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Abstract 
 

This paper proposes a method to identify driver's posture based on pressure distribution on the 
driving seat. In our method, the Higher-order Local Auto-Correlation (HLAC) features are 
extracted from an image of a pressure distribution. We conducted an experiment to investigate 
effectiveness of our method. The data were collected on a driving simulator. The results showed 
that the method is potentially useful for estimating driver's action. We tried to find ways to 
improve the performance of the method. The results show that using two sensor sheets on the 
seat cushion and the backrest is necessary. The resolution of a sensor sheet can be reduced to 
half of the original or less. If the training samples have lots of varieties, the mean recognition 
rate was up to approximately 85% suggesting the effectiveness of the detection method.  
 
 
1. Introduction 

In order to improve road traffic safety, it is one of vital issues to establish methods to 
modify the way of driver support depending on traffic conditions and driver's states (Inagaki, 
2007). Development of methods for detecting driver distraction is thus important.   

Design of methods for detecting driver distraction depends on types of distractions. 
Ranny, et al. (2000) distinguished four categories of distractions: “visual”, “auditory”, 
“biomechanical”, and “cognitive”.  

“Visual distraction” stands for “looking aside.” There are lots of methods to detect 
“looking aside.” For example, Inayoshi and Kurita (2007) have developed a driver’s head pose 
identification method with a single camera. Moreover, several vehicles in Japan are equipped 
with a system which detects such distraction.  

When a driver is performing a cognitive task which does not require driver’s motion 
(e.g., thinking about something serious issue), it is called that the driver is “cognitively 
distracted”. “Auditory distraction” refers to paying driver’s attention to hearing something (e.g., 
radio or music) too much other than driving. At least in some cases, the driver’s mental 
workload increases when the driver is in a cognitive or auditory distraction. Therefore, such 
distraction can be detected by a method for measuring mental workload. Facial temperature 
(e.g., see, Veltman, et al. (2005), eye movement (e.g., see Itoh and Inagaki (2008)), blood pulse 
wave (e.g., see, Suzuki and Okada (2008) are candidates for detecting high mental workload 
effectively and non-intrusively.  

Biomechanical distraction stands for situation in which a driver is performing a task 
which requires driver’s motion, e.g., taking something to eat/drink. These kinds of activities can 
often be observed in automobiles including professional drivers (e.g., see, Barr, et al. (2003); 
Itoh & Yoshimura (2007)). Therefore, it is important to develop methods to detect 
biomechanical distractions. However, there are few researches on the detection of biomechanical 
distractions. One related study is done by Riener, et al. (2007). They suggest that pressure 
distribution on the driving seat might be useful for estimating driver's attentiveness to the 
driving. However, it has not been clarified how driver's posture can be identified based on the 
pressure distribution.  

The authors have been working on development of driver biomechanical distraction 



(Itoh, et al. (2007)). In Itoh, et al. (2007), the information on the load center position of the 
pressure distributions on the backrest was used to detect driver’s body movement. The method 
was effective to detect movement but was not good enough to identify one action. This paper 
proposes a new approach to identify a posture by taking the pressure distribution itself into 
account.  
 
 
2. Posture recognition method 
 
 This paper proposes to use HLAC (Higher-order Local AutoCorrelation) features (Otsu, 
Kurita, 1988) extracted from an “image” of the pressure distribution on the driving seat. HLAC 
features are often used for image recognition since HLAC features are inherently shift-invariant 
and computationally inexpensive (e.g., see, Kurita and Hayamizu (2003)). These characteristics 
of HLAC features suggest that the use of HLAC features may be suitable to detect a driver 
inappropriate posture in an automobile.  
 In this paper, pressure distribution sensors shown in Figure 1 are used. The sensor 
sheet on the seat cushion has 38 * 37 sensing points, and the sensor sheet on the backrest has 
25 * 40 sensing points. Sample images of these sensors are shown in Figure 2.  
 

