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Driver attention monitoring and visual sampling from relevant and 
irrelevant targets
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Abstract: Driver attention is often assessed via glance behaviour, typically by measuring glances away from the forward 
roadway or by directly measuring glances to non-driving related targets. This approach can be used to detect distracting 
events, but it does not check whether all situationally relevant targets are sampled. Here, we evaluate the usefulness of 
the MiRA-theory as basis for attention assessment. A field study was conducted with 23 participants driving an 
instrumented vehicle on an urban route. The participants wore a head-mounted eye tracker. Data reduction included 
the identification of target areas that needed to be sampled, whether they were sampled or not, and whether relevant or 
irrelevant other traffic was present. Additionally, a gaze-by-gaze analysis identified gaze direction, purpose, and target.
As predicted, drivers sampled all required target areas that necessitated a glance away from forward. Target areas 
roughly in the forward direction, like zebra crossings, were probably sampled with peripheral vision, but this could not 
be reliably confirmed with the equipment used. The glance direction distribution was found to correspond well to the a-
priori-defined requirements. A higher number of parallel requirements induced a larger share of glances with the 
purpose to check for traffic. Relevant traffic was monitored more than irrelevant traffic. A higher number of parallel 
requirements was associated with reduced spare visual capacity. Nominal glance target identification was less linked to
the requirements. We therefore recommend that “traditional” glance-based attention assessment should be 
complemented with a purpose-based glance assessment protocol coupled with situation dependent pre-defined 
requirements.

1. Introduction
The assessment of driver attention or distraction is 

often done by investigating visual sampling strategies. The 
two most used methods are eye tracking and visual occlusion, 
sometimes in combination (Kujala, Kircher, & Ahlström, 
2021). Visual occlusion can inform us about the attentional 
demand and predictability of a given situation, and in 
combination with eye tracking it allows an assessment of 
which glances are necessary and which are “redundant”
(Kircher, Kujala, & Ahlström, 2020). When determining 
distraction, a common procedure is to use eye tracking to 
measure what a driver looks at with foveal vision and then to 
classify those glances as “relevant for driving” or “not 
relevant for driving”. Distraction is then assumed to occur if 
a driver is found to foveate targets that are “not relevant for 
driving”, which is in line with several of the often-cited
definitions of driver distraction (Regan, Hallett, & Gordon, 
2011).

However, it is typically not considered whether 
drivers miss relevant information, except for the research 
body centring around hazard perception. Here, a common 
approach is to investigate if and when drivers detect specific 
pre-defined hazards (Samuel & Fisher, 2015). In one of the 
rare field studies, Kaya, Girgis, Hansma, and Donmez (2021)
found that drivers frequently miss over-the-shoulder checks 
for cyclists when turning, especially when turning right. 
Otherwise, and especially in real world studies, it is unusual 
to investigate whether all relevant information in a given 
situation is sampled (Ahlström, Kircher, Nyström, & Wolfe, 
2021). Apart from the focus on “wrong targets”, this can also 

be due to the challenge in identifying all relevant targets a-
priori.

The theory of Minimum Required Attention (MiRA) 
provides a framework to identify relevant target areas which 
actual glance behaviour can be compared to (Kircher & 
Ahlstrom, 2017). Within this framework, a driver is attentive 
if and only if all relevant information was sampled in a timely 
manner. Based on traffic regulations, road layout and 
intended manoeuvres, the relevant target areas and the so-
called MiRA-zone, within which the sampling has to take 
place, can be identified.

Here we explore whether the MiRA theory can be 
applied to empirical data from a real-world setting. We 
combine the notion of being attentive (as in having sampled 
all relevant information) with the approach of classifying 
glances in a purpose-related fashion instead of by the physical 
glance targets per se (Ahlström et al., 2021). Based on the 
above, in combination with the fact that most journeys are 
collision-free, we assume that

1.most relevant information is usually sampled,
2.sampling patterns are situation dependent, and 
3.situations with more attentional requirements leave 

less spare capacity.

2. Method
Twenty-three participants drove a 12 km long route

within the town of Linköping, Sweden. They were equipped 
with a head-mounted eye tracker (SMI glasses 2.0, 
SensoMotoric Instruments, Teltow, Germany) and drove an 
instrumented Volvo V60. The instruction was to drive as one 
normally would. Traffic density varied with time of day.
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2.1 Analysis
Four intersections with different priority regulations 

(priority, yield, stop, traffic light) were selected for analysis. 
The participants went straight ahead in all four intersections.
For each such event it was determined which areas had to be 
sampled from which “zone” along the route. For example, in 
the stop-controlled intersection, it was necessary to check for 
traffic from the left and right in a specific zone, which started
where the crossing road was no longer obscured by houses,
and which ended before the intersection was entered. Also, 
two zebra crossings had to be sampled before they were 
crossed.

For each such zone the required glance direction was 
determined (left, right, forward, or behind). It was also noted 
whether several requirements had to be fulfilled at the same 
time, that is, whether several requirements were “active” in 
parallel. Such combinations could be equal across 
intersections – for example checking a zebra crossing in 
combination with the forward roadway occurred on several 
occasions. These similar occurrences were analysed together.

For each such requirement combination the presence 
of road users in the required areas was coded regardless of 
whether they were glanced at or not. “Traffic encounter types” 
were identified as collision course, potential collision course,
no collision course, or no road user present. Traffic that was 
present but not in a required area was classified as
“irrelevant”.

Each participant’s eye tracking data were assessed
with respect to whether the required areas were sampled 
while in the corresponding zones. The glance purpose was 
estimated as well, assuming that a first glance towards a 
required area was to check for traffic from that direction, and 
that repeated glances to another road user in the area were to 
keep track of its trajectory. Glances in the forward direction 
to no particular target were categorised as “default” and 
glances towards traffic lights or similar were coded as 
“information collection”. Glances were also encoded based 
on the type of gaze target as in “traditional” glance analysis
and with respect to their direction in relation to the direction 
of travel.

3. Results
All MiRA-requirements that necessitated a gaze away 

from the forward direction were fulfilled by glancing at least 
once in the required direction within the zone. Whether all 
zebra crossings were sampled is more difficult to tell based 
on foveal eye tracking data, with 43 confirmed and 72 unclear 
cases. No incidents where pedestrians were not given priority 
occurred, though.

The sampling direction distribution in the different 
requirement combinations clearly reflected the direction of 
the required areas. If required areas were present in several 
directions at the same time, the glance direction was shared 
across areas. The more required areas there were within a 
single zone, the lower the share of “default” glances, 
indicating that demands were higher in these situations. This 
is also reflected by the higher share of glances with the 
purpose to check for traffic (Figure 1).

All relevant traffic, that is, all road users present in 
required areas, were sampled at least once. In contrast, only 
about half of the irrelevant traffic (road users outside of 
required areas) were glanced at. If relevant traffic was present 
at the same time, only around 25 % of the irrelevant road 
users were glanced at.

The classification into target types showed that 
motorised traffic was the most frequent glance target for a 
combination of the required areas forward and to the right, 
whereas cyclists and other targets were glanced at frequently 
when required areas existed in the forward, left and right
direction.

Grouping by interaction type instead, it turned out that 
pedestrians and cyclists were glanced at more frequently 
when traffic on collision course was present than when on 
potential or no collision course (Figure 2). Default glances are 
less frequent with “higher” levels of interaction.

Figure 1. Glance direction, target and purpose, depending on different coinciding MiRA-
requirements.
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4. Discussion
A glance classification based on physical targets is 

likely to miss important aspects of driver attention for several 
reasons. Firstly, it is dependent on what happens to be there –
in the current dataset cyclists and pedestrians were the road 
user groups that were most frequently on collision course 
with the participants, because their traffic light was green at 
the same time as the participant was turning right, across their 
(in this case rather busy) path. Also, the high frequency of 
“other” targets in the “forward, left and right” combination
can be attributed to the fact that when checking for potential 
cross traffic the road was empty most of the time, which led 
to the foveated glance target essentially being “an empty 
road”, categorised as “other”.

If one considers glance purpose instead, the 
classification appears more logical. If several areas require 
attention simultaneously, the share of glances devoted to 
checking for traffic increases. Whether or not any traffic is 
present will then affect the following action. While this type 
of categorisation may appear less objective, it has been 
argued that this is not necessarily the case (Ahlström et al., 
2021).

As hypothesised, the participants fulfilled all non-
forward MiRA-requirements, with some methodological 
uncertainty for requirements in forward direction. Still, there 
were numerous glances to “other” targets. Due to the 
controlled nature of the study, these targets were not 
completely unrelated to driving. The finding still serves as an 
indication that a driver who glances at “other things” can be 
fully attentive – it may even be required to glance towards an 
area away from forward to be classified attentive, which
occasionally result in glances to “other” targets.

When using the directional and purpose-based 
classification of glances, the behaviour is predictable and 
linked to requirements. Drivers meet the attentional 
requirements, and when they have capacity left, they spend it 
on “default” glances, taking in redundant information. Also, 
they invariably monitor relevant traffic, and if they have 
capacity left, they also look at irrelevant traffic.

Eye tracking gives access to foveal but not peripheral 
vision, which is a shortcoming that became especially 
apparent here when assessing sampling of zebra crossings. 

For future research on driver attention, we suggest
investigating further which glance behaviour can be said to 
fulfil an attentional criterion, instead of assuming that one 
glance in the corresponding direction is enough. We also 
recommend looking into the role of peripheral vision.

5. Conclusions
Empirical evidence from real-world driving shows 

that drivers’ glance behaviour follows the predictions made 
by the theory of Minimum Required Attention. Drivers adapt 
their gaze pattern to the situational requirements, dealing with 
relevant information first and foremost. If spare capacity is 
available, drivers can also sample redundant or irrelevant 
information, while still being attentive according to the MiRA
theory.
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Abstract: Trucks contribute disproportionately to fatal traffic accidents.  Overloading, speeding, and fatigue are primary 
causes of truck accidents.  Speeding is an example of driver inattention while fatigue causes driver distraction due to 
sleepiness.  Overloading is controlled by weigh-in-motion scales, but driver inattention can result in the evasion of such 
monitoring systems.  Non-intrusive detection of these behavioural deviations can enable effective action against non-
compliant drivers without causing disruption to compliant drivers.  This paper describes a novel system that combines 
GPS tracking data with road monitoring data to automatically detect non-compliant behaviour in real time.  Driver 
behaviour is compared against population behaviour based on incident statistics, thus separating compliant from non-
compliant drivers.  Results made available to roads authorities and fleet owners enable action against non-compliant 
drivers but with no impact on compliant drivers, thus minimising disruptions to economic activities.  
 

1. Introduction 
The importance of truck safety has been widely reported 

(Zhang, Yau, & Zhang, 2014) (Douglas, 2009) (Kemp, Kopp, 
& Kemp, 2013).  In 1997, 98 percent of the fatalities from 
crashes between a truck and a passenger vehicle were 
occupants of the passenger vehicle (G.A.O., 1999). 
According to (Chen, Sieber, & Lincoln, 2015) commercial 
trucks were involved in 3,464 fatal, 73,000 injury-causing 
and 241,000 property-damaging crashes in 2012 in the US 
alone. They found that it would be beneficial to road safety if 
high-risk carriers receive reviews of driver compliance with 
safety regulations. 

Mahaboon (Mahaboon, 2014) found that drivers reported 
high non-conformance with fatigue regulations, and that 
speeding violations was a strong predictor of crash 
involvement.  Batool et al (Batool, Hussain, Kanwal, & Abid, 
2018) found that long trucks are involved in fatal accidents 
because of drivers’ risky driving behaviours, speeding and 
overloading.  Another finding was that increased monitoring 
to enforce compliance with work hour rules resulted in 
increased unsafe driving practices due to speeding (Scott, 
Balthrop, & Miller, 2020).   

The use of weigh-in-motion technology for overload 
control was proposed by Jacob et al (Jacob & Feypell-de La 
Beaumelle, 2010) to allow trucks to be weighed in traffic flow, 
without any disruptions to operations.  In South Africa 
overloading is controlled through a combination of static and 
weigh-in-motion scales operated by the South African 
National Roads Agency (SANRAL) (SANRAL, 2017).  

An IoT system for enhancing road safety proposed by 
Jabbar et al (Jabbar, Shinoy, & Kharbech, 2019) collects trip 
data, GPS coordinates, average and maximum speed and 
driving behavior for drivers’ risk assessment and to detect 
extreme road user behavior. 

This paper proposes a novel IoT solution that 
combines data from both road transport operators and the 
roads authority to detect non-compliance in real time, 
enabling effective action against offenders without negative 
implications for non-offenders. 

2. Method 
A pilot system was implemented to monitor compliance 

behaviour of freight trucks on the highway between Durban 
and Johannesburg.  Data was collected from existing ANPR 
cameras and weigh-in-motion scales along the route, and 
from GPS tracking systems of 48 vehicles, over a period of 
12 months.  As the same vehicle is always driven by the same 
driver, incidents identified for a particular vehicle represent 
the behaviour of the corresponding driver.  More than 5,000 
trips were completed during this period, with each truck 
completing between 5 and 230 trips.   

A list of incident types was defined to characterize unsafe 
road behaviour.  To limit deployment cost incidents were 
restricted to those that could be detected using existing data.  
Driver inattention was represented by vehicles passing a 
WIM scale without using the WIM lane and speeding.  
Distraction incidents were based on non-compliance with 
fatigue regulations, resulting in drowsiness.  The presence of 
each incident type could be identified using the above data 
sets.   

ANOVA was applied to verify if truck driver identity was 
significantly related to incident rates.  From the incident 
statistics per vehicle and for the population we calculated 
driver t-statistics per incident type to identify drivers 
displaying extreme behaviour.   

3. Results 
Table 1 below displays statistics for available 

observations and extracted incidents, including the total 
number and average number per vehicle.  The results of the 
ANOVA analysis in Table 2 below confirms that vehicle ID 
is a significant indicator of incident prevalence, given that all 
F-statistics are much larger than 1 while all p-values are very 
small. 

The histograms for t-statistics associated with each 
incident type are displayed in Figure 1.  For WIM-scale 
incidents most drivers display a low incidence of misconduct, 
while there are several outliers with a much high incidence of 
misconduct compared to the population average. A 
significant fraction of drivers is involved in speeding, while a 



9

2 
 

small percentage of drivers infringe significantly on fatigue 
regulations.  The results obtained from the ANOVA analysis 
are thus confirmed by the t-statistics. 

 
Table 1 Statistics on incidents recorded 

 
Statistic WIM non-

compliance 
Speeding Fatigue 

non-
compliance 

Total number of 
observations 

10,718 8,047 8,047 

Average observations per 
vehicle 

282 168 168 

Total number of incidents 1,552 7,770 298 
Average incidents per 
vehicle 

40.8 162 6.2 

Incidents as percentage of 
observation 

14.5% 96.6% 3.7% 

 
Table 2 ANOVA results assessing relationship between 

vehicle ID and incident rate  
 

Incident Type F-statistic p-value 
WIM non-compliance 8.13 2.99E-54 
Speeding 60.5 5.7E-37 
Fatigue non-compliance 4.56 7.55E-23 

 

 
(a) WIM scale incidents 

 
(b) Speeding incidents 

 

 
(c) Fatigue incidents 
 
Figure 1 Histograms of driver incident rate t-statistics 

4. Discussion 
To practically reduce the prevalence of non-compliant 

behaviour it is necessary to act against perpetrators.  This will 
be much less disruptive to cargo flows if action taken against 
a minority of truck drivers will eliminate most non-compliant 
behaviour.  To investigate if a minority of truck drivers cause 
most non-compliant behaviour, we ranked drivers based on 
number of incidents observed and calculated the fraction of 
incidents represented by an increasing fraction of drivers, 
starting with those drivers that committed the most offenses.  
Figure 2 shows that by acting against 33% of drivers it is 
possible to eliminate 66% of WIM scale, 84% of speeding 
and 92% of fatigue offenses.   

 
a) WIM scale incidents 

 
b) Speeding incidents 
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c) Fatigue incidents 

Figure 2 Accumulative fraction of incidents caused by 
accumulative number of ranked drivers 

5. Conclusions 
We demonstrated that incidents reflecting truck driver 

inattention and distraction can be extracted by combining 
traffic data from different sources in real time.  As the 
proposed concept does not require new hardware 
infrastructure it can be deployed at low cost.  ANOVA 
provided evidence of a strong relationship between driver 
identity and non-compliance behaviour.  t-statistics indicated 
that some drivers display extreme non-compliant behaviour.  
A minority of drivers was found to cause most of the non-
compliance incidents.  As the incident data is collected non-
intrusively it is possible to apply enforcement against 
offenders without causing disruptions to compliant drivers. 

Recommend future work should combine incident data 
with crash and insurance claims statistics to predict fatalities 
and insurance losses from observed non-compliant behaviour.  
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Abstract: The presented simulator study compared two different driver-in-the-loop strategies on driver’s eye glances 
and intervention behavior at system limits in partial automated driving with a control condition without any strategy: A 
state-dependent strategy achieved by a driver monitoring system and a situation-dependent strategy by using a 
monitoring request. The results showed visible differences in gaze reaction times and intervention times. However, the 
effects were overlaid by strong individual differences in monitoring behavior during partial automated driving, so that 
none of these differences reached statistical significance. The qualitative analysis of single critical events indicated that 
those could be successfully avoided by the strategies. The subjective evaluations revealed that a monitoring request was 
perceived as more helpful in preparing for a system limit. 
 

1. Introduction 
When driving with a partial automated system the 

driver is still requested to monitor the driving environment 
and to be ready to react any time to a system limit or error. 
Two different strategies can support the driver in these tasks: 
A driver monitoring system (DMS) aims to keep the driver 
permanently in the loop (Merat et al., 2018). It observes 
driver's visual attention and triggers a warning if eyes are 
taken off from the driving task for too long. Such attention 
warnings proved to be successful in getting participants to 
monitor the road (see Victor et al., 2018; Blanco et al., 2015; 
Schömig & Kaussner, 2014). Another strategy is to bring the 
driver back into the loop only when necessary. A so-called 
monitoring request (MR) could ask the driver in uncertain 
situational circumstances to increase effort in monitoring to 
be better prepared in case the situation requests a driver 
intervention. The effectiveness of MR was previously 
investigated by Gold et al. (2013), Lu et al. (2019) and Louw 
et al. (2017a, b).  

The presented study investigated which driver-in-the-
loop (DIL) strategy leads to better intervention behavior at a 
system limit and compared it to a control condition without 
any strategy: A state-dependent strategy achieved by a DMS 
or a situation-dependent strategy via an MR. 

2. Method 

2.1 Test environment 
The test was conducted in the WIVW driving 

simulator with motion system (see www.wivw.de). The 
simulator is equipped with an eye tracking system by 
SmartEye®.  

2.2 Test scenarios and test course 
The test course consists of a three-lane highway 

including 12 test scenarios (15 minutes duration). Each 
scenario first contains a phase where the driver drives with 
the partial automated system at a set speed of 100 km/h. 
In 8 of the 12 scenarios, after 45 sec driving an obstacle 
suddenly appears on the test vehicle’s lane in 10 s distance 

which is not detected by the system and therefore requires a 
driver intervention. The obstacle consists of safety beacons 
positioned across the complete width of the lane so that a 
complete lane change is necessary in order to avoid a collision. 
The scenarios differ in the direction of the lane change 
(depending on the initial lane when entering the scenario: 
either to the left or to the right), whether one or two lanes have 
to be changed (depending on the number of lanes blocked), 
and whether an additional braking maneuver is necessary 
because traffic is approaching from behind or not. The 
obstacle and traffic do not appear in the scene until 10 
seconds before reaching the system limit. In the other 4 
scenarios (so called distractor scenarios) the obstacle is either 
on a different lane or there is no obstacle at all so that no 
driver intervention is necessary. After having passed the 
obstacle the driver should stay on the target lane and drive 
manually until the end of the section. The 12 scenarios are 
arranged into a continuous driving course which can be 
driven through.  

2.3 Automated system and HMI 
A prototypical partial automated system requiring the 

driver to keep hands on the steering wheel was implemented 
in the driving simulator. It did not respond to the obstacle, but 
remained active until the driver deactivated the system by 
pressing a button at the steering wheel, braking or steering. A 
simple prototypical display in the instrument cluster was used 
to indicate the system status. In the active state, a green circle 
with the text "system active" was displayed, no status display 
was shown when the system was inactive.  

2.4 Non-driving-related task (NDRT) 
During the partial automated drive, drivers watched a 

video without dialogues, but with an acoustic background. It 
was presented on a tablet mounted at glove compartment 
level. Both, gaze and head direction towards the display were 
used as indicators for distraction. To encourage subjects to 
focus their attention on the video, even though this is not 
allowed in partial automated driving, they were explicitly 
instructed to do this for scientific purposes.  
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2.5 Driver-in-the-loop strategies  
The study examined two different driver-in-the-loop 

strategies (DIL strategies) and compared them to a condition 
without any strategy. This factor was implemented as a 
between factor.  

• State-dependent strategy (DMS condition): The 
drivers’ gaze behavior was monitored via DMS. If 
they looked away from the road for too long (> 4 s), 
they received an Eyes-Off warning. This message 
was displayed directly on the video screen as long as 
the driver looked to it. It consisted of a text box with 
the information "Please monitor the traffic situation”.  

• Situation-dependent strategy (MR condition): The 
driver received a so-called "monitoring request" 
about an uncertain traffic situation ("Unclear traffic 
situation"), which might require a possible 
intervention. It was triggered simultaneously with 
the appearance of the situation 10 s before reaching 
the obstacle (also in the distractor scenarios without 
an obstacle). The message was displayed below the 
system status for 2 seconds and was combined with 
an audible advisory tone.  

• No strategy (baseline condition): The driver 
received no warning at all. 

 
Fig. 1. HMI-Feedback for the different DIL strategy conditions. Left: Baseline condition Middle: DMS condition; Right: MR 
condition.  

2.6 Test sample 
The sample consisted of 30 subjects (13 female). The 

mean age of the subjects was 41.5 years (SD=13.2 years).  

