor performance of the first indicator (the standard deviation of lateral position) was
especially puzzling, since several studies [23, 21, 4], including one of our own [18, 19], have
shown a better performance score than the measly 0.54 achieved here, for previously unseen
test data. In fact, in our earlier study, for which the same performance measure was used, this
indicator obtained a score of 0.71 on test data6.

After careful analysis of the data, it was discovered that this simple measure is not suitable
for data obtained from trucks. Presumably, this is so, sincea (large) truck responds less rapidly
to a movement of the steering wheel than a passenger car. As can be seen in the upper left panel
of Fig. 2, there is no discernible trend in the standard deviation of lateral position as a function
of the KSS value.

On the other hand, the standard deviation of thesteering wheel anglereaches a score of 0.60,
comparable to the values 0.55 and 0.63 obtained using the steering wheel angle and steering
wheel velocity, respectively, in the study involving passenger cars [18, 19].

The data analysis provided yet another interesting piece ofinformation; perhaps not so
surprisingly, it turned out that the average lateral position, summarized in Table 2, varied sig-
nificantly bothwith the driver’s state (sleepy or alert)andwith time-of-day, in such a way that
a sleepy driver, at night, places the vehicle closer to the center of the road than an alert driver
during day time. The difference in average lateral positionbetween these two cases is signi-

6Note that, in our earlier study, samples corresponding to KSS = 7 were excluded. However, repeating the anal-
ysis from that study, with those samples included, a similarvalue (0.69) was obtained for the standard deviation
of lateral position, i.e. still much higher than the value obtained in the present study.
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Figure 2: The indicator values for the standard deviation of lateral position (StdLp), for all 1244 data
samples. The solid line shows the mean of the indicator values for the various KSS values.

Day Night
Alert 1.79 1.90

Sleepy 1.86 2.02

Table 2: The drivers’ average lateral position, shown in four different circumstances. The average
lateral position is measured as the distance from the side ofthe road to the front center of the vehicle,
such that the values become larger as the vehicle moves towards the center of the road. Note also that
the entry for sleepy drivers during daytime (1.86) is based on only 41 samples, compared to more than
150 for the other three entries.

ficant with ap-value of 0.05. For the other two combinations, namely alertdriving at night
and sleepy driving during day time, the drivers tend to placethe vehicle at intermediate lateral
positions.

This observation has important implications for some indicators, for example Lanex which
depends on excursions from the lane and is therefore sensitive to the value of the average lateral
position. Thus, since the GVI indicatorcan represent (generalized) Lanex (if the parameters
are set appropriately) the GVI indicator may also be affected by differences in average lateral
position.

As indicated in Table 2, using only the average lateral position, it is not possible to disen-
tangle the effects of driver state (sleepy or alert) from theeffects of the time-of-day. In other
words, in order for an indicator to distinguish between a sleepy driver and an alert driver, the
parameter settings may have to be different depending on whether the driving session takes
place during the day or at night. Since the time-of-day easily can be measured, it is not difficult
to apply two different parameter settings. As a complement to Table 2, Fig. 3 shows the values
of the mean lateral position obtained for all of the 1244 elements in the three data sets (training,
validation, and test), each element corresponding to a 60-second driving interval. As can be
seen, there is a rising trend (albeit a weak one) in the mean lateral position for increasing KSS
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Figure 3: The mean values of the lateral position (MeanLp) for all 1244data samples, each corre-
sponding to a 60-second driving interval. The solid line, inturn, shows the mean of the mean values
obtained for each KSS value.

Detection system Training Validation Test
1. {GVI2Lp, ConfLp, SWARev, Perc, ConfPerc} 0.82 0.81 0.82
2. {GVI2Lp, ConfLp, SWARev, SWP} 0.86 0.86 0.85
3. {GVI2Lp, ConfLp, SWARev, Perc, ConfPerc, SWP} 0.88 0.87 0.88

Table 3: The performance of the various optimized detection systems. GVI2Lp = the GVI2 indicator
(with different parameter settings for day and night, respectively) applied to the lateral position sig-
nal, ConfLp = the confidence signal for the lateral position;SWARev = steering wheel angle reversals
(optimized, corresponding to row 7 in Table 1); Perc = Perclos; ConfPerc = the confidence signal for
Perclos; SWP = The Sleep/Wake predictor.

values.
Returning to Table 1, row 11 shows the performance of the GVI2indicator, which uses two

different parameter settings. As can be seen, including information regarding the time-of-day
increases the performance on unseen test data to 0.80.

By contrast, the overall performance of the Perclos indicator (row 12), is very poor indeed,
reaching the same level as would a random prediction. However, as will be shown below,
when combined with its corresponding confidence signal, Perclos can give a valuable (but
small) positive contribution to a sleepiness detection system. Finally, the Sleep/Wake Predictor
obtains a score of 0.84 on previously unseen test data. This is the best result obtained by any
single indicator, outperforming the GVI2 indicator by 0.04performance units.