 
Figure 1 Pressure distribution sensors 

 
From each figure, HLAC features are extracted. In general, N-th order autocorrelation 

functions with N displacements a1,a2,...,aN  are defined by 

 

  
x(a1,a2,...,aN ) = f (r) f (r + a1)L f (r + aN )dr , 

 
where f (r)  denotes the pixel value at the reference point r . The number of these 

autocorrelation functions is enormous. It is necessary to reduce it for practical image recognition. 
A typical way for this is to make restrictions as follows: 

- the value of N is not greater than two (i.e., N=0,1,2),  
- the range of displacements is within a local 3 * 3 window, where the center of which 

is the reference point.  
This paper obeys the restrictions too. In this case, the number of patterns of displacements is 
reduced to 35 (an equivalent displacement to another one by the shift is eliminated). Figure 3 
depicts the 35 mask patterns. By applying the masks to all pixels in an image, HLAC features 
are computed and a feature vector whose dimension is 35 is obtained.  
  



 

 
Figure 2 Sample images of the pressure distributions 
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Figure 3 Local mask patterns for computing HLAC features 

 
 

Each feature vector x  is mapped to a new feature vector y  in a discriminant space 

by Linear Discriminant Analysis (LDA). The new feature y  is derived as 

 

y =ATx , 

 
where A = [aij ] is a coefficient matrix. The optimal coefficients can be determined from 



training samples so as to maximize a discriminant criterion J = tr( ˆ  W
1 ˆ  B ) , where ˆ  W  and 

ˆ  B  denote the within-class and between-class covariance matrices defined on y . The optimal 

coefficient matrix A  which maximizes J  is obtained by solving the eigenvalue problem 
 

BA = WA  (AT
WA = I), 

 

where W  and B  are the within-class and between-class covariance matrices defined on x , 

and  is the diagonal matrix of the eigenvalues.  
 In this paper, a simple classifier is used to identify the class of the posture. The 
classifier checks the distance from an input vector y  derived from a test sample to the mean 

vector y k  of Class k  in the discriminant space. The input is classified to the nearest class.  

 
 
3. Experiment 
 
3.1 Purpose 
  
 The purpose of the experiment is to find a reliable and cost-effective way to realize the 
detection system. The following factors may be related to the reliability of the detection and the 
cost.  

(1) The number of the sensor sheets. If either the sensor sheet on the seat 
cushion or the sheet on the backrest is enough, the other one can be removed. 
(2) The resolution of the sensor sheets. If both sensor sheets are required, one 
way to reduce the cost is to reduce the number of sensing points on a sensor sheet. 
Reduction of the resolution might contribute to improvement of the reliability. The 
extracted HLAC features may not be appropriate if the resolution is too high, since 
HLAC features are extracted from only the very local areas (as stated above, a 3 * 3 
local window is usually used). 
(3) Varieties of training samples. If the training samples contain wide varieties 
in the data, the detection system may be robust. However, increasing of the varieties 
may raise the cost.  
(4) Individualization. If the detection system is individualized, the system may 
be reliable but expensive. If the individualization is not necessary, we can also reduce 
the cost of the detection system.  

 
3.2 Method 
 
 Ten persons (five females (aged from 23-38) and five males (aged from 22-39) 
participated in the experiment. Even though the participants were recruited through a 
temporary staffing agency, they were given the same rights as the ordinal voluntary 
participants. The participants were paid according to the guideline at the University of 
Tsukuba.  

The data were collected on a driving simulator shown in Figure 4. The driving 
simulator is motion-based. However, the motion was not provided in this experiment. The 
participants were not asked to drive the vehicle. Their task was just to take a posture on the 
driving seat. Five classes are distinguished in this experiment as follows: 

C1. Take the normal driving posture.  
C2. Reach the left hand to the left as far as possible (Figure 5 (C2)). This aims to 



simulate picking up something on the passenger seat next to the driving seat 
(note here that the driving seat is on the right hand side in Japan).  

C3. Touch a point as shown in Figure 5 (C3). This aims to simulate taking 
something in the pocket on the back of the passenger seat. 

C4. Touch a navigation screen which is located at the center of the dashboard 
(Figure 5(C4)).  

C5. With the right hand, touch the floor as shown in Figure 5(C5). The point to 
touch is near the right heel.  