2.7 Test procedure 
After instructions about the partial automated system, 

the NDRT and a short drive for practicing system 
deactivation, subjects performed the test drive in their 
assigned test condition. All drivers were told to direct their 
attention to the video, but on the premise that they must 
remain ready to intervene at any time.  

2.8 Dependent measures 
Reaction time until intervention, reaction time of first glance 
to the road, mean glance duration to video, number of critical 
events and perceived usefulness of the system’s messages 
were analyzed.  

3. Results 
Descriptively, the reaction time until intervention was 

highest in the baseline condition and lowest in the MR 
condition. However, this comparison does not become 
statistically significant (F[2;27]=2.834; p=.076). Subjects in 
the baseline condition looked up to the scenario descriptively 
the latest. However, also this difference does not become 
statistically significant (F[2;26]=1.266; p=.299).  

Mean glance durations to the video revealed a 
significant effect of the DIL strategy (F[2;26]=3.986; p=.031) 
and significant differences between the MR condition 
(p=.027) and the baseline condition as well as between the 
MR and the DMS condition (p=.016) indicating the shortest 
durations for the MR condition.  

A closer look at the gaze durations per subject shows 
that gaze behavior differs heavily between individuals: The 
individual monitoring behavior of the drivers probably 
overlapped the effects of the respective DIL strategies.  

In total, 12 collisions/near-collisions with the obstacle 
occurred, with a clear accumulation in the baseline condition 
(10 in baseline vs. 1 in DMS vs. 1 in MR condition).  

Collisions or near-collisions with the traffic behind 
occurred eleven times in total, equally distributed over the 
different test conditions (3 in baseline vs. 5 in DMS vs. 5 in 
MR condition). 

Perceived usefulness of the messages was 
significantly higher for the MR than for the DMS warnings 
(F[1;18]=15.63; p=.001). Descriptively, drivers from the 
DMS condition felt slightly more disturbed by the messages 
than the MR condition, without statistical significance 
(F[1;18]=1.72; p=.206). 

4. Discussion and conclusion 
In summary, there were visible differences depending 

on the driver-in-the-loop strategy in gaze reaction times for 
the perception of the situation and intervention times for the 
reaction to the system limit. However, the effects were 
overlaid by strong individual differences in monitoring 
behavior during partial automated driving, so that none of 
these differences reached statistical significance.  

The qualitative analysis of single critical events 
indicated that in the condition without intervention, critical 
situations with the obstacle occurred more frequently or, 
conversely, such situations could apparently be successfully 
avoided by the strategies. The subjective evaluations revealed 
that MR was perceived as more helpful in preparing for the 
upcoming system limit. 
The results show further that driver’s performance of control 
glances during the interaction with NDRT is a highly 
individual and automated process which seems very difficult 
to be influenced by experimentally induced instructions and 
variations. In general, the experimental induction of 
distraction (in contradiction to legal aspects and driver’s 
natural behavior) in order to investigate the effectiveness of 
possible countermeasures must be discussed. 
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Abstract: Euro NCAP presents a pragmatic 2-stage method to assess Driver State Monitoring systems, of which direct 
monitoring is to make a first landing in the five star safety rating scheme from 2023 onwards: First, Euro NCAP reviews 
a comprehensive dossier provided by the Original Equipment Manufacturer (OEM). Second, the official test laboratory 
spot-tests some of the system functionalities as required in the protocol. 
 

1. Introduction 
Analysis of driver inattention using naturalistic 

driving studies  [1] show that engaging in visually demanding 
tasks (even for 2-second glances) and driving while drowsy  
result in higher near crash/crash risk [2]. In addition, 
increasingly busy global traffic environment requiring 
attentiveness for safe driving, combined with the trend of 
vehicles being marketed on their connectivity, and with ever 
growing screen sizes loaded with potentially distracting 
features, it becomes necessary for technology to encourage 
safe and attentive driving. 

Acknowledging these facts, and in its constant effort 
to raise the bar for vehicle safety standards, the European 
New Car Assessment Programme (Euro NCAP) deems it 
essential to reward driver monitoring systems that effectively 
detect impaired driving in the form of driver distraction and 
drowsiness, as well as initiating various strategies that warn 
the driver and/or mitigates risks. To that end, direct 
monitoring will make a soft landing in the 2023 
implementation of the “Safety Assist – Safe Driving” 
protocol, and will be required in order to achieve the full score 
in the Occupant Status Monitoring (OSM) area. From 2025 
onwards, only direct monitoring systems will be rewarded, 
opening the door to rating more advanced features such as e.g. 
Cognitive Distraction, Driving Under Influence, more fool-
proof seat belt reminders and occupant classification for 
passive restraint optimization. 

The 2023 protocol requires the DSM (Driver Status 
Monitoring)  system to perform when put under a defined 
range of specific noise variables e.g. driver attributes, as well 
detecting the status of the driver and including system 
intervention strategies. As the requirements are difficult to 
test in a repeatable and reproducible way on a test track, Euro 
NCAP has put in place a pragmatic approach to assess the 
performance of DSM systems. 

2. Method 
The assessment approach consists of two stages: First, 

Euro NCAP Secretariat will review a dossier provided by the 
OEM, which summarizes in detail the DSM system 
performance across the requirements summarized in the 
protocol (and beyond); Second, an Euro NCAP official test 
laboratory conducts spot testing on a proving ground where 

randomly selected aspects of the DSM system are checked to 
confirm functionality. 

2.1 DSM Dossier Guidance 
Euro NCAP has elaborated a Technical Bulletin (TB) 

supplementary to the protocol, which provides provisions and 
guidance [3] on the format, minimum contents and structure 
of the DSM dossier. Some of the minimum required sections 
and provisions for the OEM to include in the dossier are 
described below. 

2.1.1 System Overview 
Summary of the main system functionalities, 

compliance of the minimum system requirements, sensors 
involved in the system, their role and relevant specifications, 
and details explaining the constituent elements of the 
different system warnings; 

2.1.1 Noise Variables 
Containing compelling evidence that the system can 

monitor a population constituted of different types of drivers, 
with a range of facial occlusions and driver behaviours. 
Depending on the complexity of the noise variables, the 
requirement vary between ‘Must’, ‘Inform driver if 
degraded’ , and ‘Information only’; 

2.1.1 Detection of driver state 
Supporting evidence demonstrating that the system 

can effectively classify the driver state in the minimum 
required categories: 

   
- Distraction: further classification of distraction 

includes ‘long distraction, ‘short distraction’, and 
‘phone usage’. As distraction is heavily linked to 
gaze location, the OEM is required to specify in 
the dossier a drawing the delimited gaze 
areas/regions which the system takes into account 
to assess distraction. 

- Fatigue: further classification of fatigue includes 
‘drowsiness’ ‘microsleep’ and ‘sleep’. Euro 
NCAP gives freedom to the OEM to include in 
the dossier other methods to assess fatigue other 
than the ones specified in the protocol. 



15

2 
 

- Unresponsive driver: details of how the driver 
status is deemed unresponsive (or sudden 
sickness) by the system 

2.1.1 Vehicle response requirements 
Including details on how the sensitivity of ADAS is 

increased (e.g. Forward Collision warning – FCW; Lane 
Departure Warning – LDW) when driver is deemed distracted, 
fatigued or unresponsive. The OEM is free to stick to the 
protocol requirements or justify other vehicle response 
methods; 

2.2 DSM Spot Testing Guidance  
 Complementary to the information provided by the 

OEM in a dossier, the spot testing is the second stage in the 
assessment of the DSM performance. Euro NCAP has 
consolidated a comprehensive guideline [4]  with the 
necessary provisions on how the spot testing is to be 
conducted across official test laboratories.  

2.2.1 Test provisions 
The test is to be conducted under defined conditions 

so as to maximize repetitiveness across test laboratories (e.g. 
uniform surface with consistent slope, at daylight without 
direct glare or strong light transitions, avoiding strong 
precipitation).  

The vehicle under test (VUT) is to be instrumented 
with a relatively simple measuring equipment, recording at a 
defined sample rate (>25Hz): the VUT speed, driver’s gaze 
location and DSM warning(s). Time variables are defined to 
ensure consistency, and are to be used later for analysis 
purposes (Table 1). Furthermore, prior to the test, the timing 
of FCW and LDW are to be checked at their minimum 
operational speed without signs of driver inattentiveness, so 
that the sensitivity increase can be later  assessed. It is also 
important to ensure that previous system learnings on driver 
drowsiness are reset.  

2.2.2 Test execution 
The test laboratory in charge of the assessment will 

randomly pick a test subject (a qualified driver from their staff) 
whose variables and ranges are within the protocol 
specifications. The driver will then adjust the seat in the 
preferred position, and proceed with the test after the vehicle 
preparation. 

Euro NCAP secretariat will ask the test laboratory to 
spot test a number of distraction, fatigue and unresponsive 
driver areas of the DSM system, which performance has been 
claimed in the dossier by the OEM. While the vehicle is in 
motion at a defined constant speed deemed adequate for the 
test, the driver shall keep a defined head and body posture 
while looking to the road ahead, until the manoeuvre begins. 

For distraction scenarios, the driver will proceed with  
moving the head, eye gaze or body posture (depending on the 
scenario) towards the target area (e.g. glovebox, side mirror, 
rear passenger seat, etc), and hold the position for a defined 
time as required in the protocol. An extra time of +1 second 
is added to the required time, so as to ensure that the system 
reaction is captured during the assessment. 

For the assessment of Fatigue and unresponsive driver, 
Euro NCAP reserves the right to investigate it in practice, 
although it should rely on the evidence reflected in the dossier. 
For microsleep, sleep and unresponsive driver scenarios, the 
metrics by default for assessment are eye closure timing and  
eventually head nodding forwards; however, a different OEM 
strategy is allowed for as long as it is justified; 

 
Finally, for each of the areas where the system was 

functional, the scenario will eventually have to be repeated 
with different occlusions (cap, hat, sunglasses and facemask). 

 

3. Results 
The DSM Dossier Guidance TB elaborated by Euro 

NCAP aims to ease the reviewing process by standardizing 
the document across different DSM systems,  while granting 
enough flexibility for the OEM to include additional detail 
deemed necessary to further illustrate the system constituent 
components, performance and functionalities (e.g. 
schematics, diagrams, videos). Euro NCAP also gives the 
OEM room to use other methods to accomplish the different 
DSM system requirements, for as long as a details justifying 
the safety benefits are included in the dossier. Furthermore, 
the dossier will provide Euro NCAP test laboratories an 
overview of the particularities of the system to be spot-tested. 

By encouraging the OEM to elaborate an in-depth 
analysis of their system in the dossier, Euro NCAP aims to 
get valuable insights for more holistic learnings, leveraging 
the development of future protocols. 

 
The DSM Spot Testing Guidance TB makes sure that 

repeatability is maintained across test laboratories and 
systems. 

 

4. Discussion 
The presented method is subjected to further 

refinements as gaps, inconsistencies or feasibility issues are 
found alongside the 2023 test campaign. Euro NCAP will 
constantly keep track of those and liaise with test laboratories 

Table 1 Variables to be measured during Spot Testing 

Variable Description 
T Time 
T0   Time when manoeuvre starts 
Taway   Time of first eye movement away from 

forward road view 
Tgaze Time of first glance on gaze location 
Tdist Time where distracted warning activates  
Twarn Time of first instance of audio/visual 

warning 
Tfat, Time where fatigue warning activates 
TFCW Time where FCW activates with 

attentive driver 
TFCWdist Time where FCW activates with 

distracted driver 
TLDW Time where LDW activates with 

attentive driver 
TLDWdist Time where LDW activates with 

distracted driver 
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and the involved industry members so as to enhance the 
method. Furthermore, it is expected that the method enables 
deeper understanding of system capabilities and of possible 
improvements in requirements for future assessment 
upgrades.  

5. Conclusions 
The presented method provides a pragmatic approach 

to understand the system functionalities and assess the 
performance of those when put under the minimum 
requirements to score points in the Euro NCAP DSM protocol.  
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Abstract: Trust in vehicle automation has been established as an important prerequisite to user acceptance, which in 
turn leads to increased usage. This enables the expected benefits of automated driving functions (ADFs), especially in 
terms of traffic safety. This study explores driver behavior after activating automated driving (observed and self-
reported) as well as self-reported trust features after automated driving in real traffic. A potential context is investigated 
to what extend trust influences the speed in which the driver disengages from the driving task after activating 
automation.  The automation is realized with a Wizard-of-Oz vehicle controlled by a wizard driver in the back seat. A 
total of 30 participants were driving on the city highway of Gothenburg in Sweden. 
The results show high correlation of trust features and overall elevated levels of trust after the drive. Self-reported 
activities with ADFs also indicate an expected shift in behavior towards non-driving related tasks such as texting, 
browsing and in general using the smartphone extensively. The observed handover process shows a fast activation and 
disengagement from the driving task. Most drivers freely engaged in other activities as there were no specifications on 
what to do while in automated mode. The drivers with higher trust levels were more likely to engage earlier in non-
driving related tasks (in respect to time after activation). 
The results also show that high trust in automation co-occur with a fast disengagement from the driving task. This has 
potential implications on the function development and the expectation of a fallback-ready driver. While drivers stated 
they like to monitor the system, most started to engage in secondary activities with little to no monitoring. This may be 
an effect of seeing the system perform for the first time (halo effect). 
 

1. Introduction 
As the progression from partial to fully automated 

vehicles (AVs) accelerates, the driver’s role may eventually 
change from that of active operator to that of passenger. This 
is expected to lead to increased traffic safety, traffic flow, 
comfort (for user) and insure mobility for all (old and 
impaired users) (Kyriakidis et al., 2017). However, for a 
successful change of the driver's role, it is important for the 
user to trust the AV, since trust is believed to be a prerequisite 
for acceptance (Ghazizadeh et al., 2012; Molnar et al., 2018; 
Zhang et al., 2020) and adoption of AVs (Choi & Ji, 2015). 

 
An important attribute to establish trust is what the 

automation does in order to reach the user’s goals, and 
includes factors such as reliability, predictability and ability 
(J. D. Lee & See, 2004). Reliability concerns how consistent 
the automation performs, and predictability is defined as how 
well the automation performs according to the user’s 
expectations (Hoff & Bashir, 2015). It has been shown that 
the design of an AV driving behavior affects users perception 
of how predictable an AV is, which in turn affects trust 
(Ekman et al., 2019). 

 
Questionnaires (Jian et al., 2000; Li et al., 2019) and 

interviews (J. Lee et al., 2016) are often used to measure users 
trust. Other researchers have explored the potential of using 
behavioral indicators to measure users' trust. Previous studies 
used indicators such as gaze behavior (Hergeth et al., 2016; 
Walker et al., 2018), head-, hand- and foot position (Wright 

et al., 2016). However, the results from the studies are 
inconclusive regarding the correlation between objective and 
subjective trust measurements. Furthermore, the studies also 
contain shortcomings in their experimental setup, i.e. 
simulator studies that lack perception of risk which is a 
fundamental aspect for trust to exist (J. D. Lee & See, 2004). 

 
Thus, the aim of this work is to present the results from 

an experiment regarding how users behavior relates to trust 
during handover situations (transition from manual to 
automated driving). These results include both questionnaire 
ratings as well as behavioral indicators such as eye-gaze, 
head-, hand- and foot position during the transition as 
indicators of trust in AVs in a naturalistic driving 
environment i.e., in real traffic.  

2. Method 
The study was conducted with a Wizard-of-Oz (WoZ) 

vehicle on public roads. The participants were under the 
impression that they were testing an automated driving 
function (ADF). During the drive, the control switched 
twelve times between the driver and the function in 
designated locations. The drivers could activate automation 
(handover) and were required to retake control (takeover). 

2.1 Participants 
There were 30 participants (10 female) available for 

analysis in this study. All were employees of Volvo Car 
Cooperation for legal issues. The age ranged from 23 to 64 
(M = 39.2, SD = 10.5). The driving experience was above 2 
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years for all participants with a median yearly mileage of 15 
to 20 thousand kilometers. 

2.2 Test vehicle 
The test vehicle was a modified Volvo XC90 with 

double controls. The "wizard" controls the car when in 
automated driving mode sitting in the center of the rear bench 
seat. For this purpose, there is a steering wheel as well as 
pedals connected to the vehicle's CAN bus (drive-by-wire). 
The wizard driver can also utilize the built-in Adaptive Cruise 
Control (ACC). The controls are obscured with a cover to be 
not visible by the driver. In addition, there are three cameras 
placed in the cabin to capture the driver’s behavior. 

2.3 Route 
The test drive was performed on the outer ring road 

around Gothenburg, Sweden (see dashed line in Figure 1). 
One round is approximately 30 kilometers long. The road is 
a city highway with 2-3 lanes in each direction separated by 
a median barrier. The posted speed limit is 70 to 80 km/h. The 
traffic is moderate during the day with density spikes during 
common rush hours. 

2.4 Procedure 
All drivers had a briefing before the drive to get 

familiar with the handling of the vehicle. The wizard in the 
back was introduced as a backup for a system failure. The 
drivers were allowed to engage in non-driving related tasks 
(NDRTs). There was also a tablet mounted on the center stack 
to be used freely during automation. The drive was two 
rounds clockwise which took about one hour. Handovers 
were initiated by the test leader and indicated in the Driver 
Information Module (DIM). The drivers were asked to use the 
ADF whenever available. After the drive, there was a 
questionnaire and a short debriefing to determine if the 
drivers were unaware of the purpose of the wizard. 

2.5 Design 
Overall, there were 6 phases in automated driving 

mode, phases 1 and 4 are about 1 minute short (test phases). 
The handover process is compared across all phases by video 
annotation of behavioral attributes, such as first glance on the 

DIM, activation of automation, hands off wheel, feet resting 
position, start secondary task. 

The questionnaire statements related to trust were on 
a 5-point Likert scale. The overall trust is evaluated at the end 
of the drive and correlations with different trust features were 
assessed using the Spearman coefficient. 

2.6 Data collection and validation 
The driver video data was annotated for 30 seconds 

after the system became available based on the attributes 
mentioned above. Three annotators were used to validate the 
subjective data collection by cross comparison of inter-rater 
reliability. 

3. Results 

3.1 Features of trust 
The drivers assessed the system predominantly 

positively. Trust, reliability and intention to rely are high 
with more than 50% strongly agreeing. Ability and 
predictability are slightly lower, with both having a neutral 
spectrum of about 15%. The desire to monitor, in which 
nearly half of the participants agree or strongly agree, has also 
a neutral spectrum of about 30%. The ratios are displayed in 
Figure 2. 

 

All features showed weak to moderate correlations 
with trust (see Table 1). While most trust related features also 
show correlation with each other, desire to monitor stands out 
with no other relation other than a weak correlation with trust.  

 

Table 1. Spearman correlation values between the features 
extracted from the questionnaire 

feature 
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Predictability 0.14     
Ability 0.52 0.24    
Desire to monitor -0.1 -0.03 -0.03   
Reliability 0.39 0.43 0.46 -0.06  
Trust 0.45 0.27 0.31 0.27 0.53 

Figure 1. Route on the city highway ring in Gothenburg 
with AD stretches marked in blue 

Figure 2. Results of the trust related items in questionnaire 
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3.2 Differences in handover behavior 
The automated driving function was enabled by the 

test leader in the passenger seat, and an acoustic and visual 
signal was sent to the driver via the DIM. Then the handover 
process was observed, marking the timings of the behavioral 
features of interest (see Figure 3).  

The first glance DIM occurred within 2 seconds for 
the 95-percentile of drivers (in all repetitions). This was 
followed by an immediate system activation indicated by 
button push time. After only 5 to 6 seconds on average drivers 
took hands off wheel and most drivers took the feet of the 
pedals in a feet resting position. Most drivers start secondary 
tasks within the 30 second observation span. The timing is 
more spread over the different repetitions of automation 
phases. Comparisons with the self-reported trust showed a 
correlation of trust with the onset of secondary tasks.  

4. Discussion 
The participants were highly trusting in the 

automation after experiencing it in real traffic. However, the 
desire to monitor was rather high even among trusting 
participants. This might be an effect of wanting to see the 
system operating for the first time (halo effect) and 
potentially will degrade over time. 

The actual behavior observation does not show high 
attentiveness after handover. Only few drivers switched into 
the role of supervising the automation. Although, supervision 
is not required in conditional automation (level 3) or higher, 
it is deemed to be useful by SAE level definition (Society of 
Automotive Engineers (SAE), 2021). In contrast to previous 
simulator studies, where in vehicle tasks are introduced by 
design, the drivers in our real traffic environment showed 
naturally shifts towards secondary activities while in 
automation mode (Jamson et al., 2013). Also, the surrounding 

traffic density seemed to have no influence on the level of 
attentiveness away from the driving task. 

Especially, the activation time is fast which indicates 
eagerness to try the system on one side but also is a result of 
the instruction to activate as soon as possible. Interestingly, it 
takes only 6-8 seconds on average (after automation available) 
until the controls are given up completely shown by the driver 
leaving the hands off the wheel and feet in a resting position 
(away from the pedals). There was also no effect of repetition 
in these actions as the timing does not change significantly 
between different automation phases. 

That the self-reported trust correlates with the onset of 
starting a secondary task indicates, that after trust is 
established, drivers will quickly disengage from the driving 
task and not monitor further nor give attention to the driving 
environment. This is a key factor when it comes to ADF 
design and the expectation of having a fallback-ready user in 
case of deactivation. 

5. Conclusions 
The highly trusting participants in this study handed 

over the control to the vehicle in a fast and smooth way, 
leaving the controls shortly after. The disengagement from 
the driving tasks often leads to an attention switch towards 
secondary activities. It cannot be expected that a driver 
trusting in an automated driving function will frequently 
monitor the system and have some level of situational 
awareness in relation to the driving task. This should be 
considered in the design of such functions. 
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Figure 3. Timing of the response measures taken after automated driving function is available (bold markers indicate means) 
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Abstract – The objective of this study was to use a driving simulator to examine whether the utilization of an activating 
non-driving related task (NDRT) as a countermeasure can mitigate the effects of passive fatigue development and hazard 
perception (HP) deterioration under partially automated driving (PAD). Twenty-four participants were randomly 
assigned to one of two experimental conditions: (1) driving under PAD conditions without an activating NDRT or (2) 
driving under PAD conditions in the presence of an activating NDRT. The activating NDRT was a multimodal version of 
a Trivia game (auditory and visual). Each condition included two driving sessions one week apart. Each driving session 
included four unmaterialized hazardous situations (8 total) counterbalanced between participants. Participants were 
connected to an eye-tracking system and ECG throughout their drives. In addition, they were asked to rate their subjective 
level of sleepiness (KSS) four times during each drive. Initial findings show that the progression of subjective sleepiness is 
slower when drivers can engage with an activating NDRT than when they are not. This effect dissipates as drivers gain 
experience with the system.  