The results obtained for detection systems (combining several indicators, using an ANN)
are shown in Table 3. Note that some of the indicators used (e.g. GVI2Lp) have been optimized
themselves, before being included in the detection system.The first system (row 1) combines
indicators based on driving performance with the Perclos indicator, whereas the second system
(row 2) combines indicators based on driving performance with the Sleep/Wake predictor. The
final system (row 3) includes all four indicators. In all systems, the confidence signals are in-
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cluded, when available. As can be seen, the third system achieves the best result, outperforming
the best single indicator (SWP) by 0.04 performance units onpreviously unseen test data.

DISCUSSION AND CONCLUSION

The main conclusion from this study is that, when applied to the problem of driver sleepiness
classification, our optimization framework is capable bothof (i) improving, through stochastic
optimization, individual sleepiness indicators and (ii) generating and optimizing sleepiness de-
tection systems, that combining several indicators non-linearly. For the data considered here,
the best detection systems found outperform all individualindicators, reaching a top perfor-
mance score of 0.88 on previously unseen test data.

However, one should keep in mind that the data used here contain certain fundamental
limitations. For instance, the data are derived from driving sessions involving only eight test
subjects, who all drove on the same road. Furthermore, due tolegal requirements, the data do
not include any sleep-deprived test subjects driving in daytime conditions. Nevertheless, there
are, in fact, a few samples with high KSS values for daytime driving sessions, namely from
drivers reporting a high level of sleepiness without being sleep-deprived.

When analyzing an indicator of driver sleepiness, it is important to make sure that the indi-
cator considered actually measures the quantity that it is supposed to measure. For example, as
mentioned above, it was found that the standard deviation oflateral position does not function
very well as an indicator of sleepiness in the case of truck drivers, due to the slow response
of a truck (relative to that of a passenger car) to steering wheel movements. However, when
applying different thresholds for daytime and nighttime driving, respectively, the performance
of this indicator shoots up to 0.70. Without taking into account the time-of-day effects, one
may (incorrectly) conclude that the standard deviation of lateral position indicates sleepiness
rather well, provided that two thresholds are used. However, a more careful analysis shows that
the procedure for setting the threshold (between the sleepyand alert classes) simply generates
an absurdly high threshold for daytime driving, placingall the corresponding data samples in
the alert class, and an absurdly low threshold for nighttimedriving, placing all those samples
in the sleepy class. Thus, in this case, it turns out that the time-of-day, rather than the actual
standard deviation, forms the basis for the sleepiness detection.

The best single indicator, i.e. the SWP, derives most of its success simply from distinguish-
ing day from night (giving a score of 0.70), the remaning 0.14performance units coming from
the early stages of nighttime driving sessions, where the SWP correctly predicts that the driver
is likely to be alert. The SWP output ranged from 3.76 to 3.79 for the daytime driving sessions,
and from 6.52 to 7.50 for the nighttime sessions. The optimalthreshold for SWP was found to
be 6.8, for which all daytime intervals were assigned to classC1, as were the first few intervals
of the nighttime driving sessions. The remaining intervalsfor the nighttime sessions were all
assigned toC2.

In addition to the driving behavior data, physiological signals (namely EOG and EEG)
were also measured during driving. However, as the analysisof the physiological data has yet
to be completed, the KSS estimates, given by the test subjects, were used as the ground truth
instead. However, this choice is well motivated, as KSS values have been shown to correlate
well with physiological measures of sleepiness [2]. Furthermore, the use of KSS has allowed
us to compare the results obtained in the simulator study [18, 19], for which KSS was used as
well.

In the simulator study [18, 19], the classC2 was based on driving periods for which the
test subject estimated KSS to 8 or larger. By contrast, in thepresent study, driving periods
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with KSS= 7 were included as well. The reason for excluding KSS = 7 in thesimulator study
was to provide a clearer separation between the two classes.However, as many KSS estimates
(especially during the night sessions) resulted in values of 7 in the present study, excluding
the corresponding data would result in data sets with much fewer samples. Furthermore, as
indicated in [2], physiological signs of sleepiness begin to show at KSS = 7, further motivating
the inclusion of the corresponding data.

As a final point, one should note that the optimization and classification framework (and the
corresponding software) developed in connection with thisstudy (and earlier studies; see [18,
19]) is not limited to the study of driver sleepiness. In fact, the same framework can be applied
to any classification task involving stochastic optimization. For example, the framework would
be useful in a study of driver inattention based on, say, gazedirection data. This topic is a
promising avenue for future research.
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