For each posture, a driver is asked to press a gas pedal a little. The position of the driving seat 
and the angle of the backrest were set as a participant feels comfort. At the first stage of the 
experiment, those parameters are recorded. Before starting each data collection, the driving 
seat was configured based on the parameter values. Every driver was also asked to fasten the 
seatbelt.  
 Two types (type-A and type-B) of samples are collected for this experiment. For type-A 
samples, a participant is asked to take a posture only once from C1 to C5. For each posture, 
100 snapshots are taken at one time for a data set. This way of taking data is time-saving, but 
the data in the same class may be similar to one another. For type-B samples, a participant is 
asked to take a posture twenty times from C2 to C5. The order is randomized. Between each 
pair of postures, a participant is asked to come back to C1 (Thus, C1 was taken 80 times). At 
each posture taking, five snapshots are recorded. Thus, we have 100 snapshots for each class 
(for C1, 100 snapshots are randomly chosen) as a data set. This way of taking data is 
time-consuming, but the data may have wide varieties.  
 

  
Figure 4 The driving simulator 

 
 



 
Figure 5 Secondary actions 

 
 The data collection lasted three days for each participant. In each day, one type-A data 
set and three type-B data sets are recorded. After completion of one data set recording, every 
participant gets off the driving simulator and takes some rests. Thus, the initial driving 
positions differ from one another slightly.   
  
 
3. Results and Discussions 
 
 First, the necessity of both sensor sheets is discussed. Three conditions, i.e., using only 
the sensor on the seat cushion, using only the sensor on the backrest, and both, are compared. 
By calculating the (correct) recognition rate for each participant, the data shown in Figure 6 was 
obtained (each error bar represents the standard deviation of the associated condition). In this 
analysis, training is based on a type-A data set. All (nine) the type-B data sets are tested to 
each training data set. Therefore, 27 tests are done for each participant. The recognition rate of 
a participant used in Figure 6 is a mean recognition rate of the 27 tests.  
 We conducted a single-factor repeated measures ANOVA on the recognition rate. The 
main effect was statistically significant (F(2, 18)=12.53, p<0.0004). Tukey’s HSD test revealed 
that there were significant differences between “both” condition and “seat cushion only” 
condition (p<0.01), and between “both” condition and “backrest” condition (p<0.01). Therefore, 
using the two sensor sheets are necessary for achieving high recognition rate.  
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Figure 6 Effect of combining the sensor sheets on recognition rate 

 
 Second, reduction of the sensor resolution is discussed. Using the two sensor sheets 
may result in increase of the cost. It is necessary for us to find a way to reduce the cost. One 
possible way is to reduce the number of sensing points on a sheet. Figure 7 depicts the result of 
the reducing the resolution. The horizontal axis represents the reduction rate of the resolution. 
The vertical axis represents the difference in the mean recognition rates between the tests 
based on the original data and a test based on the resolution-reduced data. According to Figure 
7, the resolution reduction does not decrease the recognition rate at least the resolution equals 
to or is greater than 1/8 of the original one for the “both” condition. This result implies that the 
total number of sensing points can be reduced from the original setting even if the two sensor 
sheets are used.   
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Figure 7 Effect of reducing resolution on detection rate 

 
 Third, we discuss increasing of variety of training samples. There is a room to improve 
the recognition rate even when the two sensor sheets are used. Here, we investigate 
effectiveness of increasing variety of training samples. Four types of trainings are compared. In 
each type, training is done with 

Type-1: a single type-A data set,  
Type-2: a single type-B data set, 
Type-3: a mixture of two type-B data sets in one day,  
Type-4: a mixture of two type-B data sets that are from different days from each 

other.  
In types-3 and 4, the number of training samples for each class is kept at 100 by extracting 