Keywords: Distraction, Partially Automated Driving (PAD), Sleepiness, Countermeasures, Non-Driving Related Task 
(NDRT). 

 

1. Introduction 
The increased prevalence of automation functions in 

partially automated vehicles (PAV) relieves drivers from 
vehicle control tasks but not from their role as supervisors of 
the automated system and the driving task [1]. This 
supervision requires continuous and passive monitoring, 
which is monotonous and tedious, resulting in passive fatigue, 
decreased vigilance, and even compromising the driver's 
ability to react in a critical event [2,3]. 

This work was aimed to evaluate whether engagement 
with an activating non-driving related task (NDRT) can 
suspend passive fatigue development and at which costs (e.g., 
increased workload, distraction). 

2. Method 

2.1 Participants 
Twenty-four participants, 12 females (mean 

age=25.25, SD=2.83; mean driving experience=7.25, SD=2.7) 
and 12 males (mean age=27.3, SD=7.03; mean driving 
experience=9.63, SD=7.26). All participants were students at 
Ben-Gurion University of the Negev (BGU) and had more 
than five years of driving experience. In addition, participants 
went through visual acuity (Snellen Chart), and contrast 
sensitivity (FACT; Ginsburg, 2003) tests to assure they had a 
normal, or corrected-to-normal, vision (6/9 or better and 
normal contrast sensitivity function). Participants also 
declared they do not suffer from any cardiological problems, 
light sensitivity, or a tendency to headaches and nausea. The 
participants had received 140 NIS after completing the 
experiment. The BGU IRB ethically approved the study. 

2.2 Apparatus 

2.2.1 Driving Simulator  
An RTI high fidelity driving simulator (Realtime 

Technologies, Inc.) was used for the study. The driving 
simulator consists of an engineless Cadillac-STS sedan and a 
7m diameter curved screen (2.4m X 6.1m), creating a visual 
angle of 165 degrees of the virtual world, located at about one 
meter in front of the vehicle. Three laser projectors displayed 
the virtual world on the curved screen, and a designated 
software (Wrapalizer, Inc.) did the edge blending. A rear 
projector and a screen at the back of the simulator presented 
the virtual environment through the in-vehicle rear-view 
mirror. In addition, each physical side mirror included a 7” 
LCD showing the respective views of the virtual environment. 

Figure 1 - RTI high fidelity driving simulator 
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2.2.2 Human Machine Interface (HMI) 
Two in-vehicle displays were connected to a PC and 

were used to display the HMI. One was located behind the 
steering wheel and was used as a digital instrument panel 
dashboard to display information and notify the drivers about 
hazard scenarios, fatigue, and automation level. The other 
was located in the central console and was used as an 
infotainment screen. The infotainment screen displayed the 
online KSS questionnaire, visual and vocal alerts about on-
road hazards and fatigue status, and the Trivia game interface. 

2.2.3  Eye tracker and Electrocardiogram 
(ECG) 

Participants’ eye movements were recorded with 
TOBII head-mounted pro glasses 2.0 at 50Hz. In addition, 
participants’ heart rate was recorded with A BioPac ECG 
system (MP150) at 2000Hz. 

 

2.2.4 Driving Environment and Scenarios 
Each drive session included a trip of approximately 40 

minutes, usually on a straight urban or highway road with 
sparse traffic. During each driving session, four 
unmaterialized hazard scenarios occurred along the road. 
Different combinations of the scenarios were assigned 
randomly between the participants. Each scenario presented 
a latent cue that could be spotted from a distance. 

2.2.5 Training Drive 
Before the experimental drive, participants underwent 

a 5-minutes driving training session and received an 
explanation of the environment, devices of the simulator, and 
a demo of the HMI. 

2.2.6 Questionnaires 
Participants were asked to complete three sets of 

questionnaires: (Set1) included (1.1) demographics, (1.2) 
previous experience and familiarity with automation, and (1.3) 
adoption and trust. (Set2) was administered after training and 
included knowledge verification regarding the simulated L2 
driver functionalities. (3) Post-drive set included (3.1) 
workload – NASA TLX, (3.2) usability of the Mediator 
system, (3.3) Knowledge verification regarding Mediator’s 
HMI functionality, and (3.4) adoption and trust (same as 1.3). 

2.2.7  Secondary Task 
The secondary task interface consists of a multiple-

choice questions trivia game. Each time a participant accepts 
an invitation to play trivia, a batch of 11 questions follows. 
The content of the question and the possible answers were 
read out loud with speakers inside the car. The driver chose 
an option by pressing the respective button on the central 
touchscreen. 

2.3 Experimental Design  
The experiment was a mixed 2-by-2 factorial design. 

Participants were randomly assigned to one out of two 
experimental conditions: (1) L2 driving with an NDRT (2) L2 
driving without an NDRT. This was a between-subjects 
independent variable. Gender was balanced within each 

experimental condition. Both conditions interacted with the 
HMI system and were asked to evaluate their subjective 
sleepiness level, received visual and vocal alerts of hazards 
ahead, automation status, and alerts in case of fatigue. 
Participants from the first experimental condition were 
offered three times to engage with a Trivia game as an NDRT 
throughout the drive (see Figures 2&3). In contrast, the HMI 
design was adapted to the driver’s sleepiness level based on 
the KSS scores. When a driver was detected as sleepy for the 
first time, an “eye” icon notification was displayed. If the 
driver kept reporting high KSS scores in the following KSS 
instance, then a “coffee cup” icon appeared on the central 
display, asking the driver to stop for a rest.  

Participants drove two driving sessions in the 
simulator one week apart in each experimental condition. The 
long-term HMI effect was a within-subject independent 
variable.  

2.4 Procedure  
 When arriving at the lab, participants declared that 

they were well-rested, asked to report a KSS score, and 
performed two vision tests. 

Qualified participants received written instructions 
regarding the simulator automation capabilities, the simulated 
environment, the HMI infotainment system, and the 
measurement apparatus. Participants were told that they 
should drive as they would in similar real-world situations, 
and they should constantly monitor the automated system and 
the driving task. Participants were told that the driving task is 
under their sole responsibility. 

Then, participants were connected to an ECG, entered 
the vehicle, and were asked to sit and relax for 5 minutes 
while reading a magazine. Meanwhile, a baseline ECG 
including R-R interval measurement was performed. Next, 
they wore eye-tracking glasses for calibration. 

The participants drove a 5-minutes training session to 
familiarize themselves with the simulator and experience its 
behaviour and were briefly introduced to the HMI. Then, the 
participants were asked to complete a short questionnaire 
regarding the simulator operation and HMI. Immediately 
after, the participants started the 40 minutes experiment drive 
depending on their experimental condition. After the drive, 
the participants were asked to fill out the post-drive 
questionnaire. 

A week later, the participants returned to the lab 
approximately at the same hour as the first session and 
underwent the same procedure as in the first session. After 
completion, the participants were thanked for their 
participation and received monetary compensation. 
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3. Results 
Only the mean KSS scores of both experimental 

conditions were analysed as initial results due to the 
submission deadline. In general, both experimental 
conditions demonstrated an increased trend of subjective 
sleepiness along the drive. However, during the first drive, 
the first experimental condition (with Trivia) demonstrated a 
lower rate of subjective sleepiness development than the 
second condition (Figure 2). The same effect is observed in 
the second driving session until the third KSS instance. Then, 
the subjective sleepiness score of the control group (second 
condition) reaches a ceiling, and the score of the experimental 
group keeps its trend (Figure 3).     

4. Conclusions 
Our findings extend previous findings by showing that 

using Trivia as a countermeasure for passive fatigue inhibited 
sleepiness progression, but only for a limited period. After a 
certain period, there was a ‘jump’ in sleepiness ratings; thus, 
the NDRT effect seemed to have dissipated towards the end 
of the drive. In addition, the KSS scores analysis show that 
drivers adapt to the Trivia, and its potential to inhibit fatigue 
progress is reduced between drives. 
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Figure 2 - mean KSS score for the first drive 

Figure 3 - mean KSS score for the second drive 
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Abstract: Previous simulator and real-world studies with SAE Level 2 automated vehicles (AVs) have shown that, when 
compared to manual driving, drivers are more inattentive when using partially automated driving systems, reflected by 
less glances towards the road, and more focus on non-driving related activities. Manual driving studies also suggest that 
drivers are more likely to engage in non-driving related tasks (NDRTs) during slow moving or stationary traffic 
conditions. The aim of the current study was to understand if these attention patterns also happen in real-world SAE 
Level 3 AVs, when supervised by a safety driver. In particular, the study’s aim was to understand whether NDRTs 
engagement is impacted by the driving environment. 46 video clips of drivers interacting with NDRTs during L3 
motorway driving were analysed, with speed of travel used as a proxy measure for the volume of surrounding traffic. 
The number and duration of glances towards the forward roadway were used as proxy measures for engagement in 
NDRT. Results will be presented by comparing the number and duration of glances for three different driving speeds, to 
understand the implications of different HMI and automation conditions on how drivers self-regulate their engagement 
in NDRTs when driving in a real-world SAE Level 3 AV. 
 

1. Introduction 
Vehicles which allow some automated functionality, 

such as lateral and longitudinal support, are now available on 
the market (e.g., autosteer, lane keeping system, adaptive 
cruise control). However, these features are still limited, for 
example, due to a sudden change in weather or traffic 
conditions (based on the vehicle’s Operational Design 
Domain or ODD). Therefore, according to the Society for 
Automotive Engineers (SAE, 2021), drivers must “constantly 
supervise these support features” for Level 2 functions, or 
drive “when the feature requests” for L3 functionalities. 
However, L2 and L3 driving simulator studies have shown 
that, compared to manual driving, drivers’ gaze is less 
focused towards the road centre (which gravely affects 
supervision- and safety, Goncalves et al., 2020; Louw et al., 
2019; Zeeb et al., 2016). Similar results have been reported 
in real-world L2 automated driving studies, with less glances 
towards the road, and more focus on non-driving related 
activities (e.g., engaging with mobile phones), when 
compared to manual driving (Morando et al., 2021; Noble et 
al., 2021). However, due to their absence from the road, there 
is currently little knowledge of how drivers will behave in 
more advanced, L3 AVs, where they are legally allowed to 
engage in NDRTs, but must be ready to drive, when requested. 
If your paper does not meet all of the requirements, your 
paper will be unsubmitted. It is at the discretion of the 
Organisation Committee to decide if a submitted contribution 
that is “unsubmitted” is returned with a request for revision 
to address identified issues, or if it is simply rejected. 

Previous naturalistic studies on manual driving have 
shown that the driving context and environment are critical 
factors for influencing drivers’ engagement in NDRTs. For 

example, drivers are more likely to initiate phone calls, or 
engage in visual manual phone activities in stationary traffic, 
compared to higher speed driving conditions (Christoph et al., 
2019; Funkhouser et al., 2012; Tivesten et al., 2015). 
However, most of these studies are based on data from 
manual driving conditions, where the driving demand is 
significantly different, compared to automated driving. It can 
be argued that with an increase in the levels of automation, 
there is even less demand on the driver, further encouraging 
their chances to engage in NDRTs. How such levels of 
automation affect driver engagement in NDRTs, and how the 
contextual environment, such as road type and traffic 
conditions affect this engagement is also not known. 

The aim of the present study was to investigate the 
pattern of drivers’ engagement in NDRTs, when travelling in 
an L3 automated test vehicle, on a European highway, with 
different levels of traffic.  The following research questions 
were investigated: 

(1) What is the attention pattern (number and duration 
of glances towards the forward roadway) when drivers 
engage in NDRTs in a real-world L3 AV? 

(2) How does the driving environment (based on speed 
of travel) influence this NDRT engagement? 

2. Method 

2.1 Participants 
Thirty-one non-professional drivers (25 females, 6 

males) aged 25-70 years (Mage= 40.42 years, SDage= 12.22) 
took part in this study. They received between €200- and 
€250-worth of shopping vouchers for this study. 
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2.2 Automated vehicle and route 
The study was conducted between January 2020 and 

March 2021, on a 95km long motorway section outside a busy 
European city. The road environment included both busy 
sections of traffic, and free motorway driving. All 
experiments took place in clear daytime weather, with no 
heavy rain or snow, and the drive lasted between 1 and 1.5 
hours. 

The drive started in manual mode, until the vehicle 
reached the main motorway route, and the automated driving 
function (ADF) was available. The SAE Level 3 was capable 
of driving in its own lane at the designated speed limit, 
performing overtaking manoeuvres, and changing lanes at 
speeds of up to 110 kph. For safety reasons, a manually driven 
vehicle followed the AV. 

Participants’ actions were recorded using 3 in-vehicle 
cameras: one camera positioned on the dashboard to capture 
their posture and head/facial movements, one camera 
positioned beside their right shoulder to capture hand position 
and dashboard information, and another to capture the 
position of their feet on the pedals.  Data from these cameras 
was linked to the timestamps of the vehicle CAN bus data, 
which provided travelling speed, acceleration, and vehicle 
positioning.  External cameras also recorded the external 
environment, but, for GDPR reasons, the quality of images 
was not suitable for use in this study. 

2.3 Experimental procedure & design 
This study consisted of three automated drives, on the 

same route, separated by a few weeks. Additional safety 
measures such as facemasks were included due to the Covid-
19 pandemic restrictions. 

Before the first experimental drive, all participants 
were informed about the experiment, provided their informed 
consent, and completed a pre-experimental questionnaire. On 
arrival, the participants were given another briefing on the 
experimental procedure, were familiarised with the AV’s 
driving functions, and reminded of the motorway driving 
route. For safety and legal reasons, two experimenters and 
one safety driver accompanied drivers throughout the study. 
The safety driver was seated in the passenger’s seat and had 
access to an additional steering wheel and pedals, to intervene 
in the event of an emergency. The participants were asked to 
respect the rules of the highway code during manual driving, 
and keep a safe distance to surrounding traffic participants. 
Additionally, they were told that the vehicle was equipped 
with internal cameras for recording oral statements, feet 
movements, facial expressions, and the frontal and rear 
driving scene. 

Prior to each experimental drive, participants were 
given the opportunity to practice driving (3-4 km on a rural 
road), allowing familiarisation with the vehicle and the ADF, 
after which they began the experimental drive. 

The automated driving mode became available in the 
motorway if the following three criteria were all fulfilled: The 
AV:   

(1) was located in the centre of the lane,  
(2) had a certain safety margin to the leading vehicle, 

and  
(3) was driving at less than 110 kph. 
 

At that point, the vehicle dashboard turned blue, and 
the message ‘the vehicle is ready for automated mode’ was 
presented, along with an auditory alert. If the criteria for AV 
availability were not fulfilled, the experimenter instructed the 
participant to adjust the missing parameters. In order to hand 
over the driving task to the automated system, the participant 
was asked to release the acceleration pedal, and then push the 
‘R’ button on the steering wheel. Once activated, the 
dashboard turned gold, and a sound was provided, which 
informed participants that they had activated the automated 
driving mode. During automated driving, participants were 
given different instructions regarding the range of activities 
that were allowed during automation, depending on the drive 
number. 

In the first experimental drive, participants were 
instructed to hand over control as soon the automated driving 
mode was available, but they were always free to take over if 
they wanted to. While the automation was on, they were told 
that they could do whatever they liked, including engaging in 
an NDRT. 

During the second experimental drive, the participants 
were asked to drive one half of the motorway section 
manually, and activate the automated mode during the other 
half of the drive. There were no instructions regarding a 
secondary task engagement for the period of automated 
driving in this drive. 

Finally, in the third experimental drive, they were 
instructed to hand over control as soon as the automated 
driving mode was available, and they were encouraged to 
engage in an NDRT, such as reading a book, or playing on a 
smartphone. Immediately after the third and final drive, they 
completed the post-drive questionnaire, which incorporated 
questions on attitudes towards automation, and sensation 
seeking (not reported here). Finally, drivers were interviewed, 
and asked how the automated vehicle influenced their 
behaviour.   

Across all drives, participants were prompted by the 
AV to take-over manual control of the vehicle one minute 
before the motorway exit, or 10 seconds prior to an 
unexpected event – in these situations the message ‘You have 
60 s (or 10 s) to take over control’ was displayed on the 
dashboard, accompanied by an auditory cue. To take over the 
driving task, the participants had to press the button ‘O’ on 
the steering wheel, or press the acceleration pedal, or turn the 
steering wheel.   

3. Results and Discussion 
Data analysis for this study is currently in progress, and 

results will be reported in time for the conference in October. 
To understand how different traffic conditions affected 
engagement in NDRTs, the number and duration of glances 
to the road centre area will be compared across three different 
driving speeds: 0-40 kph, 40-80 kph, and 80-120 kph, to 
understand how engagement in NDRTs is different for low 
speed of travel during heavy traffic, compared to automated 
driving at higher speeds. The correlation between mean speed 
and standard deviation of speed, and glance behaviours 
(number and duration of glances) will also be analysed. The 
effect of speed fluctuations on engagement in NDRT will be 
investigated, by setting acceleration thresholds for predicting 
glance presence from an accumulated frequency curve. 
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The findings of this study will be used to understand 
drivers’ propensity to engage in NDRTs during real-world L3 
automated driving, and how this is impacted by the vehicle’s 
travelling speed, and presence of surrounding traffic. The 
implications of these results in terms of the design of more 
supportive HMI, and how different time budgets for transition 
of control affect behaviour in real world automated driving 
will be discussed. 
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Abstract: Driver distraction is a leading contributor to road traffic crashes in young drivers. Mind wandering (MW), a 
form of distraction involving off-task thoughts, is linked to crashes and, in some cases, unsafe driving (e.g., speeding). Brief 
online mindfulness training (MT) may reduce crash risk by enhancing reflexive awareness (i.e., meta-awareness) of MW 
and reducing its occurrence. This pre-post (T1, T2), randomised, placebo-controlled, double-blinded pilot trial examined 
these proposed mechanisms of MT and clarified its feasibility, in terms of acceptability and adherence, in young drivers. 
Twenty-six drivers aged 21-25 were allocated to either brief online MT (experimental) or progressive muscle relaxation 
(PMR, control), lasting 4–6 days. A custom website conducted randomisation, delivered interventions, administered 
questionnaires, and objectively tracked adherence. At T1 and T2, participants drove in a simulator and indicated MW 
whenever they noticed it, to assess meta-awareness, and when prompted by a thought-probe, to assess overall MW. Results 
showed that MT reduced MW while driving in simulation. Adherence and attrition did not differ significantly between 
interventions, but MT participants reported greater difficulty following instructions. Results support reduction in MW as 
a mechanism by which MT may reduce crash risk in young drivers. This preliminary evidence, alongside encouraging 
online adherence and acceptability data, may warrant definitive efficacy and effectiveness trials of online MT. 
 

1. Introduction 
Young drivers, aged 16-25, are overrepresented in 

road traffic crashes (World Health Organization, 2018). 
Driver distraction is a leading contributor to crashes in this 
population (Guo et al., 2017). Mind wandering (MW), a form 
of distraction involving off-task thoughts, is linked to crashes 
(Galéra et al., 2012) and, in some cases, unsafe driving (e.g., 
speeding)(Yanko & Spalek, 2014). Hence, there is a need to 
address this potential threat to young drivers. 

Mindfulness training (MT) may protect young drivers 
from MW. MT involves, “paying attention in a particular way: 
on purpose, in the present moment, and non-judgementally” 
(Kabat-Zinn, 1994, p. 4). Brief MT, lasting four sessions, can 
reduce MW in attention tasks (Rahl et al., 2017). Thus, brief 
MT may reduce MW while driving. MT may also increase 
reflexive awareness, or meta-awareness of MW (Brandmeyer 
& Delorme, 2021). Evidence suggests that meta-awareness 
may reduce MW-related unsafe driving (Albert et al., 2018; 
Cowley, 2013). Therefore, these mechanisms of MT may 
reduce crash risk, but they have yet to be explored in the 
driving context. 

Delivering MT online is now commonplace (Gál et al., 
2021). Online MT is relatively inexpensive and logistically 
simple to deploy (Andersson & Titov, 2014; Boggs et al., 
2014). It also increases accessibility by minimizing travel and 
scheduling constraints (González-García et al., 2021). Low 
acceptability, adherence, and retention, may plague online 
MT, however (Mrazek et al., 2019), but these essential 
feasibility metrics have yet to be assessed in young drivers. 

This pilot trial examined two mechanisms by which 
MT may reduce crash risk. It was hypothesized that MT: H1) 
increases meta-awareness; and H2) reduces MW while 
driving. This pilot also clarified the feasibility of brief online 
in terms of acceptability and adherence. Results may support 
future definitive trials. 

2. Method 

2.1 Participants and recruitment 
Twenty-six healthy drivers aged 21–25 were recruited 

via social media and classified ads. Inclusion and exclusion 
criteria are listed in Table A.1 (see Appendix A). Screening 
took place online. Participants were compensated $60 CAD. 
The Douglas Mental Health University Institute Research 
Ethics Board (IUSMD-19-10) approved all procedures. 

2.2 Study design 
This pilot trial used a pre-post (T1, T2), randomised, 

placebo-controlled, double-blinded design. Participants were 
randomly assigned to one of two brief online interventions: 
Mindfulness Training (experimental); or Progressive Muscle 
Relaxation (PMR; control). A custom website conducted 
randomisation, delivered interventions, tracked adherence, 
and administered questionnaires.  

2.3 Brief Online Interventions 
Figure 1 shows a timeline of intervention and testing 

procedures. Participants were assigned one intervention 
session per day, over 4–6 days. Using the study website, 
participants completed one lab session at T1, 2–4 remote (at 
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home) sessions between T1 and T2, and one lab session at T2. 
Sessions involved 15 minutes of recorded audio instructions. 
The website administered post-session questionnaires. 

2.3.1 Mindfulness Training (experimental): 
Participants were instructed to: focus attention on breathing 
sensations; focus attention on other body sensations; notice 
and silently label thoughts as MW; and disengage from MW 
by re-focusing attention. Participants heard reminders and 
elaborations of these instructions throughout each session. 
Instructions were based on previous scripts (Rahl et al., 2017). 

2.3.2 Progressive Muscle Relaxation (control): 
Participants were instructed to: establish a slow, even breath; 
focus attention on particular muscle groups (e.g., arms and 
hands); notice and release tension. Participants were guided 
once through the whole body, then instructed to cycle through 
the various muscle groups on their own. Instructions were 
based on previous scripts (Feldman et al., 2010). 
 

2.4 Driving Simulation 
At T2 and T2, participants drove in a miniature 

University of Sherbrooke driving simulator (Brown et al., 
2017). Each drive lasted 30 minutes. Participants drove on a 
circular (1 km radius), single carriageway road (90 km/h 
speed limit). Participants encountered oncoming traffic and a 
series of trucks traveling at 65 km/h in the ongoing lane, 
which partially obscured the oncoming lane. Participants 
were told to drive normally, which could include overtaking. 

2.5 Outcome Measures 

2.5.1 Mind Wandering: 
Thought probes measured MW in both drives. Probe-tones, 
presented every 30–90 seconds, prompted participants to 
press one of two steering wheel buttons to indicate MW or 
focused driving. Probe-caught MW includes meta-unaware 
MW (Schooler et al., 2011). MW responses over total probes 
operationalized MW (Smallwood & Schooler, 2015). 

2.5.2 Meta-Awareness: 
Participants were instructed, in both drives, to press the MW 
steering wheel button whenever they caught themselves MW. 
Self-caught MW reflects meta-aware MW. Self-caught MW 
rates, after controlling for probe-caught MW, operationalized 
meta-awareness (Zanesco et al., 2016). 

2.6 Feasibility Measures 

2.6.1 Acceptability of Interventions: 
Per-session rates of positive and negative experiences, 
enumerated from participant descriptions in post-session 
questionnaires, measured acceptability for each intervention. 

2.6.2 Adherence to Interventions: 
Website playback logs objectively measured adherence. 
Completed sessions over remote-session days, calculated by 
sample and group, adjusted for variation in remote-session 
days (based on scheduling). 

3. Results 
Participant demographic information can be found in 

Table A.2 (see Appendix A). Results for MW and meta-
awareness are shown in Table 1. Comparing ∆T MW between 
groups revealed a significant difference. Only the MT group 
reported a significant decrease in MW. There was no 
significant between-group difference in ∆T meta-awareness. 

Table 1 Results for Mind Wandering and Meta-awareness 

H Variable 
Contrast 

z B p 
Group Time 

H1 MW MT-PMR T2-T1 -2.36 0.35 .01 
  MT T2-T1 -2.33 0.45 .02 
  PMR T2-T1 0.86 1.27 .39 
H2 Meta MT-PMR T2-T1 1.19 1.42 .12 
Note. One-tailed contrasts yielded betas reflecting odds ratios 
from logistic mixed models of MW (H1), and rate ratios from 
Poisson mixed models of self-caught MW, or Meta (H2). 

 

Figure 1. Timeline of procedures. 
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Regarding acceptability, rates of negative experiences 
differed significantly between groups, z = 3.35, p = .001, RR 
= 5.16. There were 25 negative experience reports over 31 
descriptions among MT participants, and 5 over 32 among 
PMR participants. MT participants reported more difficulty 
following instructions. Positive experience rates did not differ 
significantly between groups. 

Regarding adherence, participants completed 67.2% 
(43/64) of assigned remote intervention sessions. Adherence 
was 58% (18/31) in the MT group and 75.8% (25/33) in the 
PMR group. Overall, 19% (5/26) of participants were lost to 
follow-up (T2). Attrition was 30.8% (4/13) in the MT group 
and 7.69% (1/13) in the PMR group. Neither adherence nor 
attrition differed significantly between groups. 

4. Discussion 
As hypothesized, MT reduced MW while driving. In 

previous studies, online MT reduced MW in attention tasks 
(Bennike et al., 2017; Levinson et al., 2014). Our results 
suggest that online MT may also reduce MW while driving. 
This finding, in conjunction with recent evidence for fewer 
crashes in simulation following MT (Baltruschat et al., 2021), 
signals its promise for reducing MW and its potential 
consequences in real-world driving. 

Results for meta-awareness were inconclusive. MT is 
proposed to cultivate meta-awareness that is sustained and 
non-propositional, reflecting continuous monitoring of 
thoughts (Dunne et al., 2019). Self-caught MW, which relies 
on intermittent, propositional judgements of one's mental 
state (e.g., "My mind is wandering!")(Schooler, 2002), may 
be insensitive to meta-awareness from MT. Using other 
measures of meta-awareness may clarify its role in MT 
effects on driver attention and behaviour. 

MT was associated with more negative experiences in 
sessions than PMR. MT participants reported more 
difficulties, with statements such as, "I found it more difficult 
to...pay attention to the physical sensations in my body when 
there were longer periods of silence." MT practitioners may 
become frustrated or discouraged by frequent MW. This 
might explain why attrition is higher in MT compared to 
control conditions (Nam & Toneatto, 2016). Exploring 
methods to minimize frustration may boost retention in MT. 

Intervention groups did not differ in attrition. Large 
group differences in attrition can indicate poor blinding 
(Hróbjartsson et al., 2014), variable intervention credibility 
(Alfonsson et al., 2016), and other confounds. Overall 
attrition in the present study was 19.2%, whereas average 
attrition across several in-person MT trials was found to be 
29% (Nam & Toneatto, 2016). Future trials may identify and 
leverage features of online MT that contribute to higher 
retention of young drivers. 

Intervention groups did not differ in adherence. 
Overall, 57.7% of participants completed all assigned 
sessions (ranging from 2–4). Forbes and colleagues (2018) 
reported 73.5% adherence to 4 sessions (out of 10 assigned, 
over 30 days, 10 minutes each). Low-intensity interventions 
(e.g., short, infrequent sessions) generally yield better 
adherence (Levensky et al., 2006), but high-intensity MT may 
be more effective (Strohmaier, 2020). Examining potential 
adherence costs and effectiveness benefits of different 
regimens may optimize MT for young drivers. 

5. Conclusion 
This study demonstrated a reduction in MW while 

driving from MT. This finding supports a mechanism by 
which MT may reduce young driver crash risk. Overall, this 
pilot trial reveals MT to be a feasible and compelling 
candidate for future definitive trials. 
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Appendix A 

Table A.1 Inclusion and Exclusion Criteria 

Criterion Measure 
Inclusion  
1. Aged 21–25 Self-report 
2. Valid driving license Self-report, lab verification 
3. Normal or corrected 

vision and hearing 
Self-report 

4. One or more years of 
independent driving 

Self-report 

Exclusion  
1. Diagnosed neurological 

or psychiatric disorder 
Self-report 

2. Generalized Anxiety 
Disorder symptoms 

Total score > 10 on the 
Generalized Anxiety 
Disorders Questionnaire 
(Spitzer et al., 2006) 

3. Depression symptoms Total score ≥ 14 on the Beck 
Depression Inventory II 
(Beck et al., 1996) 

4. Alcohol Use Disorder 
symptoms 

Total scores ≥ 2 on items 4 
and 6 of the Alcohol Use 
Disorders Questionnaire 
(Saunders et al., 1993; 
Johnson et al., 2013) 

5. Drug Use Disorder 
symptoms 

Total scores ≥ 2 on items 6 
and 8 of the Drug Use 
Disorders Questionnaire 
(Berman et al., 2003; 
Hildebrand, 2015) 

6. Previous charge of 
driving while impaired 

Self-report 

7. Meditation experience Self-reported meditation 
practice ≥ once per week in 
the past 6 months 

8. Personal or family history 
of Psychosis or 
Schizophrenia  

Self-report 

9. Prodromal symptoms Total score ≥ 6 on the 
Prodromal Questionnaire 
(van der Gaag et al., 2012) 

10. Propensity to 
hyperventilate 

Self-report 

11. Psychological trauma, 
recent bereavement, or 
personal crisis 

Self-report 

12. Detectable blood alcohol Alco-Sensor IV at lab 
13. Simulator sickness Self-report following practice 

drive in simulator 
Note. Exclusion criteria: 1–7 controlled for factors affecting 
MW (Chen et al., 2019; Sayette et al., 2010; Smallwood, 
2013); 8–11 minimized adverse effects from the 
interventions (Banks et al., 2015; Bernstein et al., 2007); 12 
and 13 controlled for factors affecting driving behaviour. 

 

Table A.2 Sample Demographics by Intervention 

Variable MT 
(n = 13) 

PMR 
(n = 13) 

Age, M (SD) 23.8 (1.27) 22.7 (1.01) 
Sex, n male (%) 7 (53.9) 7 (53.9) 
Ethnicity, n (%)   

Other 10 (76.9) 7 (53.8) 
Caucasian 3 (23.1) 6 (46.2) 

Education level, n (%)   
Some university 8 (61.5) 10 (76.9) 
High school / college 4 (30.8) 3 (23.1) 
Missing 1 (7.70) 0 (0.00) 

Annual income, n (%)   
$6000 or more 7 (53.8) 8 (61.5) 
$0–$5,999 6 (46.2) 5 (38.5) 

Employment, n (%)   
Full-time studies  
+ part-time work 

7 (53.8) 5 (38.5) 

Full-time work or  
full-time studies 

4 (30.8) 6 (46.1) 

Other 2 (15.4) 2 (15.4) 
License type, n (%)   

Probationary 13 (100) 11 (84.6) 
Full 0 (0.00) 11 (84.6) 

Traffic violations, n (%)   
None 11 (84.6) 12 (92.3) 
One in past 2 years 2 (15.4) 1 (7.69) 

Note. College refers to Collège d'enseignement général et 
professionnel, in Quebec, Canada. Full-time work ≥ 35 
hours/week. Probationary licenses can be obtained at ≥ 17 
years of age, following 12 months with a learner's license in 
Quebec. Drivers may obtain a full license after 2 years with a 
probationary license. 
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Abstract: Driver monitoring is a crucial element for driving safety notably due to the large implementation 
of autonomous vehicles in the coming years. However, this monitoring must be rethought to adapt to new 
characteristics of such a mode. The purpose of this study is to examine the potential of associating postural 
and physiological information for monitoring drowsiness at the wheels. Twenty-two participants drove a 
static car simulator for 100 min in a monotonous environment, including 90 min in a level-2 autonomous 
mode. We measured physiological and behavioral indicators such as heart rate, respiration rate, eyelid 
movements (blink duration, frequency and PERCLOS) and body pressure distribution during the session. 
Psychomotor Vigilant Task-B (PVT-B) and Karolinska Sleepiness Scale (KSS) were also conducted before 
and after the driving session. Subjective perception of drowsiness was shown by a significant increase of 
KSS score between pre- and post-session measurements. Preliminary analyses of ocular data revealed large 
inter-individual variability in drowsiness level and timing during the session. Over half of the participants 
displayed high levels of drowsiness. Two participants were selected for further analysis. In these 
participants, elevated PERCLOS levels (> 50%) were correlated with decreased heart rate and center of 
pressure (COP) movements. Although further analysis needs to be performed, body pressure features could 
be a relevant information for the detection of drowsy driving. 
 

1. Introduction 
Drowsiness at the wheels, which can be 

considered as an inattention subcategory (Regan et al., 
2011), is a major cause of death on roads especially on 
highways since it represents one third of fatal death 
accidents in France (ONISR, 2019). Sleep debt, sleep 
quality (Maia et al., 2013) or time of the day (Horne 
& Reyner, 1995) are key contributors to the apparition 
of drowsiness at the wheels. Driving environments 
and particularly monotonous roads are also factors of 
vigilance decrement and may lead to the apparition of 
microsleeps (Larue et al., 2011; Thiffault & Bergeron, 
2003). Partial autonomous vehicles (i.e., level 2 & 3 
defined by SAE; SAE International, 2016) have been 
developed to take part of the driving tasks in such 
situations with the development of “Highway driver 
assist” functionality. Nevertheless, following the 
definition provided by SAE, although the driver will 
not control the lateral and longitudinal movements of 
the car, he/she has to maintain a cognitive awereness 
on the driving environment and intervene in any safety 
critical event to which the automation would not act 
properly (McWilliams & Ward, 2021).  

To make sure that the drivers could take-over 
their vehicle at any time, monitoring systems are used 
to detect altered states such as drowsiness. Nowadays, 
monitoring systems are mostly based on vehicular-
behavioral data (e.g., lane deviation, lane crossing and 
steering-wheel angle) and drivers’ facial information 
(e.g., gaze, blink, percentage of eye closure 
(PERCLOS); see Halin et al., 2021 for a review). 
However, since in autonomy mode car movements are 
mostly controlled by the vehicle itself and drivers may 

be engaged in non-driving related tasks (NDRTs), 
drivers will no longer be constantly facing the camera, 
making video monitoring irrelevant. New monitoring 
systems implementing alternative features must 
emerge. As an alternative to video systems, 
physiological data are increasingly being explored to 
detect drowsiness while driving, including the use of 
heart rate variability (Buendia et al., 2019; Fujiwara et 
al., 2019). However, Persson et al. (2020) 
demonstrated the difficulty to detect drowsiness based 
on this unique information during real car driving. 
Moreover, monitoring and recording heart activity in 
particular must interfere as least as possible with the 
driver’s activity and comfort, which is not compatible 
with classical methods using contact electrodes, and 
even wearable sensors. Other less invasive techniques 
should be preferred. 

The use of seat-based sensors (e.g., Wusk & 
Gabler, 2018) could be a solution to provide such a 
usable (non-invasive) and relevant driver monitoring 
system. In addition to supplying physiological data, 
driver's posture in the seat could be determined using 
pressure sensor matrices. However, little is known 
about seated posture and its potential link with 
drowsiness. In their study, Gwak et al. (2020) used 
data from the center of pressure (COP) distribution 
with a machine learning algorithm to detect 
drowsiness at the wheels and showed that this feature 
can be considered as promising. However, their 
algorithm also used eye data, which is known as the 
most relevant data for drowsiness detection 
(Schleicher et al., 2008). 

The primary objective of the present study was 
to explore the potential of drowsiness detection and 



35

 

2 
 

prediction by using body pressure features alone or 
coupled with physiological data. For that, we induced 
drowsiness during a prolonged automated driving 
session, with the aim of spotting features on 
physiological data and body pressure in relation with 
classical and already validated drowsiness indicators 
(eye aperture and movements). 

2. Material and methods 

2.1 Driving procedure  
Twenty-two drivers (12 females, 10 males) 

aged between 19 and 31 years old took part in this 
study using a static driving simulator at the 
Mediterranean Center of Virtual Reality. They all 
received information about the experiment and agreed 
to participate. An ethical committee (agreement 
IRB00012476-2020-15-07-63) approved the protocol. 
On the day of the experiment, the participants were not 
allowed to smoke or to drink coffee or tea. After being 
informed about the study and the setup, they 
discovered the simulator and the autonomous mode 
during a 15-min familiarization phase. Then the test 
session was conducted in a Level-2 of automation: in 
this mode, the drivers were not allowed to engage 
themselves to NDRT which could maintain the drivers 
alert. This session proceeded as follows: participants 
drove under manual mode for 5 minutes (M1) at the 
end of which the system sent a manual-to-autonomous 
request to activate the “Highway driver assist” 

function. On autonomous mode, all drivers had 
instructions to monitor the environment and to take-
over the vehicle as soon as possible when requested by 
a visuo-auditory signal. The run on autonomous mode 
lasted 90 min by alternating three phases: (i) 60 min at 
110 km/h without any traffic (NT1), (ii) 10 min of 
traffic-jam (TJ) and (iii) 20 min under the same 
conditions as the first one (NT2)(i). After that, a take-
over request (TOR) was sent and an obstacle on the 
road had to be avoided. Once the vehicle had been 
taken back, drivers had to continue the travel for 5 min 
under manual mode (M2). 

2.2 Data acquisition and processing 
During the session, physiological data (i.e., 

heart rate, respiration rate and electrodermal activity) 
were recorded by using a BIOPAC® system MP150 at 
500Hz. Body pressure distribution was recorded at 30 
Hz with two textile pressure sensor mats (XSENSOR® 
Technology) placed on the seat (36 x 36 sensor cells) 
and on the backrest (64 x 40 sensor cells). The 
coordinates of the COP of each sensor mat was 
calculated on line. Ocular data (PERCLOS, blinks ...) 
were recorded by using Drowsimeter R100 (Phasya®), 
which uses a machine learning algorithm to obtain a 
drowsiness score [0 - 10] at 1 Hz (François et al., 
2016). In addition, three video cameras were installed 
to record the participants (front, side, and feet). 

Vigilance tests were also conducted before and 
after the driving test by using Karolinska Sleepiness 

Figure 1 : Evolution of Drowsimeter R100 scores during the test session. Scores are averaged per minute for all 
participants. Mean value and standard deviation are represented by solid line. Dashed line represents the maximum 
value for each minute Autonomous driving regroups NT1, TJ and NT2 periods. M = Manual; NT = No Traffic; 
TJ = Traffic Jam. 
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Scale (KSS, Akerstedt & Gillberg, 1990) and the 
Psychomotor Vigilance Task-B (PVT-B, Basner et al., 
2011). 

Heart rate was extracted from the raw ECG 
signal using Neurokit2 Python toolbox (Makowski et 
al., 2021). COP movement was obtained by 
calculating the Euclidian distance between the (n-1)th 
COP and nth COP coordinates.  

3. Preliminary results  

3.1 Induction of drowsiness 
Since monitoring a monotonous and poor 

environment during a long period of automation is 
known to induce vigilant decrement and drowsiness 
(Körber et al., 2015), we hypothesized that the longer 
the period in autonomous mode, the higher the level 
of drowsiness reached. Figure 1 shows the evolution 
of drowsiness scores during the test session. Scores are 
averaged per minute for all participants. As depicted, 
the first automated driving condition (~60 min) 
induced high levels of drowsiness, with in average a 
maximum at 33 min of automated driving, while the 
third sequence of automated driving (~20min) induced 
moderate levels of drowsiness. However, a significant 
inter-individual effect was observed on the dynamics 
of drowsiness onset during the session, as illustrated 
by the maximum score of drowsiness achieved over 
the minute (Fig 1, dashed line). The detailed analysis 
of ocular data for all participants highlights that half 
of them display high levels of drowsiness (n = 11). 

Results of the KSS scores confirmed an effect in 
subjective drowsiness perception, as shown by a 
significant increase of KSS score between pre- (4.09 
± 1.27) and post-session measurements (6.55 ± 1.34) 
(p < 0.05). 

3.2 Physiological and postural analysis 
The temporal dynamics of physiological and 

behavioral data was analyzed to better understand the 
onset and occurrence of drowsiness episodes. Figure 2 
shows the evolution of PERCLOS, COP movement on 
the seat and mean heart rate from two participants over 
the session. In this figure, time periods with a high 
percentage of PERCLOS (> 50%; in red) correlate 
with a decrease in heart rate and COP movement. The 
analysis of front camera video confirms that these 
individuals were asleep at this time. Taken together, 
this information could be useful in detecting sleepy 
drivers in autonomous mode. However, further data 
analysis should be performed to examine the early 
stages of drowsiness. 

4. Conclusion 
Preliminary results confirm that long durations 

of autonomous driving can induce high levels of 
drowsiness on monotonous roads in drivers. 
Furthermore, these preliminary results tend to show 
the interest of using postural information coupled with 
physiological information to detect drowsiness while 
driving. However, further analysis is needed to 
determine whether this kind of result can be 

Figure 2 : Temporal dynamics of PERCLOS, COP movement on the seat cushion and heart rate during the test session 
for two participants. Zone in red represents periods with high-level of drowsiness (PERCLOS > 50%). Autonomous 
driving regroups NT1, TJ and NT2 periods. M = Manual; NT = No Traffic; TJ = Traffic Jam. 
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generalized across all participants who felt asleep, but 
also to determine the correlation with earlier stages of 
drowsiness. 
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Abstract:  According to the National Highway Traffic Safety Administration, 3142 people were killed in motor vehicle 
crashes involving distracted drivers in 2019. Naturalistic driving datasets (NDD) have been widely used to study 
distracting activities while driving, with the aim of improving road safety. However, the time required to annotate videos 
to identify distracting activities is a major issue for research using NDD. Although full automation of the annotation 
process is not possible, the use of image classifiers is a way forward to hasten the classification of distractions and therefore 
the analysis of NDD. This paper presents the results obtained by applying image classifier to the publicly available 
Distracted Driver Dataset (DDD) and a sample of frames extracted from the EuroFOT and DriveC2X dataset. The results 
show that using ResNet-50 pretrained on Imagenet and Stylized Imagenet produces the highest accuracy on both DDD 
and our EuroFOT and DriveC2X datasets. The accuracy of the image classifier will now be tested on a different sample 
of the Swedish EuroFOT dataset, before using the image classifier for detecting distracting activities in other NDD. The 
faster identification of distracting activities will considerably hasten the future analyses of NDD. 
 

1. Introduction 
According to the National Highway Traffic Safety 

Administration (NHTSA) (National Highway Traffic Safety 
Administration, 2022), 3142 people were killed in motor 
vehicle crashes involving distracted drivers. Research on 
distraction has largely benefit from the analysis of 
Naturalistic Driving Data (NDD) in the last 15 years (for 
some examples, see Hickman & Hanowski, 2012; Klauer et 
al., 2006; Victor et al., 2015). However, one of the main 
concerns associated to the use of NDD is the time intensive 
and costly process of video reduction to extract variables 
from the videos. The complete automation of this process is 
hindered by different factors, such as the poor quality of 
videos and the lighting conditions. However, efforts have 
been conducted to perform video reduction of NDD through 
computer vision algorithms (see, for example Kuo et al., 
2014).  