samples randomly. For every type of training, tests are done with the remaining type-B data 
sets. The total recognition rate for each type is calculated as the mean recognition rate of the all 
tests in the type. In Figure 8, the mean value of the all participants’ total recognition rates is 
shown for each type. The error bars represent the standard deviations. A single-factor 
repeated-measures ANOVA showed that the main effect of training type was statistically 
significant (F(3, 27)=19.99, p<0.01). According to Tukey’s HSD test, there were significant or 
nearly significant differences between type-1 and type-2 (p=0.08), between type-1 and type-3 
(p=0.0005), between type-1 and type-4 (p=0.0002), between type-2 and type-4 (p=0.0004), and 
between type-3 and type-4 (p=0.06). Thus, it can be claimed that the higher the variety in 
training samples, the higher the recognition rate.   
 In our experiment, the final recognition rate was approximately 85% as shown in 
Figure 8 (type-4). Even though this is not high enough for practical use, the result suggests that 
our proposed method is potentially useful. Detection rate depends on combination of classes to 
be categorized. For example, as shown in Figure 9, the recognition rate for C3 was relatively low 
for both training types 1 and 4. This result suggests that the recognition rate can be higher if we 
can neglect C3. Whether C3 can be neglected or not depends on the purpose of the detection 
system. Since body movement in C3 is small, driving maneuver may not be significantly 
degraded. If the system aims to hit the automatic brake when a rear-end collision is imminent, 
for example, the system does not need to detect actions like C3. If the system aims to give some 
caution when a driver is paying his or her attention to something other than driving itself, 
however, the system has to detect such actions. The reliability of the detection required to the 
system is also dependent on the severity of the situation and/or degree of support.  
 

 
Figure 8 Dependence of recognition rate on learning data 
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Figure 9 Difference between types 1 and 4 in recognition rate for each class 

 



 
Finally, necessity of individualization for training is discussed. In the above analyses, 

training was done separately for each participant. Here, the following two types of training are 
taken into account. In each type, training is done with 

Type-5: randomly chosen 100 samples for each class from all the type-B data sets of 
all participants, 

Type-6: randomly chosen 100 samples for each class from all the type-B data sets of 
nine participants other than the tested person. 

For tests based on type-5 trainings, 10% of the training samples are from the own data of the 
tested person. On the other hand, no own data are included in the type-6 samples for each 
person. Tests are with the remaining type-B samples for each participant.  

Figure 10 shows the differences among training types 4, 5, and 6 by showing each 
participant’s recognition rates of those types. A single-factor repeated-measures ANOVA for 
these data showed that the main effect of the training was significant (F(2, 18)=15.7, p<0.01). 
According to Tukey’s HSD test, there was no significant difference between type-4 and type-5. 
However, there were statistically significant differences between type-4 and type 5 (p<0.01), 
and between type-5 and type-6 (p<0.01). The results show that training based on a “common” 
data set can be almost the same as the one based on the individualized training data set if at 
least 10% of the “common” data is from the own data of the tested person. However, if the 
training samples do not have the data of the tested person at all, the recognition was degraded. 
The result implies that common training can be done if we can categorize drivers into small 
number of groups, where differences among drivers in the same group can be neglected from the 
view point of the pressure distributions. 

 

 
Figure 10 Effect of including driver's own data in learning data set  

 
 
4. Concluding Remarks 
 

We have proposed to apply an image recognition technique for identification of driver 
posture from several alternatives. Since our method extracts HLAC features from the pressure 
distributions on the driving seat, the method is shift-invariant and computationally 
inexpensive.  

The results of the experiment showed that both the sensor sheets on the seat cushion 
and the backrest are necessary, but the cost can be saved since the sensing points can be 
reduced to the half of the original or less. In order to achieve robust recognition, wide variety of 
training samples is needed. However, the cost of collection training samples may not be so high, 
since our results suggest that individual training may not be necessary if we can categorize 



drivers into small number of groups.  
Further research would be needed to investigate whether our approach is robust or not 

when a vehicle is running. Careful design of supports to a driver based on this monitoring 
should also be established.  

As Itoh (2008) pointed out, pressure distributions on the driving seat is useful not only 
for detecting driver’s biomechanical distraction but also other objectives. For example, our 
method proposed in this paper can also be applied to evaluate driver’s situation awareness. 
That is, our method can be used to detect that a driver is ready to hit the brake (Itoh, et al., 
2008). Riener and Ferscha (2008) tried to develop a person identification method based on the 
pressure distribution information. Detecting driver’s fatigue (e.g., see, Furugori, et al. (2005)) 
and drowsiness (e.g., see, Kaneko, et al. (2008)) can also be done by analyzing pressure 
information on the driving seat. Integrating these methods will be vital for the future safety 
support systems.  
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