Recently, Eraqi et al. (2019) made public the 
Distracted Driver Dataset (DDD) which provides images 

exemplifying driver distraction behaviours especially related 
to phone usages such as phone talking/listening right, phone 
talking/listening left, texting right, and texting left (see Fig. 
1). Eraqi et al. (2019) also applied Convolutional Neural 
Networks (CNNs) to perform image classification on DDD, 
with good preliminary results (81.69% using ResNet-50). 

 Convolutional Neural Networks (CNNs) are 
commonly thought to recognise objects by learning 
increasingly complex representations of object shapes. 
However, some recent studies suggested a more important 
role of image textures instead. Geirhos et al. (2019) has 
shown that CNNs pretrained by ImageNet (Deng et al., 2009) 
are strongly biased towards recognising textures rather than 
shapes, which is in stark contrast to human behavioural 
evidence and reveals fundamentally different classification 
strategies. Therefore, they further showed that a CNN can 
benefit from learning shape-based representation when 
trained on ‘Stylized ImageNet’, a stylized version of 
ImageNet. This is created by performing AdaIN style transfer 
(Huang et al., 2017) on the whole ImageNet dataset. Fig. 2 

Fig. 1.  Different driver’s distracting activities from Distracted Driver Dataset 
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shows that the texture of the objects is no longer highly 
predictive of the target class, while the global shape tends to 
be retained. In this way, the texture and the shape of the 
objects are disentangled such that a CNN can be induced to 
learn from the shape instead of the texture. 
 

 
Fig. 2.  Visualisation of Stylized-ImageNet. Leftmost image: 
randomly selected ImageNet image of ring-tailed lemur. 
Others: neural-style-transferred counterparts where the 
texture cues are no longer highly predictive. 

 
Overfitting and over-confidence are two major issues 

that easily arise when training CNNs. There are several 
regularization techniques in deep learning to address the 
former. For example, weight decay, early stopping, and 
dropout are some of the most popular ones. For the latter, 
model calibration such as temperature scaling (Guo et al., 
2017), a single-parameter variant of Platt Scaling (Platt 1999), 
is proven to be effective. Label smoothing (Rafael et al., 2019) 
is a regularization technique that perturbates the target 
variable to make the model less certain of its predictions. It is 
viewed as a regularization technique because it restrains the 
largest logits fed into the softmax function from becoming 
much bigger than the rest. Moreover, the resulting model is 
found to be better calibrated. Therefore, the reason that label 
smoothing stands out is that it can deal with both issues at the 
same time. In recent years, image classification has been 
significantly improved by CNNs, such as Alexnet 
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015), 
VGG16 (Simonyan et al., 2015) and the powerful ResNets 
(He et al., 2016). These models kept pushing the limit of 
ImageNet Classification by providing better CNN structure. 
Then, the weightings of these models can be the initial values 
on a new problem in terms of transfer learning. i.e., a better 
pretrained CNN is helpful for the subsequent finetuning task 
such as driver distraction classification. In other words, the 
better the backbone, the higher the classification performance 
on DDD, EuroFOT, and Drive C2X. Label Smoothing 
(Rafael et al., 2019) is a regularization technique that 
introduces noise for the labels. This accounts for the fact that 
datasets may have some mistakes in them, so maximizing the 
likelihood of log p(y|x) might result in over-fitting. Assume 
for a small constant ϵ, the target value of the training label y 
is 1−ϵ and ϵ/k−1 for the target class and others, respectively.  
i.e., the original target value of each class is 

𝑃𝑃𝑖𝑖 = {1, 𝑖𝑖 = 𝑦𝑦,
0, 𝑖𝑖 ≠ 𝑦𝑦.                                                                            (1) 

After label-smoothing, they become 

𝑃𝑃𝑖𝑖 = { 1 − 𝜖𝜖, 𝑖𝑖 = 𝑦𝑦,
𝜖𝜖/(𝑘𝑘 − 1), 𝑖𝑖 ≠ 𝑦𝑦.                                                             (2) 

Therefore, for cross-entropy loss 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −∑ 𝑝𝑝𝑖𝑖𝑙𝑙𝐿𝐿𝑙𝑙𝑞𝑞𝑖𝑖𝑘𝑘
𝑖𝑖=1 ,                                                      (3) 

the loss corresponding to each class is 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = {(1 − 𝜖𝜖) ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑖𝑖 = 𝑦𝑦,
𝜖𝜖 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑖𝑖 ≠ 𝑦𝑦.                                          (4) 

This paper aims to present the results of applying state-of-the-
art image classification techniques to two naturalistic driving 
datasets, to identify and categorize driver distraction tasks.  

2.  Method 
As mentioned, image classification techniques were 

applied to two datasets: the DDD and a data sample extracted 
from the two European NDD collections EuroFOT 
(https://www.eurofot-ip.eu/) and Drive C2X 
(https://cordis.europa.eu/project/id/270410). 

The authors downloaded the DDD from the website 
https://heshameraqi.github.io/distraction_detection. The 
dataset is split into training and validation sets and includes 
labelling of the distraction activities in the different frames 
(see Fig. 1), The labelling was used in this work as a ground 
truth for the classification algorithm. Both datasets (DDD and 
EuroFOT+Drive C2X) were split in training and validation 
sets, as indicated in Table 1 and Table 2, respectively. 
Initially, different image classification techniques were 
applied to the DDD.  
 
Table 1 Number of training and validation frames for each 

distraction activity in Distracted Driver Dataset 
Class and images Training Validation 
Safe Driving 2640 346 
Phone Right 1505 213 
Phone Left 1062 194 
Text Right 945 180 
Text Left 1150 170 
Adjusting Radio 953 170 
Drinking 933 143 
Hair or Makeup 891 143 
Reaching Behind 898 146 
Talking to Passenger 1579 218 

 
Table 2 Number of training and validation frames for each 

distraction activity in EuroFOT and Drive C2X sample 
Class and images Training Validation 
No activities 169213 200432 
Interaction with passenger 1244 504 
Talking or singing 18106 732 
Reaching for an object 19232 8046 
Interaction with center stack 6836 3439 
Eating/Drinking 4975 2784 
Hands-face interaction 29847 19598 
Reading 1920 1058 

 

In this work, we use ResNet-50 for performing distraction 
recognition on both datasets. 

3. Results 
Our experimental results were mainly done by using 

ResNet-50 pretrained on ImageNet and Stylized ImageNet. 
Fig. 3 shows a sample image of the stylized DDD which 
presents the same image transformed by different style 
images. When we mix original DDD and stylized DDD, as 
can be seen in Table. 3, the accuracy is further boosted. 
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Besides, label smoothing is also quantitative beneficial in all 
cases.  

The image classification technique which had very 
good performance for the DDD (88.05% see Table 3) was 
also applied to the labelled dataset obtained from the projects 
EuroFOT and Drive C2X. The resulting accuracy was 
84.72%. 

 
Fig. 3.  Visualisation of Stylized-DDD 

 
Table 3 ResNet-50 results on Distracted Driver Dataset  

Pretraining Finetuning Label 
smoothi

ng 

Accuracy 

ImageNet DDD No 81.695% (Eraqi 
et al., 2019) 

ImageNet DDD Yes 86.95% 
ImageNet + 
Stylized-
ImageNet 

DDD 
 

Yes 
 

88.05% 

ImageNet + 
Stylized-
ImageNet 

DDD+ 
Stylized-

DDD 

Yes 89.01% 

ImageNet + 
Stylized-
ImageNet 

EuroFOT Yes 84.72% 

4. Discussion and conclusions 
In this work, we explored the idea of applying neural-

style transfer, to identify different distracting activities from 
images. The results show that ResNet-50 trained by ImageNet 
and Stylized-ImageNet can boost the performance on the 
target task. For DDD, we found that mixing DDD and the 
Stylized-DDD together with label smoothing can achieve the 
highest performance (7.306% higher accuracy over the 
results reported by Eraqi et al. (2019), using the same CNN). 
For our EuroFOT and Drive C2X datasets, we also found that 
the same model leads us to very competitive results. Both 
results clearly show that our image classifier works well on 
staged and real-driving datasets.  

The next step is to validate the image classifier using 
a larger sample of the EuroFOT dataset. This sample will 
contain frames extracted from videos recording drivers who 
were not included neither in the training nor in the validation 
sets presented in Table 2. Based on the results of the 
validation, further developments of the image classifier might 
be required. Once the image classifier has reached the highest 
possible accuracy, analyses of naturalistic driving dataset 
involving distracting activities (see Ismaeel et al. [2020]. 

Morgenstern et al. [2020] and Tivesten et al. [2014] for some 
examples of this type of analyses) will be significantly 
hastened, due to less time dedicated to manual annotations. 
Furthermore, the use of this image classifier will enable 
analyses that were previously discarded due to the 
overbearing effort required for data reduction by manual 
annotations. 
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Abstract: Posture monitoring of vehicle drivers has a wide variety of applications, e.g., the detection of driver distraction 
and the identification of driver seated position, which can be integrated into automotive systems to improve active and 
passive safety. In spite of the advancement in sensing technologies and artificial intelligence, the research on the posture 
estimation better suited to in-car applications is far behind, partly because of lack of posture datasets with complete and 
accurate data annotations. To facilitate the progress into more realistic driver posture monitoring, this paper presents a 
large in-vehicle driver posture dataset called AutoConduct. The raw data, measured by 3 depth cameras and 2 pressure 
pads, were collected on a laboratory mockup from 23 drivers performing 42 activities including driving and non-driving 
related tasks. The ground truth driver postures were reconstructed from markers attached on the body measured by a 
motion capture system. The measurements from different sensors were temporally synchronized and spatially aligned. 
The data augmentation pipeline, based on computer graphics techniques, allows automatic generation of a great number 
of synthesized images with 2D and 3D annotations. With help of this dataset, several learning algorithms were tested to 
estimate the 3D skeleton including the position of head, trunk, arms, shanks and feet from the measurements of depth 
cameras or pressure sensors. The proposed monitoring functions demonstrated that the proposed framework could be 
used to develop more performant driver posture monitoring systems useful for the detection of driver distraction. 
 

1. Introduction 
Driver distraction has been reportedly regarded as one 

of the influential contributing factors of road traffic accidents 
(Beanland et al., 2013; Née et al., 2019). With the 
development of driving automation, counter-measures of 
driver distraction remain as important as ever, because 
current automation technologies potentiate out-of-the-loop 
problems if the driver is engaged in non-driving related tasks 
(Lee et al., 2021; Lu et al., 2016; Yoon & Ji, 2019). A Driver 
Posture Monitoring System (DPMS) can provide 
fundamental information for evaluating driver’s attention 
(Deo & Trivedi, 2019; Hu et al., 2020; Venturelli et al., 2017; 
Xing et al., 2017). In addition, the tracking of driver body 
locations can be used to modulate the collision response of 
restraint systems for better protection (Filatov et al., 2019). 

Although a vast body of vision-based DPMS have 
been proposed (Wang et al., 2019), the performance of these 
systems remain limited because of the challenges present in 
this context such as the close proximity between body and 
vehicle interior, body occlusions and suboptimal camera 
placement. The research is further delayed by lack of in-
vehicle posture datasets required by the supervised posture 
learning models. 

Recently, the creation of in-vehicle driver posture 
datasets has become a trending topic (Borges et al., 2021; 
Borghi et al., 2017; Feld et al., 2020; Roth & Gavrila, 2019), 
because the datasets allow the direct comparison of different 
methods with state of the art and stimulating research 
community. Nevertheless, the existing datasets are subject to 
the incompleteness of data annotations and body part 
coverage. In addition, few datasets are publicly available. 

In order to develop robust driver posture monitoring 
systems, we present a novel framework to create a well-
structured and extensive in-vehicle dataset, named 
AutoConduct. Based on this dataset, several monitoring 
functions are proposed and tested. 

2. AutoConduct dataset 

2.1 Data collection  
Twenty-three drivers (11 females) with different age, 

height and BMI were asked to perform 42 driving and non-
driving related tasks on a mockup. These tasks were extracted 
from previous studies (Dingus et al., 2006; Naujoks et al., 
2018) to cover a range of in-vehicle posture variations. A 
detailed list of these tasks can be found in Zhao et al., (2021a) 

Fig. 1. Real data collected from experiment 
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The postural measurement (Fig. 1) was composed of 
multiple image flows from three depth cameras placed at 
different positions and body pressure distributions from two 
Xsensor pressure mats on seat pan and backrest. Meanwhile, 
the driver motion was recorded by an optical motion capture 
system VICON. Measurements from different sensors were 
electronically synchronized.  

2.2 Data processing  
Driver motions recorded by VICON system were 

reconstructed using RPx (Monnier & Wang, 2009), where the 
body posture was represented by joint angles or 3D joint 
positions and served as ground truth. Standard calibration 
method (Zhang, 2002) was performed to obtain the intrinsic 
and extrinsic parameters of each depth camera. Then we 
converted the depth images to point clouds which were then 
aligned with the reconstructed ground truth posture in the 
same world coordinate system, as shown in Fig. 2. 

Fig. 2. Spatial alignment between point clouds from depth 
cameras and ground truth posture from VICON 

2.3 Data augmentation 
Inspired by previous studies (Cruz et al., 2020; 

Martinez-Gonzalez et al., 2020; Shotton, 2011), we 
established a pipeline using computer graphic techniques to 
enrich driver posture data samples for machine learning or 
deep learning algorithms (Zhao et al., 2020). The basic idea 
was to animate rigged virtual human characters with realistic 
external envelopes including skin, clothes, hair and 
predefined body part labels using reconstructed motions (Fig. 
3). This allowed us to synthesize artificial images by 
rendering and meanwhile provides ground truth labels 
including body part segmentations and 3D skeleton. 

2.4 AutoConduct vs state-of-the-art 
Using the proposed framework, the AutoConduct 

dataset created in the present work consisted of two sets: real 

data and synthetic data. The real data included ~130K frames 
of postural measurement including images and pressure 
distributions along with true driver postures. The synthetic 
dataset consisted of ~12 million data frames generated in a 
simulated in-vehicle scenario. Each frame included images 
and annotations. 

In terms of the real dataset, the main advantage over 
the others (Borges et al., 2021; Borghi et al., 2017; Feld et al., 
2020) is the availability of accurate ground truth postures in 
addition to the postural measurement covering the whole 
body, which enables the accuracy evaluation of posture 
estimation models and allows for investigations of posture 
monitoring approaches. Furthermore, the inclusion of body 
pressure distributions may be of help to provide 
complementary cues for robust posture monitoring. 

Regarding the synthetic dataset, the proposed data 
generation pipeline allows one to automatically introduce 
variability in human shapes, body pose, background and view 
point configurations. Compared to the traditional data 
annotation and augmentation strategies (Torres et al., 2019; 
Yuen & Trivedi, 2018), the annotation labels can be 
automatically obtained almost for free, allowing one to scale 
up supervised learning to large scales. 

3. Monitoring functions 

3.1 Vision-based monitoring 
3D body pose estimation: As opposed to 2D body 

pose, 3D pose facilitates understanding of driver activity, 
while the estimation of driver’s 3D body pose is rarely 
investigated. Inspired by previous studies (Cao et al., 2019; 
Shotton et al., 2013), we proposed a posture estimation model 
based on body part localization and offset joint regression to 
extract 3D upper-body joints using a depth camera Kinect v2. 
The model was retrained on the synthetic dataset and 
evaluated on the real dataset. To reduce estimation errors 
caused by model uncertainty and body occlusions, a data-
driven method (Plantard et al., 2017) was adapted to obtain 
more natural and more accurate driver postures. The 
percentage of the data frames with a predicted joint within 5 
mm from the ground truth was 91% on average across the 
upper-body joints. This monitoring function will allow one to 
accurately identify whether driver’s upper body is in normal 
position and whether driver’s hands are on the steering wheel. 

Head pose estimation: To predict the orientation and 
position of driver’s head, a feature-based method was 
employed. Specifically, 3D facial keypoints were first 
extracted from the images of a depth camera using OpenPose 
(Cao et al., 2019). Then a Random Forest regression method 
learned from the true driver head motions was proposed to 
infer the head pose based on the keypoints positions. The 
balanced mean errors were less than 11° and 2 cm 

Fig. 3. Augmentation of in-vehicle driver posture images along with body part segmentation labels and 3D skeleton 
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respectively for the head orientation and position in 96.3% of 
the cases. 

Shank pose estimation: The monitoring of driver’s 
lower limbs is useful for the detection of pedal errors such as 
pedal misapplication. To this end, a shank posture estimation 
model based on clustering analysis was proposed to extract 
key points from the point cloud in the leg room. Machine 
learning classifiers were trained on the shank keypoints to 
predict left positions and right foot positions with an average 
accuracy of 93% and 88%, respectively. 

The proposed monitoring functions were tested on a 
similar but different experiment setting, as shown in Fig. 4. 

Fig. 4. Estimation of driver’s posture using proposed vision-
based monitoring functions 

3.2 Pressure sensors based monitoring 
In addition to the vision-based methods, driver posture 

classification in terms of different trunk and feet positions 
based on pressure distribution features were systematically 
investigated (Zhao et al., 2021b). Results showed that 
pressure sensors embedded into driver seat could provide 
reliable postural classification especially for normal and 
abnormal trunk positions, implying that pressure sensors 
could serve as good supplementary to cameras. 

4. Conclusions 
In this paper, we presented a procedure to create an in-

vehicle driver posture dataset including data collection, 
processing and augmentation. The dataset showed advantages 
over existing ones regarding the coverage of body parts, data 
modalities, posture variations, the quality and completeness 
of data annotations. Based on this dataset, various monitoring 
functions were proposed to estimate driver’s full-body 
posture in 3D, which allows one to identify if driver’s hands, 
head, trunk and feet are in a non-driving position which may 
imply driver distraction. To the best of our knowledge, this is 
the first work that attempts to predict driver’s full-body 
posture in 3D while providing quantified errors. 

In the future, we will keep improving this procedure 
particularly the data augmentation pipeline. The synthetic 
dataset will be made open-access and more posture 
estimation models will be benchmarked on our dataset. 
Further effort is also needed to investigate the alignment 
between real in-vehicle data and the synthesized data. 
Another research direction is to explore sensor fusion 
methods to take advantage of multiple measurement inputs 
for better monitoring performance. 

The driver’s posture monitored by the proposed 
system could be a necessary input to improve passive safety 

systems. It could also provide postural information to 
evaluate driver’s distraction level. To this end, non-driving 
postures crucial to driving safety need to be classified and 
critical postural indicators useful for evaluating driver’s 
attention need to be identified. 
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We investigate the role of visuospatial environmental cues on driver (in)attention in everyday nat-
uralistic driving situations. We develop a cognitive model of visuospatial complexity incorporating
two critical aspects influencing visual (in)attention: (1) multimodal interaction mechanisms such as
gesture, joint attention amongst roadside stakeholders (e.g. pedestrians, cyclists, drivers); and
(2) visuospatial environmental features such as clutter, motion, environmental structure.

Our research emphasises the manner in which a cognitive human-factors guided model to analyse

attentiveness can be applied to systematically explore the effects of a combination of environmental

and interactional characteristics on visual attention in naturalistic driving. We position the application

of the developed cognitive model to serve a foundational purpose in the training and testing of novel

driver assistance technologies, e.g., from the viewpoint of systematic compliance with human-centered

design guidelines.

1 The Complexity of Naturalistic Driving

Everyday driving involves a number of complex
perceptual and cognitive tasks that contribute
to successful navigation in the streetscape,
cruising, overtaking, as well as in safe and ef-
ficient interactions with other street stakehold-
ers –such as pedestrians, cyclists, drivers– in
intersections of crossings. Human abilities to
acquire relevant information from the dynamic
environment, detect changes, track multiple ob-
jects, etc., which are necessary for coping with
a number of challenges during driving, are af-
fected by a plethora of environmental factors
(among other aspects). For instance, rapid
and frequent environmental changes in traffic
demand greater attention and more timely re-
sponses than a rural one way street (Beanland,
Filtness, and Jeans 2017). The range of envi-
ronmental aspects involved in the dynamic driv-
ing environment can be described through the
notion of environmental complexity, or by ac-
counting for human perceptual and cognitive
abilities, we use the notion of visuospatial com-
plexity.

The effect of visual complexity on human per-
ception has been studied in many areas, in-
cluding cognitive science, psychology, human-
computer interaction (e.g., Braun et al. 2013;
Pieters, Wedel, and Batra 2010; Tuch et al.
2009). However, the notion of visual complex-
ity remains elusive and several definitions have
been proposed, originally focusing on static im-
ages and later also referring to dynamic stim-
uli. Visual complexity has been broadly de-

fined as the level of detail and intricacy con-
tained within an image or a scene (Snodgrass
and Vanderwart 1980). Adjusted to the case of
real-word dynamic stimuli for everyday inter-
actions with the environment, we consider the
extended term of visuospatial complexity as the
combination of visual and spatial characteristics
that both coexist in dynamic naturalistic envi-
ronment where a person acts. Perceiving a vi-
suospatial stimulus as more or less complex has
been suggested to be influenced by several fac-
tors, including type and quantity of elements
contained, their spatial distribution or layout,
variety of colors, etc. (Palumbo et al. 2014).
Driving performance has been shown to de-
pend on visuospatial complexity, but also on
the complexity of the driving task, and other
factors that affect cognitive resources, such as
individual differences, fatigue, age, dual task
requests Doyon-Poulin, Ouellette, and Robert
2012; Smith and Evans 2013. Furthermore, pre-
vious studies on interpersonal communication
examining the relation between multimodal in-
teraction and cognitive load suggests that peo-
ple tend to utilise multimodal signals when cog-
nitive load increases due to task difficulty, com-
munication or environmental complexity Ovi-
att, Coulston, and Lunstord 2004.

2 Driver (In)Attentiveness:
Interactional and Environmental Factors

Visuospatial complexity is typically regarded to
have a negative effect on the perceptual system,
as it is mostly connected to “sensory overload”
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Figure 1: The taxonomy of cognitive attributes constituting visuospatial complexity and the metrics
of Human Performance.

that may impair cognitive function. There ex-
ists suggestive evidence that complexity impairs
perceptual sensitivity, as for example in the case
of multiple object tracking, where every addi-
tional moving object diminishes a participant’s
ability to track objects (Pylyshyn and Storm
1988). However, increased complexity might
improve perceptual sensitivity under some task
demands. Recent findings suggest that despite
increasing informational load, complexity can
serve to ground and facilitate perceptual sensi-
tivity (Ellis and Turk-Browne 2019).

To provide a holistic approach of visuospa-
tial complexity and its effects on visual
(in)attention during driving, we employ an em-
pirical basis for our complexity model. We anal-
yse 25 real-world driving scenes, with 75 inter-
action scenarios with street stakeholders (e.g.
crossing with gestures, overhead checking and
overtaking, joint attention by gaze or gesture
initiations) from 25 different locations world-
wide (e.g., Australia, South Korea, India, USA,
UK, China). Systematic qualitative and quan-
titative analysis of this set of dynamic driving
stimuli included semantic annotations of envi-
ronmental cues as well as the multimodal in-
teractions of interpersonal communication in
the street. This analysis also led to select in-
stances that we replicated in a virtual environ-
ment (VR) such that the instances overall en-
compass an entire spectrum of complexity lev-
els. A series of behavioural studies are then em-
ployed for the evaluation of a visuospatial com-
plexity scale based on human experience and
perceptual performance. Overall, the model in-
volves two sets of cognitive parameters (A & B;
Fig. 1):

A. Multimodal Interactions

To investigate aspects of visual attention dur-
ing driving, we need to consider the nature of
multimodal interactions between humans dur-
ing everyday events in the streetscape. Mul-
timodal interactions highly vary and they can
convey very different meanings depending on
the users involved (e.g. pedestrian, cyclist,
driver), their intentions, and activities in the
streetscape (e.g. stop, accelerate, turn, cross),
as well as the environmental and situational
context (e.g. scene complexity, demograph-
ics, culture). In essence, multimodal interac-
tions corrrespond to the characteristics of the
interpersonal communication between roadside
stakeholders focusing on the combination of
modalities involved, the mode and method of
delivering the message as well as the social at-
tention achieved between the parts (Kondyli
and Bhatt 2020).

B. Visuospatial Characteristics

We examine the range of complexity for visu-
ospatial stimuli based on the combination of
three categories of attributes pertaining to en-
vironmental characteristics: quantitative, struc-
tural and dynamic. Quantitative aspects refer
to the size of the space, the quantity and qual-
ity of the objects involved. Structural exam-
ines how the objects are positioned in space
(e.g. order, heterogeneity), while dynamic re-
fer to motion and various directions of moving
objects (Kondyli, Bhatt, and Suchan 2020). A
systematic analysis of different combinations of
attributes can provide a better understanding
of the aggravation or counterbalance dynamics
between the attributes and their effect on hu-
man behaviour. To empirically define a model
of visuospatial complexity for naturalistic envi-
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Figure 2: A conceptual illustration of the distribution of stimuli complexity in a dataset focussing
on safety-critical situations. Diverging complexity levels are analysed vis-a-via driver performance
parameters such as those in Fig. 1.

ronments, we use the taxonomy introduced in
Fig. 1) to develop a number of virtual envi-
ronments that differ on the combination of at-
tributes involved, as well as on the degree of
each attribute the environment contains.

3 Complexity of Human Performance

Driver (in)attention can be analysed vis-a-vis
the interactional and environmental character-
istics in (A) and (B) respectively, i.e., via corre-
lation with driver’s behaviour, perception, rea-
soning and decision making as captured via
behavioural and psychophysical measures dur-
ing embodied active driving tasks (in the real
world, or in VR) (Fig. 1). The evidence-
based performance parameters refer to a combi-
nation of behavioural (e.g. detection rate, reac-
tion time) and physiological measurements (e.g.
eye-tracking, head rotation, steering, breaking,
acceleration) of subjects during driving. In
a series of behavioural studies we investigate
the effect of environmental attributes, and mul-
timodal interactions in subjects’ performance
through naturalistic driving tasks focused on vi-
sual attention, such as visual search task, cog-
nitive load or predictions during active driving.
The results of the studies inform the cognitive
model about the combinations of aspects that
promote or aggravate performance, and further

help identifying the scale of complexity based
on empirical evidence under naturalistic condi-
tions. For instance, preliminary results on vi-
sual search during a driving task suggest that
structural cues can counterbalance the effect of
extensive clutter and limit the number of fixa-
tions indicating a medium level of complexity.

4 Human-centred Evaluation of
Driving Assistance Technologies

In the context of autonomous driving research
and the urban environment, evaluating a driv-
ing dataset (and AI system) with respect to
human-centred factors involves an analysis of
how well the range of different types of multi-
modal interactions as well as the levels of visu-
ospatial complexity can be successffully handled
or are represented in the instances of the dataset
(Fig. 2).
In addition to serving its crucial purpose as
an analytical tool for studying driver attentive-
ness, our empirically based model of visuospa-
tial complexity can be used as a basis for sys-
tematic analysis of various aspects of visual at-
tention during driving under naturalistic condi-
tions. From the viewpoint of characterising the
multi-faceted nature and complexity of every-
day (driving) situations, the proposed cognitive
model promises to centralise human factors as
a crucial aspect for the design, evaluation, and

3
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deployment of human-centred visual sensemak-
ing technologies within autonomous driving sys-
tems. (Suchan, Bhatt, and Varadarajan 2021).
Moreover, the model by including a range of
human-factors can provide a common reference
frame and guidelines for the training and test-
ing of datasets for autonomous systems that fo-
cus on human-human and human-machine in-
teractions. Furthermore, datasets that follow
the cognitive model of complexity can also be
part of a common platform for shared stimuli of
naturalistic driving environment and hence to
facilitate reproducibility in experimental work
and in empirical studies under ecological valid
conditions.
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Abstract: The European Rail Traffic Management System (ERTMS) will replace national standards with the aim to 
promote cross-border traffic and enhance efficiency. The transition involves a shift from lineside signalling to mostly in-
cabin information via a Driver Machine Interface (DMI). Previous research indicates that this may lead to a decrease in 
driver attention to the outside world and to a decrease in workload, leading to boredom. Using a train simulator, 41 
participants drove the same track with the ERTMS system and the Swedish national standard (ATC) while wearing eye-
tracking equipment. Subjective workload and boredom assessments were made after each drive. An analysis of the first 
set of reduced data (15 participants) showed that the formal attentional requirements like the monitoring of speed 
changes and signals were fulfilled in almost all cases, regardless of system. Overall, however, the data indicate that in 
line with previous research the drivers focus their attention more to the inside of the train when using the ERTMS 
system. This is corroborated by the finding that horn blowing is slightly delayed with the ERTMS system. Perceived 
workload was generally low, with the ERTMS system experienced to be more boring. We draw the preliminary 
conclusion that while formal attentional requirements are fulfilled for both systems, the ERTMS system likely has a 
tendency to pull the drivers’ overall attention inwards. Given that for the ERTMS system most relevant information is 
presented inside of the train on the DMI, this is not surprising, but needs to be addressed by the authorities.

1. Introduction
The European Rail Traffic Management System 

(ERTMS) is a set of standards for management and 
interoperation of signalling for railways by the European 
Union. ERTMS aims to promote cross-border traffic and 
enhance efficiency of train transports by replacing national 
signalling equipment and operational procedures with a 
European standard for train control and command systems.
The transition to the new ERTMS system involves a shift 
from lineside signalling to mostly in-cabin information 
provision via a Driver Machine Interface (DMI). Presenting 
most information via the in-cabin DMI instead of via lineside 
signalling will inevitably change the drivers’ visual 
information sampling behaviour. With ERTMS, events 
outside the cabin have been found to be attended less (Buksh, 
Sharples, Wilson, Morrisroe, & Ryan, 2013; Naghiyev, 
Sharples, Carey, Coplestone, & Ryan, 2014; van der Weide, 
De Bruijn, & Zeilstra, 2017). For example, van der Weide et 
al. (2017) found that the share of outside glances was reduced 
from 75% for lineside signalling to 40% for ERTMS. A clear 
DMI and increased automation can reduce perceived 
workload, whereas complex speed profiles and badly planned 
speed changes may cause problems. Decreased workload, to 
the point that it leads to boredom due to underload, has also 
been put forward as a potential risk.

In this study we investigate two different but related 
questions. Firstly, we assess if train drivers fulfil the formal 
criteria for attentive driving, that is, whether drivers sample 
the necessary information on speed changes, signals, and 
other relevant information, both when using ERTMS and 
when using a lineside signalling system (ATC). To this end, 

we employ the theory of Minimum Required Attention 
(MiRA, Kircher & Ahlstrom, 2017), which provides a 
framework for identifying formal attentional requirements 
and assessing if these requirements are met. Secondly, we 
investigate how the shift from ATC to ERTMS influences the 
drivers’ propensity to monitor the outside scene. Subjective 
workload data complement the findings.

2. Method
A train simulator study was conducted using a within-

subjects design with one ATC and three ERTMS conditions 
in counterbalanced order. The analoguous ATC system
provided speed information, signals and signage externally.
Speed information could also be obtained internally via the
dashboard. The digital ERTMS provided most information 
internally via the DMI (except external whistle boards,
indicating the obligation to blow the horn), with external 
signage and auditory information indicating where new 
internal information is given. Here, the ATC condition is 
compared with an ERTMS condition providing the same
speed profile.

2.1 Participants
All 41 participants (11 female; mean age 41 years)

were train drivers familiar with both ATC and ERTMS 
systems. On average the participants had 6.9 years of 
experience from train driving and 4.8 years of driving with 
ERTMS. Most of the participants (34) were drivers of 
passenger trains, five were freight train drivers, two drove
work train. As compensation the participants received 500 
SEK.
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2.2 Equipment and route
The simulator was a fixed-base mock-up of a 

Bombardier Regina EMU (X55) train cockpit (Thorslund, 
Rosberg, Lindström, & Peters, 2019). The route was a 
simulation of the main track at Ådal line, specifically the 
stretch between Ramvik and Dynäs containing a stop in the 
town of Kramfors. The route was 19 km long and driving one 
condition took approximately 15 minutes. The participants’ 
gaze direction was tracked with Pupil Labs Invisible glasses 
(Pupil Labs, Berlin, Germany). 

2.3 Procedure
The participants were given the chance to familiarise 

themselves with the simulator. They were then equipped with 
the eye tracker. The participants were instructed to drive at a 
normal pace without being overly cautious. After each 
condition the participants reported subjective workload on the 
NASA-RTLX (Hart, 2006) by rating their effort from very 
low to very high and by answering selected items of the 
Multidimensional State Boredom Scale (MSBS) with ratings 
from strongly disagree to strongly agree (Fahlman, Mercer-
Lynn, Flora, & Eastwood, 2013).

2.4 Analysis
Data from a 10 km long section were chosen for the 

analysis. This section contained three whistle boards
requiring the driver to sound the horn (external information 
in both conditions), several speed changes, signals of 
different types and one stop. For each of these items, a zone 
within which the corresponding information had to be 
sampled was identified. For example, for the whistle board
this zone started 100 m in front of the board and ended at the 
board. It was also identified how the relevant information 
could be obtained. For the whistle board, this was via 
glancing at the board, for speed information this could mean 
glancing at the speed sign (ATC) or the information on the 
DMI (ATC and ERTMS).

For each driver, we analysed whether the required 
information was sampled and from which source it was 
sampled. For the time it took passing two stationary 
oncoming trains and in the area around level crossings
(“critical phases”) gaze behaviour was coded glance by
glance, indicating the glance target.

3. Results
The results on visual sampling in this abstract are 

preliminary and based on 15 participants. A complete 
analysis will be available at the time of the conference. The 
results for sounding the horn are for all participants.

Even though the speed profile and the route were the 
same for both conditions, the number of attention 
requirements differed, because the convention how 
information is provided differs between systems. Per 
participant the number of requirements on the analysed track 
section were (ATC/ERTMS): whistle board 3/3; U-sign 1/1; 
signal, any type 20/11; speed information 10/7. 

3.1 Visual sampling
It was very uncommon for the drivers to miss visual 

sampling of relevant information as identified by the MiRA-

theory – this happened in only 11 cases out of 840 (4 ATC; 7 
ERTMS). In an additional 38 cases the required information 
was not sampled foveally, but probably with peripheral vision
(29 ATC; 9 ERTMS).

The glance distribution between the inside and outside 
of the train was analysed for the critical phases. With the ATC 
system, drivers spent 26 % of the time during a critical phase 
looking at the dashboard. For ERTMS this was 44 %. Glances 
towards the dashboard were longer on average for ERTMS 
(0.94 s vs. 0.76 for ATC), and they were 1.7 times as many.
Both the maximum duration for a single glance to the 
dashboard and the 85th percentile were larger for ERTMS 
(max: 5.5 s for ERTMS, 3.9 for ATC; 85th: 1.4 s for ERTMS, 
1.24 s for ATC). Significance testing will be done when all 
data are reduced.

3.2 Sounding the horn
Based on data from 45 runs, the horn was not blown at 

the whistle board on two occasions (one ATC, one ERTMS).
Overall, with ATC the horn was blown for the first time 
before the board was passed in 54% of the cases, with
ERTMS this happened in 45% of the cases. For the remaining 
cases the horn was blown after the board was passed (except 
the two times where it was not blown at all).

3.3 Workload/Mental load
The driving task was perceived as easy, as shown by low 

workload ratings in both conditions. The average RAW-TLX 
ratings were never higher than 34.8 on the scale from 0 (low 
effort) to 100 (high effort). On average, boredom was rated 
on the lower part of the scale for all questions except for “It 
was all repetitive and routine for me”, which had a mean 
value close to 5 (somewhat agree) on the scale from 1 
(strongly disagree) to 7 (strongly agree). According to one of 
the items in the MSBS, drivers felt more bored when driving 
with ERTMS, t(40) = 2.06, p = 0.046.

4. Discussion
The preliminary results indicate that while the formal 

attentional requirements as operationalised by the MiRA 
theory are fulfilled in almost all cases for both systems, the 
glance distribution in critical phases indicates that the 
ERTMS system likely has a tendency to pull the drivers’ 
overall attention inwards. This is corroborated by the 
operation of the horn, which shows a similar pattern. While 
the drivers rarely miss blowing the horn, they tend to act later 
in the ERTMS condition.

Given the location where most relevant information 
pertaining to driving the train is presented, this shift does not 
come as a surprise. If information is expected to be presented 
on the DMI, this is the natural place to monitor. However, 
unexpected and unpredictable events, especially critical ones, 
are more likely to occur outside. 

5. Conclusions
By design, the ERTMS system requires drivers to 

sample necessary information from the DMI, which has the 
concerning consequence that drivers are less likely to monitor 
the outside environment also in critical phases. This needs to 
be investigated further and addressed by system developers.



52

3

6. Acknowledgments
This research was funded by The Virtual Vehicle 

Research GmbH, InfraSweden 2030 - Solutions for 
sustainable transport infrastructure, and The Swedish 
Transport Administration. We would like to thank all 
participants for contributing with their time and insights.

References
Buksh, A., Sharples, S., Wilson, J., Morrisroe, G., & Ryan, 

B. (2013, 15-18 April 2013). Train automation and 
control technology – ERTMS from users’ perspectives. 
Paper presented at the Contemporary Ergonomics and 
Human Factors, Cambridge, UK.

Fahlman, S. A., Mercer-Lynn, K. B., Flora, D. B., & 
Eastwood, J. D. (2013). Development and Validation 
of the Multidimensional State Boredom Scale. 
Assessment, 20(1), 68-85. 
doi:10.1177/1073191111421303

Kircher, K., & Ahlstrom, C. (2017). Minimum Required 
Attention: A human-centered approach to driver 
inattention. Human Factors: The Journal of the Human 
Factors and Ergonomics Society, 59(3), 471-484. 
doi:10.1177/0018720816672756

Naghiyev, A., Sharples, S., Carey, M., Coplestone, A., & 
Ryan, B. (2014, 7–10 April 2014). ERTMS train 
driving - incab vs. outside: an explorative eye-tracking 
field study. Paper presented at the Contemporary 
Ergonomics and Human Factors, Southampton, UK.

Thorslund, B., Rosberg, T., Lindström, A., & Peters, B. 
(2019, June 17-20, 2019). User-centered development 
of a train driving simulator for education and training. 
Paper presented at the 8th International Conference on 
Railway Operations Modelling and Analysis 
(ICROMA 2019), Norrköping, Sweden.

van der Weide, R., De Bruijn, D., & Zeilstra, M. (2017). 
ERTMS pilot in the Netherlands – impact on the train 
driver. Paper presented at the International Human 
Factors Rail Conference, London, UK.



53

 

1 
 

The influence of alcohol and automation on drivers’ visual behavior during 
test track driving 
 
Emma Tivesten1,2*, Viktor Broo 1, Mikael Ljung Aust 1 

 
1 Volvo Cars Safety Centre, PV22, Göteborg, Sweden 
2 Chalmers University of Technology, Göteborg, Sweden 
*emma.tivesten@volvocars.com 
 
 

Abstract: Background: Driving under the influence of alcohol increases crash risk and is a major contributing factor to 
severe crashes. Method: A test-track study investigated the effects of alcohol intoxication on drivers’ visual behavior 
both when just driving and when engaged in secondary tasks. Twenty-six participants performed two drives: 1) sober 
baseline, 2) with a target Blood Alcohol Concentration at 0.1%. The participants drove in either manual, assisted, or 
autonomous drive (AD) mode. Results: Intoxication influenced glance behavior in all driving modes. It was most evident 
during visually demanding secondary tasks where it resulted in longer single and total off-path glance durations. 
Additionally, in manual mode, more than one out of four of the drivers displayed gaze concentration to the forward 
roadway when intoxicated. For sober driving, the difference in off-path glance durations between manual and assisted 
mode were moderate, while there was a huge shift towards long off-path glance durations in AD mode. This mode effect 
was further amplified by intoxication. Conclusions: Intoxication clearly effects drivers’ eyes on/off road glance behavior 
and can therefore be viewed as a promising indicator of alcohol intoxication. However, relatively refined metrics that 
account for both driving mode and secondary task engagement will be required to reliably distinguish sober from drunk 
driving. Still, driver monitoring systems that can measure eye movements in real-time can be used to detect driver 
impairment, and consequently be used for in-vehicle countermeasures. 
 

1. Introduction 
Drunk driving is a major contributing factor to fatal 

crashes (SNRA, 2020; NHTSA, 2017; WHO; 2007). Also, 
there is a well-established dose-dependent link between 
Blood Alcohol Concentration (BAC) and crash risk, that 
increases exponentially for BAC greater than 0.1% 
(Blomberg et al., 2009). 

Alcohol impairs skills necessary for safe driving 
(Garrisson et al, 2021; Ogden and Moskowitz, 2004; Martin 
et al, 2013), and affect driving performance metrics related to 
lane-keeping (Martin et al., 2013; Jongen et al, 2018). While 
visually demanding secondary tasks alone reduce driving 
performance (Irwing et al, 2015), the combined effect of 
alcohol and secondary tasks interact to further impair driving 
performance (Harrisson & Fillmore, 2011; Rakauskas et al, 
2008; Van Dyke and Fillmore, 2015). 

A new challenge is that performance degradation in 
lateral control can no longer provide viable impairment 
detection when driving becomes assisted, and the vehicle 
controls lateral position. Consequently, additional metrics to 
recognize driver impairment are needed.  

Here, a promising candidate is Driver Monitoring 
Systems (DMS) that include eye tracking. Alcohol 
intoxication leads to increased gaze concentration to the road 
center, fewer fixations to the peripheral areas, and longer time 
to read route signs (Belt, 1979; Moskowitz and Robinson, 
1988; Moskowitz and Ziedman, 1979). Lee at al. (2010) 
suggested that metrics that cumulate over time, including 
gaze concentration to the forward roadway, may be a suitable 
metrics to detect alcohol impairment. 

In the current study, we investigated drivers’ visual 
behavior during a sober baseline drive and compared it to a 
second intoxicated drive for three driver groups that were 

assigned to different driving modes (manual, assisted, 
autonomous drive (AD) mode) including segments with and 
without secondary tasks. 

2. Method 

2.1 Participants 
The participants (N=26; 17 male and 9 female; age: 

25-66 years, M=42.9, SD=12.5) were all moderate drinkers. 
They were divided into three groups assigned to manual 
(N=10), assisted (N=8), or AD mode (N=8).       

2.2 Test environment and equipment  
The study was performed in a rural road environment 

on a test-track. The test vehicle (TV) was a Volvo XC90, and 
speed was limited to 50 km/h. No other vehicles were present. 
A breathalyzer was used to estimate BAC. In assisted mode, 
test participants used the Pilot Assist function which performs 
both longitudinal and lateral control but requires supervision 
and hands on the wheel. AD mode was simulated by using the 
Pilot Assist function but with “hands-on-wheel”-reminders 
disabled. In AD mode, participants were allowed to 
disengage from driving but needed to remain available to take 
over if requested. A safety driver was present in the front 
passenger seat during all intoxicated drives and in AD mode. 

2.3 Procedure 
The participants practiced three visual-manual 

secondary tasks while seated in the stationary TV using the 
center stack display: 1) Tune the radio to a specific frequency, 
2) Dial your own mobile phone number, 3) Set the in-car 
temperature. 

The participants first performed a sober baseline drive. 
All participants drove manually the first 5 minutes, and then 
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in manual, assisted or AD mode for another 25 minutes. The 
secondary tasks were performed on straight road segments 
between 7 to 20 minutes into the drive. The baseline drive 
was followed by a drinking session to reach a target BAC of 
0.1%. A second drive while intoxicated was then performed 
repeating the baseline drive procedure.  

2.4 Data processing 
Four video segments were extracted for manual 

annotations from each drive (Table 1). Gaze direction was 
coded as time series data at 20 Hz and merged into three 
categories: on-path, off-path or unknown.    

 

Table 1 Selected segments including: instructed secondary 
tasks, the range of duration in seconds, and mode including 
Manual, Assisted, or AD mode. 

Segment Task Duration (s) Mode 
    
S1 No 30 M 
S2 Radio 12 – 54 M, A, AD 
S3 Dial. 11 – 114 M, A, AD 
S4 Temp. 6 – 32 M, A, AD 

 
 

2.5 Analysis 
The metrics PRC (percent road center) and GF-off 

(off-path glance frequency) were investigated for all 
segments.  Additionally, TGT (total glance time off-path), 
GD>2s (percentage of off-path glances longer than 2 
seconds), and MaxGD (maximum off-path glance duration) 
were investigated for the three task segments S2-S4.  

Wilcoxon signed rank test was used to compare each 
segment and metric during the intoxicated drive to the 
baseline. An accepted false discovery rate at 5% was applied 
to adjust for multiple testing (Benjamini and Hochberg, 1995). 

 
 

 

3. Results 
When just driving in manual mode, PRC increase when 

intoxicated. In segment S1 (manual, no task), there was a 
statistically significant effect of intoxication resulting in 
higher PRC and lower GF-off compared to baseline (Fig. 1, 
Table 2). Also, 27% of the drivers (n=7/26) showed gaze 
concentration to the roadway (PRC > 92%; Victor and 
Larsson, 2004) when intoxicated, while this was not present 
in baseline (n=0/26).  

On the other hand, both the median PRC and GF-off were 
consistently lower during secondary tasks (S2-S4) in the 
intoxicated drives across all modes. During secondary tasks 
there was also a consistent trend of higher median for all off-
path glance duration metrics (TGT, MaxGD, GD>2s) across 
all tasks and modes during intoxication. Fig. 2 illustrates the 
difference in off-path glance distributions between modes and 
drives. 

 
 
 
 

 

 
 

Fig. 1.  Boxplots of PRC for segment S1 (left panel) with no 
secondary task and segment S3 (right panel) with the 
dialling task.  Each panel shows BaseLine and INtoxicated 
drives, as well as driving modes (Manual, Assisted, AD). 

Fig. 2.  Cumulative frequency distributions for all off-path 
glance durations during the three task segments combined. 
Solid lines represent BaseLine, dotted lines represent 
INtoxicated drives. The grey scale represents Manual, 
Assisted, and AD modes. The total number of off-path 
glances for each curve is presented in the legend. 

 
The glance duration metrics were more sensitive in 

intoxication detection for the more visually demanding 
secondary tasks (i.e., Radio and Dialing, see Table 2). 
MaxGD was the most sensitive metric to detect intoxication 
during secondary tasks and consistently showed significant 
differences and high effect sizes between intoxication and 
baseline for all modes during the more demanding tasks 
(Table 2). TGT and GD>2s followed a similar pattern but 
with lower effect sizes.  
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Table 2 Overview of the results showing the comparisons 
that were statistically significant at 0.05 (*), 0.01(**), and 
0.001 (***) level, and indicating the effect sizes that were 
either moderate ( r = 0.31-0.49) or high ( r ≥ 0.50).  

Metric   Task Manual Assisted AD 
PRC S1 -       
[%] S2 Radio     
  S3 Dial.     
  S4 Temp.       
GF-off S1 -       
[N] S2 Radio      
  S3 Dial.      
  S4 Temp.       
TGT S2 Radio    
[s] S3 Dial.    
  S4 Temp.    
GD>2s S2 Radio    
[%] S3 Dial.    
  S4 Temp.       
MaxGD S2 Radio    
[s] S3 Dial.    
  S4 Temp.    

 
 

4. Conclusions 
This study investigated the effect of alcohol 

intoxication on drivers’ visual behavior with participants 
driving either in manual, assisted, or AD mode.  

Drivers glance behavior was influenced by 
intoxication in all driving modes. Intoxication increased PRC 
in manual mode when not performing a specific secondary 
task, which resulted in gaze concentration to the road in more 
than one out of four participants. During secondary tasks, 
intoxication resulted in lower PRC, lower number of off-path 
glances, longer total glance time, and longer off-path glance 
durations. The effect of intoxication was most evident during 
visually demanding secondary task.  

These findings suggest that drivers’ eyes on/off-path 
glance behavior likely can be used to detect alcohol 
intoxication in different driving modes, but also that visual 
time-sharing must be accounted for to interpret the effects 
correctly.  
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Abstract: Driver distraction is known to be a potential risk factor for traffic safety. Previous studies have shown that 
increased cognitive load can affect many driving outcomes, and lab-based studies have commonly used the detection-
response task (DRT) to quantify the level of cognitive load from in-vehicle systems during driving. The aim of the present 
study is to examine the effects of varying levels of cognitive distraction (two levels of n-back task) on performance in the 
detection-response task, in day- and night-time driving conditions. A total of 60 drivers (30 younger: 21-25 years, and 
older: 60-75 years old) are recruited for this driving simulator study, which is conducted as part of the EPSRC-funded 
HAROLD (HAzards, ROad Lighting and Driving) project. Response time and hit rate data for the DRT, the percentage 
of correct responses for the n-back task, as well as lateral and longitudinal vehicle metrics are collected, to understand 
how different lighting conditions affect stimulus detection, and how this is affected by engagement in a demanding 
cognitive distraction task. Results will be discussed in terms of the implications of such non-visually distracting tasks on 
driving performance, and road safety. The ultimate aim of the project is to understand how/if pedestrian detection at night 
is affected by driver engagement in cognitively demanding, non-visual, tasks, to contribute to state of the art on distraction 
and lighting research, together with policy and countermeasure development. 
 

1. Introduction 

1.1 Driver Distraction 
Despite a continued and sustained effort to prevent the 

adverse effects of distraction while driving in recent years, 
distracted driving still appears to be a critical contributor to 
crash involvement (e.g. Lym & Chen, 2021; Olsson et al., 
2020), perhaps due to the plethora of activities now possible 
on our mobile devices in the vehicle, as well as the general 
pressures of life, taking our minds off the main driving task. 
During the past 20 years, numerous studies have examined 
the effects of engagement in distracting vehicle-based 
activities on driving performance, such as how they divert our 
attention away from the driving task, and increase our brake 
response, and crash involvement (e.g. Li et al., 2019; 
Papantoniou et al., 2017). 

Such distracting activities can be broadly categorised 
into those that require visual, visual-manual, auditory, and 
cognitive resources, or a combination of the above (NHTSA, 
2010; Ranney et al., 2000). “Cognitive distraction”, which is 
associated with increased cognitive activity, includes 
thinking about something other than driving, taking attention 
and mind off the road (NHTSA, 2010). One lab-based task 
that has been used extensively to study the effect of cognitive 
distraction on driving performance, is the n-back task (Mehler 
et al., 2011; Stojmenova & Sodnik, 2018). Increased n-back 
difficulty is associated with increased cognitive load 
(Čegovnik et al., 2018), and a reliable measure for studying 
the effects of varying levels of cognitive load on driving 
outcomes (von Janczewski et al., 2021). 

1.2 Night-Time Driving 
The time of day is an important factor that might 

directly or indirectly affect driving outcomes through 
environmental factors such as visibility (Wood, 2020), and 

exposure to different levels of risk (Åkerstedt et al., 2001). 
Driving at night is perceived to be riskier and more difficult 
compared to daytime driving, due to decreased visibility of 
the environment (Evans et al., 2020), as well as the likelihood 
of driving while sleepy (Chipman & Jin, 2009). In the UK, 
night-time driving is shown to be particularly problematic for 
young and middle-aged drivers, with a higher proportion of 
accidents with fatal injuries occurring at night, when 
compared to day-time driving (Regev et al., 2018). 

1.3 Aim of the Present Study 
The detection-response task is a standard 

measurement adopted by the International Organization for 
Standardization (ISO 17488:2016) to determine the 
attentional demands due to the cognitive load of a secondary 
task (ISO, 2016; Stojmenova & Sodnik, 2018). Changes in 
cognitive load can be assessed with DRT performance, in 
terms of both response time and hit rate (ISO, 2016). Drivers’ 
DRT performance is known to be affected by engagement in 
secondary tasks (Bowden et al., 2019), and influenced by 
driver- and environment-related factors (e.g. Engström et al., 
2005; van Winsum, 2018). However, to the best of our 
knowledge, very little research is done on how the detection 
of objects in the driving scene is affected by different lighting 
conditions. In light of this research gap, the present study 
focuses on how young and older drivers’ DRT is affected by 
a cognitive distraction task, and whether different lighting 
conditions influence this performance.  

2. Method 

2.1 Participants 
The data collection for this study is currently 

underway. A total of 60 drivers are signed up for participation, 
with the sample being equally distributed across two age 
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groups: young drivers (21-25 years old), and older drivers 
(60-75 years old). Gender is also balanced for each age group.  

2.2 Materials and Tasks 
Driving environment and lighting level: The study will 

be conducted in the University of Leeds Driving Simulator 
(UoLDS). The scenario contains a two-lane, contraflow, rural 
road, with a 60 mph speed limit, consisting of straight and 
curved road sections. The lighting of the driving simulator 
environment is presented at two levels (daylight and night-
time). 

The n-back task: An auditory version of the n-back 
task, first used Mehler et al., (2011), will be used to provide 
two levels of difficulty in cognitive distraction: 1-back 
(repeating the digit one before) and 2-back (repeating the 
digit two before) the last digit heard. Participants will be 
required to respond to an auditory stimulus, presented via the 
driving simulator speakers, and response is provided verbally, 
and recorded by the experimenter, and via a voice recorder. 
Each trial will include a set of randomly generated ten digits. 
The percentage of correct responses to the task will be used 
as an indication of n-back performance. 

Detection-response task: The effect of the n-back task 
on cognitive load will be examined by using the visual DRT. 
Each trial will include the presentation of a red circle with a 
visual angle of about 1°, presented in the driving scene, at a 
horizontal angle of 11° to 23°, and a vertical angle of 2° to 4° 
above the horizon, on either the right or left side of the road 
used for the driving environment. Based on the ISO 
recommendations, these visual stimuli will be presented at a 
random rate of every three to five seconds. Participants will 
be asked to respond to the stimuli as quickly and accurately 
as possible by pressing a micro-switch button, which will be 
attached to the index finger of their dominant hand, against 
the steering wheel. Response time and hit rate will be 
calculated to evaluate performance (ISO, 2016). 

2.3 Procedure 
The study is approved by the ethics committee of the 

School of Business, Environment and Social Services, 
University of Leeds (AREA 21-108). After receiving 
informed consent and instructions, participants will first 
complete a practice drive, followed by practicing both the n-
back and DRT, separately. They will then complete practice 
of driving with the n-back task, driving with the DRT, and 
driving with the n-back and DRT together. Following this 
practice drive, participants will complete two experimental 
drives, which will be exactly the same as the practice drive, 
and identical in terms of road geometry and presentation of 
the non-driving related tasks, but counterbalanced across 
participants, in terms of night- and day-time driving 
environment. Each of the non-driving related tasks are 
programmed to start in the straight sections of the road, and 
last around 30 seconds each. The total experiment duration, 
including familiarisation, briefing and subjective feedback 
takes approximately 60 minutes to complete, and participants 
will be compensated £20 for taking part in the study. 

3. Results  
Data collection is currently underway and results will 

be reported in the next version of this paper. Response time 
and the number of hits and misses to the DRT will be 

calculated for the free (baseline) driving sessions with no n-
back task, and compared to sections which require 
performance of the 1- and 2-back tasks. The effect of lighting 
conditions on detection of the stimuli will be studied and 
response from older and younger drivers will be compared, 
using mixed model ANOVAs. 

4. Discussion 
The findings of this study will be discussed, and the 

potential implications on road safety research and design 
practices will be outlined. The implications of these results 
on detection of pedestrians at night by distracted drivers will 
also be considered.  
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Numerous studies have shown the harmful effects of drivers’ smartphone use on driver distraction and crash risk. 
However, there is less scientific research available on embedded in-car infotainment systems’ distraction potential – even 
if drivers can nowadays use these systems to conduct highly similar tasks as with their smartphones. Unfortunately, the 
scientific community does not have an agreed-upon definition for driver inattention which has led to various 
operationalizations of inattention in distraction research. The lack of common definition and the different 
operationalizations hinder the comparability of distraction testing results. To guide the development of valid distraction 
testing procedures, this paper argues for eight key requirements for the operationalization of driver inattention: 1)  
Evaluation of inattention against attentive task performance, 2) Consideration of spare attentional capacity available in 
attentive driving, 3) Consideration of individual and situational differences in this spare attentional capacity, 4) 
Consideration of drivers’ cognitive processing abilities, 5) Focusing evaluations on cognitive processes relevant for 
attentive driving, 6) Probabilistic evaluations in order to avoid hindsight bias, 7) Link to real-life crash risk – or real-life 
performance failure probability, and 8) Prioritization of possibility over probability. Example of a testing method fulfilling 
these requirements is illustrated for measuring in-vehicle user interfaces’ distraction potential. The method aims at well-
controlled, reliable, valid, and comparable testing of the distraction potential of infotainment systems. A practical aim of 
the testing is to encourage car manufactures to design safer user interfaces for their infotainment systems. 
 

1. Introduction 
A great number of studies have indicated the detrimental 
impacts of smartphone use on driving performance (e.g., 
Caird et al., 2014, 2018; Ferdinand & Menachemi, 2014; Guo 
et al., 2010; Horrey, 2018; Lipovac et al., 2017; Oviedo-
Trespalacios et al., 2016; Papantoniou et al., 2017; Simmons 
et al., 2016, 2017). However, latest in-car infotainment 
systems are nowadays so advanced that they offer almost as 
wide range of applications as do smartphones. Unfortunately, 
scientific knowledge of the distraction potential of these 
original equipment manufacturer infotainment systems 
(OEM) is scarce. 

There are varying authoritative recommendations and 
standards (e.g., ISO, 2017; 2016; NHTSA, 2013) regarding 
how to measure distraction potential of infotainment systems. 
All of these have faced criticism in the scientific community. 
These disagreements can lead to situations where it is difficult 
to interpret and compare different research outcomes (Lee et 
al., 2009; Pettitt et al., 2005; Regan et al., 2011). Often the 
measurements focus on the so-called visual or cognitive 
demands of the in-car tasks but it is unclear what is the 
relationship between these demands and their distraction 
potential (Grahn & Kujala, 2020). Especially, if there is no 
driving involved, how valid are these measurements for 
studying the in-car tasks’ effects on driving? 

Overall, when the distraction potential of in-car 
activities is studied, it is crucially important that we are 
actually measuring what we state to measure. Hence, we 
provide evidence-based arguments for eight key requirements 
for the operationalization of driver inattention to serve the 
development of valid and reliable testing measures. Finally, 

we introduce an example of a testing method that could fulfill 
the requirements. 

2. Key requirements for the measurement of in-vehicle 
user interfaces’ distraction potential 

1) Inattention has to be evaluated against attentive task 
performance. Driver inattention can be defined as insufficient, 
or no attention, to activities critical for safe driving (Regan et 
al., 2011). Driver distraction can then be defined as a specific 
form of inattention, which is caused by attention being 
diverted towards activities not related to driving, such as in-
car tasks. The crucial point is that – by definition – inattention 
should be defined and measured against “activities critical for 
safe driving”. Hence, there should be a baseline of attentive 
driving to enable evaluation of how much this is distracted 
due to the in-car tasks (see, e.g., Grahn, 2021). This may 
sound obvious but, nevertheless, it has been proposed that 
distraction potential of in-car tasks could be assessed by, for 
instance, evaluating task durations under occlusion (e.g., 
NHTSA, 2013), without even simulating the driving task. 

2) Spare attentional capacity available in attentive 
driving has to be considered. There is evidence showing that 
drivers can drive safely even if not allocating 100% attention 
continuously to the driving task (e.g., Kujala et al., 2021). In 
driving, there are safety-critical thresholds, such as lane 
boundaries and the rear bumper of the lead car. For attentive 
driving, the certainty that the car will stay within the 
associated safety margins – even if the driver is not paying 
attention at the time to the driving-relevant targets – is what 
matters. Therefore, spare attentional capacity and inattention 
should be judged in relation to these task-critical thresholds 
(Kujala, 2021).  
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3) Individual and situational differences in the spare 
attentional capacity have to be considered. There are inter-
individual (Broström et al., 2013, 2016; Chen & Donmez, 
2016; Donmez et al., 2010; Grahn & Taipalus, 2021; Yang et 
al., 2021) and situational (e.g., Kujala et al., 2021; Large et 
al., 2015) differences in the spare attentional capacity in 
driving. This variability needs to be taken into account in 
testing to avoid, for instance, a situation where the 
characteristics of the test driver sample affect the test results 
more than the in-car user interfaces (Broström et al., 2016; 
Grahn & Taipalus, 2021; Ljung Aust et al., 2015). 
Furthermore, the threshold of inattention cannot be for each 
driver and situation a static, for instance, 2-second glance 
duration off forward (e.g., NHTSA, 2013). What matters for 
the distraction potential of in-car glances, is their timing in 
relation to safety-critical thresholds, and not their duration, 
per se. 

4) Drivers’ cognitive processing abilities and 
limitations have to be considered. If the driver can react in 
time to brake lights in front, as well as to sufficiently process 
all the other driving-related subtasks, it is not justified to 
claim that a driver is distracted when glancing upon an in-car 
display or a HUD. When measuring distraction, focal vision 
is often in a key position, but drivers can gather lots of 
information also peripherally (Ahlström et al., 2021; Svärd et 
al., 2021). Additionally, there are forms of cognitive 
distraction that do not display themselves via glance targets 
(e.g., internalized thoughts, Regan et al., 2011). 

5) Evaluation should focus on cognitive processes 
relevant for attentive driving. Some cognitive processes are 
highly relevant to succeed in the driving task and some are 
not that relevant. Hence, measurements of distraction should 
focus on the in-car task’s interference effects on those 
cognitive functions that are relevant in driving in real traffic, 
such as distance and speed estimations and hazard prediction. 
These should not focus on, for instance, off-forward glance 
durations or in-car task times (e.g., NHTSA, 2013) without 
considering how these relate to the cognitive processes that 
are actually relevant for real-world driving. For instance, 
according to a study by Nilsson et al. (2018) it is inappropriate 
to generalize from delayed response times in artificial 

response tasks (e.g., detection response tasks, DRT) to more 
realistic safety-critical events in real traffic, such as looming 
of a lead car, for which responses are known to be triggered 
automatically. 

6) Evaluation has to be probabilistic in order to avoid 
hindsight bias. Regan et al. (2011) and Kircher and Ahlström  
(2017) raise the problem of hindsight bias in defining 
inattention based on the outcome of a situation, such as, a 
crash. Instead, it should already be known before the outcome 
of an in-car activity if the driver is attentive or not. Therefore, 
we should be able to assess the possibility of a crash or 
performance failure in each situation – even if these would 
not realize (Kujala, 2021). 

7) There should be a link to real-life crash risk – or 
real-life performance failure probability. This requirement is 
for ensuring the ecological relevance of the testing. Based on 
the distraction test results, we should be able to estimate what 
are the potential safety consequences or effects of the in-car 
activities on crash risk or performance failure probability in 
real traffic, even if the testing would be done in a driving 
simulator (Bärgman & Victor, 2020). 

8) Possibility should be more important than 
probability. Skilled, attentive driving is about maintenance of 
appropriate safety margins. A critical component of this skill 
is the recognition of possible hazards ahead and acting upon 
them to prevent these, even if the potential hazards are not 
likely to happen (Grahn et al., 2020). 

3. Method: An example on how to measure inattention 
by fulfilling the eight key requirements  

In an example method (see Fig. 1), a test participant would 
drive the EGO vehicle surrounded by traffic and conduct in-
car tasks, such as searching for music. The LEAD car in front 
decelerates and accelerates in an unpredictable manner. It is 
always possible – even if not likely – that the LEAD starts 
hard braking. The variable acceptable thresholds for the 
distance headway (DHW) are based on this possible 
hazardous scenario in all situations. The idea is that an 
attentive driver will always keep the rear-end crash risk at 
zero by adjusting one’s speed and off-forward glancing 
behavior based on the variable situational factors, that is, the 

Fig. 1.  A bird-view visualization of the proposed driving scenario and inattention measurement. 
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distance and relative speed to the LEAD car. Here, the 
assessment would be focused on the impact(s) of the in-car 
tasks on maintenance of appropriate safety margins from the 
perspective of the possibility of a rear-end crash (i.e., is DHW 
smaller than minimum DHW to avoid crash). If the DHW to 
the LEAD grows too large for meaningful measurements, a 
car from an adjacent lane can change lane to become a new 
LEAD car. 

In the method, two baseline drives of attentive driving 
in a similar scenario are required: a) One for measuring 
driver’s minimum and comfortable preferences for DHW 
while keeping eyes on the LEAD car (Taieb-Maimon & 
Shinar, 2001) and b) another for measuring driver’s 
maximum glance and brake response times (Svärd et al., 2021) 
when eyes are off the LEAD car when it suddenly brakes hard. 
For comparability, the test participant samples between tests 
should be balanced so that there would be a similar 
representation of drivers who prefer shorter and drivers who 
prefer longer DHWs. Alternatively, other means should be 
utilized to control for these inter-individual differences in test 
results. 

Currently, we are building a testing environment, a 
drive-in lab, in which we can drive in a commercial vehicle, 
connect it into our driving simulation and test the OEM 
infotainment system of the car in a driving scenario with the 
metrics described in Figure 1. We are first targeting a 
benchmarking study with popular 2022 car models. We 
expect that the final results are ready before the full paper’s 
submission deadline. 

4. Conclusions 
Here, we have presented eight key requirements and a testing 
method for measuring in-vehicle user interfaces’ distraction 
potential that could fulfill these requirements. The 
requirements aim at reliable, valid and comparable testing on 
the distraction potential of infotainment systems. These can 
be also utilized in evaluating existing guidelines and 
proposed methods for distraction testing. A practical aim of 
this methodological development and testing is to urge car 
manufactures to design safer user interfaces for their 
infotainment systems. The requirements are open for 
scientific debate, for instance, the list might not be 
comprehensive. 
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Abstract: Reference driver models as safety targets for the virtual assessment of autonomous vehicles (AVs) are 
currently being developed. The pilot study presented in this abstract aims to quantify drivers’ side-glance behaviors in 
terms of frequency and duration, when driving on a highway without changing lanes. Before the conference 
presentation, the results will be used in virtual simulations to assess whether including these behaviors in a reference 
driver model would have any practical impact on the AV’s safety assessment for cut-ins and side-swipe crash scenarios. 
 

1. Introduction 
Driving context has been shown to influence drivers’ 

glance behavior (Morando et al., 2019). Additionally, off-
path glance duration has been shown to have an impact on the 
probability of a crash or near-crash (Tian et al., 2013; Victor 
et al., 2015). Many studies have focused on the duration of 
on-path and off-path glances in rear-end conflict scenarios 
(Klauer et al., 2014; Victor et al., 2015). Others have studied 
the use of mirrors prior to lane changes (Pech et al., 2014), 
and right turns (Jansen et al., 2017). Only rarely has research 
focused on the use and safety impact of side glances to pro-
actively check potential threats moving laterally (e.g., cut-ins 
and side-swipes). Studies about the frequency, duration, and 
timing (as a function of context) of highway drivers’ side 
glances (towards the side mirror and side window) are not 
currently available.  

As Automated Vehicles (AVs) continue to be 
developed, there is a need to assess their safety impact. In the 
last few years, reference driver models are being increasingly 
used as safety targets for AVs (Webb et al., 2020). It is 
unclear whether including a model of side glances in 
reference driver models for cut-ins and side-swipes would 
impact the virtual safety assessment outcome in any practical 
way. The significance of including driver side-glance 
behaviour in such models can be assessed in three steps: 1) 
quantification of driver side-glance behaviors, 2) a model of 
driver avoidance manoeuvres when a threat is identified, and 
3) virtual simulations to assess the safety impact of the 
combination of 1) and 2) on crash avoidance and mitigation. 
If the results show a substantial impact on crash avoidance 
and/or mitigation, a side-glance behavior model should be 
included in reference driver models assessing AVs for cut-ins 
and side-swipes.  

1.1 Aims and objectives 
The aim of this (pilot) work is to perform Step 1 above: 

quantifying, as a function of context, the frequency and 
duration of drivers’ side mirror and side window glances in 
no-lane-change (undisturbed) highway driving. The context 
is considered in order to better understand the overall 
variability of side-glance behaviors for future modeling. 
Before the conference, we will create a simple avoidance 
response model (Step 2: likely based on SHRP2 naturalistic 

driving data). We will then perform virtual simulations (Step 
3) on reconstructed cut-in and side-swipe crashes with and 
without the side-glance behavior model. Comparing the 
results will allow us to assess whether the model impacts the 
crash rate or impact speeds. We may also collect additional 
side-glance behavior data for use in the simulations. 

2. Method 

2.1 Data description 
The data used in this study were collected during the 

L3Pilot project. The full dataset includes trips with manually 
driven vehicles (baseline) and trips in which an automated 
driving function was deactivated. In this study, only baseline 
trips with non-professional drivers were analysed. The 
vehicles were equipped with five cameras recording the 
driver, the forward and rear views, and the cockpit from 
various angles. Surrounding objects were automatically 
detected and used to determine the traffic density. Specific 
driving scenarios (e.g., car following, lane change, and cut-in) 
were identified automatically. In this study, only the free-
driving and car-following scenarios (without lane changes) 
were analyzed. 

2.2 Definition of low and high traffic density 
Data from 20 drivers were used in this pilot study. The 

main author manually annotated the driver glances in two 30-
s long events of free driving: one each of low and high(er) 
traffic density. In low-density traffic events, the driver’s 
vehicle was near, at most, one vehicle (in the same lane or an 
adjacent one). High-density traffic events were defined as 
having four or more vehicles nearby. 

Event selection was accomplished by: a) using an 
algorithmically defined “TrafficDensity” metric, defined as 
“vehicle / km / lane”, to define the lowest and highest traffic-
density events for each driver and b) performing a visual 
check to exclude events with misclassifications.  

2.3 Annotation of glances 
Glances were primarily annotated using the videos 

recorded by the camera on the driver-side A pillar (facing the 
driver). Additional videos from other camera angles in the 
cockpit were used when glancing was unclear in the primary 
video. The following types of glances were annotated (along 
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with their duration): left-side mirror and window, right-side 
mirror and window, and rear-view mirror. In this pilot, the 
annotator included only focused glances toward the mirrors 
and windows (excluding side glances clearly due to 
distractions); the main study will handle glance selection 
differently. 

3. Results 
Fig. 1 the ratio between the side glances in high and 

low density traffic for each driver. Visually there seems to be 
a trend towards side-glances being more frequent in high 
traffic density than in low. However, with the small sample, 
neither a Wilcoxon rank sum test (of the difference between 
counts), nor a Poisson linear mixed effect model (predicting 
the number of glances with driver as random effect) showed 
significant differences in these pilot data.  

 
Fig. 1. Ratio between side glances in low and high traffic 
density. The green area represents a higher number of side 
glances in high traffic density; the red area, a higher number 
of side glances in low traffic density. For visualization 
purposes, ratios < 1 (when there were more side glances in 
low than high density traffic) were inverted, and a minus sign 
was added. Additionally, cases which presented zero in one 
of the two driving conditions were automatically assigned +/-
10 in the bar plot. 

Fig. 2 compares the glance durations for both traffic 
densities. The average duration of side glances was 0.79 s (SD 
± 0.38 s) in low traffic density and 0.62 s (SD ± 0.29 s) in 
high traffic density. Additionally, the side glance frequency 
was computed for both traffic densities. The average 
frequency was 3.3 glances/minute in low traffic density and 
4.1 glances/minute in high traffic density. The overall 
average was 3.7 glances/minute. 

 
Fig. 2. The side-glance duration distributions for low and 
high traffic density data for the 20 drivers, respectively.  

 

4. Discussion 

4.1 Difference between low and high density 
Our research shows a trend towards a larger number 

of driver side glances in higher density traffic. This trend 
could be a consequence of the driver’s need to know the 
positions and trajectories of the surrounding vehicles—
information the driver uses to stay safe. It makes sense that 
an attentive driver would look more often at the mirrors when 
in higher density traffic, as the risk of conflicts may be higher.  

Some drivers did not show a noticeable difference in 
behavior between low and high traffic density situations and 
some actually performed more side glances in the low traffic 
density scenario. These behaviors may be due to higher levels 
of driver confidence or to the peculiar behavior of a nearby 
vehicle that required more attention than “normal”.  

. 

4.2 Frequency and duration relevance for reference 
drivers 

Reference driver models for virtual AV safety 
assessment lack a side glance model. If reference driver 
models for cut-ins and side-swipes were to include one, it 
might include a probabilistic description of how often and for 
how long an attentive, experienced, and defensive driver 
would check the side mirrors and side windows. The 
relevance of such a model is, however, unclear from a safety 
assessment perspective. That is, if the inclusion of a side-
check (attention) model is unlikely to improve crash 
avoidance in the targeted scenarios, then keeping the 
reference driver models simple (excluding side-glance 
behavior) may be best. This study provided a preliminary 
estimate of the frequency and duration of driver side glances. 
The main study will run virtual simulations (likely with more 
data: a few more drivers and several more 30-s segments per 
driver) as well as a simple brake/acceleration response model 
based on SHRP2 data, providing a more robust assessment of 
the safety impact of the glance behavior model for side-swipe 
and cut-in scenarios.  

These data can be used to simulate an attentive driver 
(using the upper end of the frequency/duration distributions) 
to use as a reference driver safety target for AVs. Similarly, 
the data could serve to simulate an inattentive driver (using 
the lower end of the frequency/duration distributions) to 
assess how that model’s performance compares with that of 
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the AV. Another possible application is creating virtual-
simulation-based impact assessments to estimate the 
reduction of AV crashes/injuries compared to manual driving 
(using the full frequency/duration distributions).       

5. Conclusions 
The overall frequency of side glances was 3.7 glances 

/minute, with an average duration of 0.70 s (SD ± 0.34 s). At 
this point, it is unclear if this is often (and long) enough to 
have an effect on reference driver models for the assessment 
of AVs’ cut-in and side-swipe crash avoidance functionalities. 
However, we hope that the main study will answer this 
question.  
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Abstract: Models of crash causation have been used in virtual simulations for some time, but such models are seldom 
thoroughly validated. This study aims to validate a virtual simulation-based rear-end crash causation model that uses 
two distributions of eyes-off-road glances (one from normal everyday driving and one from crashes) and a driver 
response model for rear-end crashes. Results show that the crash causation model does a reasonably good job of 
replicating the distribution of the impact speeds of the original crashes.  
 

1. Introduction 
Driver distraction and inattention (DDI) are common 

crash causation mechanisms (Klauer et al., 2014; NHTSA, 
2018). Specifically, glances off-road have been shown to 
substantially increase crash and injury risks in manual driving 
(Victor et al., 2015). It is therefore natural to consider eyes-
off-road glances (EOFF) as a crash causation mechanism, be 
it for the virtual safety assessment of advanced driver 
assistance systems (ADAS; Bärgman et al., 2017), of higher 
levels of automation (Bjorvatn et al., 2021), or of driver 
(glance) behavior changes—either associated with the 
introduction of new human-machine interfaces (HMI; 
Bärgman et al., 2015; Lee et al., 2018), or in combination with 
ADAS (Bärgman & Victor, 2020). These assessments 
typically implement EOFF-induced crash causation as 
mathematical models. However, such models have rarely 
been validated against real crash data.  

1.1 Aims and objectives 
The aim of this study is to validate a virtual 

simulation-based crash causation model that uses EOFF 
glance distributions and a driver response model for rear-end 
crashes. Specifically, two different EOFF glance behaviors 
were virtually applied to reconstructed crash kinematics. The 
impact speed distributions of the original (reconstructed) 
crashes were compared with those from the simulations. 

 

 
Figure 1: The workflow used to validate the EOFF crash 
causation and driver response model against reconstructed 
rear-end crash kinematics. 
 

2. Method 

2.1 Overview 
This study’s workflow is illustrated in Figure 1.  

2.2 Data and evasive maneuver removal  
The study used the time-series positions of both the 

lead vehicle (LV) and the following vehicle (FV) from 44 
reconstructed rear-end crashes in Volvo Cars’ crash database.  

As crash reconstructions include several assumptions, 
the pre-crash kinematics are just estimates of the actual 
kinematics. The impact of these assumptions on the results 
was reduced by creating synthetic variations (e.g., in speed, 
deceleration, and timing) of the reconstructed crashes. Using 
the same variations as in the L3Pilot project (Bjorvatn et al., 
2021, p. A24), we created a total of eleven variants of each 
reconstructed crash (i.e., 484 sets of rear-end crash 
kinematics).  

The FV driver’s evasive maneuver must be removed 
from each reconstruction so that the driver models in the 
simulations can replace it. The maneuver is removed by 
identifying its start and assuming the driver would have 
continued at the speed in the timestep just before it.  

2.3 Eyes-off-road glances and their application  
The crash causation model to be validated is based on 

the application of the FV driver’s EOFF glances to the crash 
kinematics. Here “application” refers to the placement of 
individual off-road glances of specific durations virtually in 
the time-series (Figure 2). When the driver looks back 
towards the road, the response model takes over control.  

This study used two different eyes-off-road (EOFF) 
distributions (Figure 3): one baseline EOFF and one crash 
EOFF (see Victor et al., 2015, for a description of the glance 
extraction).  
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Figure 2: Illustration of the placement of an off-road 

(overshot) glance at a glance anchor on the kinematics of the 
LV and FV in a rear-end conflict. Dashed red line: the 
original FV speed; solid red line: the new LV speed after 
removal of the evasive maneuver; blue dashed line: the LV 
speed used; and green dashed line: applied full braking.  

 
Figure 3: EOFF distributions.  
 

As the kinematics are time series and the simulations play out 
in time, a model of how to place EOFF glances in the time 
series is needed. Following Bärgman et al., (2015), in this 
study we assume that drivers do not start looking away from 
the roadway when the (optically defined) time to collision 
(TTC) is less than 5 s (based on Markkula et al., 2016), and 
that the probability of a lead vehicle braking is the same at all 
times.  

 
Figure 4: EOFF overshot distributions. 

 
 

 
An overshot distribution with these assumptions can 

be applied to the EOFF distribution, generating an overshot 
EOFF glance that can be placed at the last point in time with 
TTC > 5 s (Figures 2 and 4; see Bärgman et al., 2017 for 
details).   

2.4 Driver response model 
A driver response model is needed to simulate the FV 

driver’s response to the unfolding conflict (e.g., LV braking). 
This study uses a simple response model: when the driver 
glances back at the road, a reaction time of 0.5 s is added 
(based on Markkula et al., 2016) before (full) braking is 
applied.   

2.5 Sampling and simulations 
The distribution of impact speeds associated with each 

specific EOFF glance distribution was created by "applying" 
each EOFF distribution to each of the (484) crashes, so that 
every crash was simulated with each “bin” in the glance 
distribution.  

2.6 Analysis 
The impact speed distribution of the original 484 

crashes was compared with that of all crashes in the 
simulations. This study used inverse-probability weighting on 
the EOFF overshot distribution bins to minimize the number 
of simulations. 

3. Results 
Figure 5 shows the impact speed distributions of the 

simulated crashes generated by applying the crash causation 
model using glances from the SHRP2 EOFF distributions for 
baseline (upper panel) and for crashes (lower panel). 
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Figure 5: Impact speed distributions. Upper: Original 

impact speeds and impact speeds resulting from crash 
generation using the SHRP2 baseline EOFF distribution. 
Lower: Original impact speeds and impact speeds resulting 
from crash generation using the SHRP2 crashes EOFF 
distribution. 

4. Discussion 

4.1 Validation of the crash causation method 
Results show relatively good similarity between the 

impact speeds of the original crashes and those of the crashes 
generated with the crash causation model in combination with 
the driver response model. The crash glances created a more 
similar impact speed distribution than the baseline glances 
but overestimated the proportion of crashes in the 60–80 km/h 
range. In contrast, the baseline EOFF distribution 
underestimated the proportion of crashes with an impact 
speed > 40 km/h. It is not surprising that crash glances result 
in higher impact speeds than baseline glances, since the crash 
EOFF distribution contains a higher proportion of long glance 
durations. However, both distributions underestimated the 
proportion of high-speed crashes (5 % occurred at 90–120 
km/h). This may indicate that driver distraction or inattention 
(correlated with off-road glances) were not the underlying 
crash causation mechanism in these cases—it may instead 
have been drowsiness (possibly simulated as very long off-
road glances/closed eyes).  

4.2 Applications of simulations of crash causation 
mechanisms 

There are several different uses for validated crash 
causation models; for example, investigating the crash and 
injury risks associated with the introduction of ADAS 

through counterfactual simulations (Bärgman et al., 2015). 
Another use, which is receiving more and more attention, is  
in traffic simulations to “create” crashes (Bjorvatn et al., 
2021). It is particularly important that any crash causation 
model used in traffic simulation is validated for each 
individual scenario, because crash generation is based not 
only on the stochastics of glance behavior, but also on many 
other factors that together might induce a crash (in contrast to 
typical counterfactual simulations). A third, albeit little 
studied or used, use of EOFF crash causation models is to 
assess glance behavior changes resulting from the 
introduction of some new HMI. The use of these models 
makes it possible to calculate a (continuous) safety metric for 
a specific HMI implementation (or, actually, the EOFF 
distribution associated with it). The metric is directly coupled 
to real-world crash causation through validation of the crash 
causation model (Bärgman et al., 2015).  

4.3 Crash causation models  
In this study, an EOFF-based crash causation model for rear-
end crashes was validated. However, distraction/inattention 
leading to longer/more frequent off-road glances is only one 
crash causation mechanism among many (NHTSA, 2018). 
Driving while drowsy/sleepy and, for rear-end crashes, 
leaving too short a time gap to the lead vehicle are other 
common mechanisms. If virtual simulation-based safety 
benefit assessment is to gain acceptance, more crash 
causation models need to be developed, and validated.  

4.4 Limitations 
We used a relatively simple driver response model 

with a reaction threshold on looming and assumed maximum 
braking. Today there are better response models available 
(e.g., Svärd et al., 2017), but in this paper we show that even 
this simple model is a fairly good representation of driver 
responses to critical events. 

5. Conclusions 
Through virtual simulations, we have demonstrated 

that a mathematical crash causation model based on drivers’ 
off-road glances can generate an impact speed distribution 
similar to that of an in-depth crash database (rear-end crashes). 
This finding brings us a step closer to using such models for 
the virtual assessment of both ADAS and higher levels of 
automation, as well as for the virtual safety assessment of 
HMIs. 
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Abstract: To successfully get around in traffic it is often necessary to keep track of several relevant targets at the same 
time. This can be done by combining foveal and peripheral visual information sampling. Especially if no detailed input is 
needed, for example when confirming the absence of road users, it may be enough to use peripheral vision only. Using a 
driving simulator with an urban scenery, 35 participants passed three zebra crossings with a) no pedestrians nearby, b) 
pedestrians standing nearby and c) pedestrians nearby of whom one started walking towards the street. In the last case, 
all participants foveated the walking person, albeit around one third of the participants already released the throttle 
before the first glance at the pedestrian. The standing pedestrians were foveated in almost all instances, whereas the 
roadside nearby the zebra crossing without people nearby was not foveated by around a quarter of the participants. 
Taken together, the results indicate that peripheral vision may suffice to confirm the absence or presence of pedestrians.
With people present, a glance towards them is initiated, likely to check for additional information. Throttle release 
before foveation is an indication that the walking pedestrian was detected as relevant with peripheral vision.

1. Introduction
When negotiating one’s way in traffic it is necessary 

to attend to relevant targets in time. Several relevant targets 
can be present in different locations at the same time. By 
“target” we mean a place or object holding relevant 
information, including locations that should be checked to 
confirm the absence or presence of road users.

This information sampling is done predominantly 
visually. However, to assess whether a driver obtained all 
necessary information, it is not enough to analyse glance 
behaviour with an eye tracker. Research both from 
transportation and sports indicates that peripheral vision plays 
an important role, not only for the guidance of foveal vision, 
but also for information acquisition in itself (Vater, Williams, 
& Hossner, 2020; Wolfe, Sawyer, & Rosenholtz, 2020). It 
may be more efficient to employ peripheral vision, and in 

situations where several targets must be monitored 
simultaneously, it may even be necessary to employ 
peripheral vision. For example, when approaching a zebra 
crossing, it is necessary to assess whether any pedestrians 
want to cross. Likely, the absence of pedestrians can be 
confirmed by peripheral vision only, but if pedestrians are 
present, a foveal glance to estimate their future trajectory will
be required, especially if they are or might start moving.
Indications for this were found in a field study where zebra 
crossings often were passed without the driver’s glancing to
the sides (Kircher & Ahlström, submitted).

Here, we attempt to estimate the usage of peripheral 
vision by comparing visual sampling strategies across 
situations that, based on the reasoning above, should either 
require the usage of foveal vision or not. In addition, we
investigate the temporal linkage between action and gaze 

Figure 1. Screenshots of the three zebra crossing situations.
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behaviour, again with the goal to deduce a potential
employment of peripheral vision.

Method
As part of a study investigating alcohol intoxication 

and driving, 35 participants drove a route in a simulator in 
right-hand traffic first sober, then under alcohol influence.
Here, we only consider the sober condition. After filling out 
a background questionnaire, the participants familiarised
themselves with the simulator before driving the test route.

1.1 Apparatus
The fixed-base simulator with a visual angle of about

150 degrees was used. Transmission was automatic. A Smart 
Eye Pro system (Smart Eye AB, Gothenburg, Sweden) with 
four cameras was used for gaze tracking. The route led 
through an urban environment (Figure 1). Other road users 
were present, including pedestrians and cyclists. The route 
was constructed as a loop where the participants drove one 
lap, but with two different starting points. The participants
had to drive straight on for the whole route and were 
instructed to drive as usual.

1.2 Selected situations
For the current analysis, we focused on situations for 

which the use of peripheral vision could be investigated. 
Specifically, we selected three zebra crossings which were all 
positioned on a link without being connected to an 
intersection (Figure 1).

In the “none”-situation, no pedestrians are present in 
the vicinity of the zebra crossing. A bus leaves a bus stop on 
the right-hand side of the road and accelerates across the 
zebra crossing ahead of the participant.

In the “standing”-situation, two pedestrians are 
standing on the left-hand side of the zebra crossing 
underneath a tree. They look like they are talking to each 
other.

In the “walking”-situation, there are groups of 
pedestrians on both sides of the zebra crossing, somewhat 
farther away from the road as in the “standing”-situation.
During the approach, a pedestrian leaves the group and starts 
walking towards the zebra crossing and across the street, 

timed such that he is on collision course with the driver, 
requiring a reaction. Note that the “walking”-situation was by
no means critical, with plenty of time to slow down to let the
pedestrian cross the street.

1.3 Analysis
The analysis focused on glances to the left during the 

approach to the zebra crossings. The main idea was to check 
if drivers search for pedestrians at the zebra crossings, even
when there are no pedestrians present. If they don’t, we 
hypothesize that they use peripheral vison to determine if 
there is something worth looking at in that location. In a 
second step, we also analysed whether drivers started to slow
down already before the first glance to the crossing pedestrian,
and if so, we hypothesise that peripheral vision is used for 
action.

The onset of glances to the left was extracted with a 
velocity-based saccade detection algorithm (threshold = 25°/s,
with the following fixation ≥ 3° to the left), in combination 
with an angular-dispersion based algorithm (threshold = 8°).
The latter facilitated detection of slow eye movements and
smooth pursuits to the left.

In the first analysis, glances within a relevant zone (cf. 
Kircher & Ahlstrom, 2017) were considered. A chi-square 
test was used to check for differences between the three zebra 
crossings in whether drivers glanced to the left or not. In the
second analysis, this time window was extended to also 
include the point from where the zebra crossing became 
visible. We then assessed the time from throttle release and 
brake onset, respectively, to the first glance towards the
crossing pedestrian. Negative values mean that the driver 
acted before foveating the pedestrian. 

All analyses focused on glances to the left for two 
reasons. First, the most relevant differences between the three
situations were located on the left side of the road. Secondly,
glances to the right were difficult to distinguish since the
angular difference between the centre of the lane and the right 
side of the lane is just a few degrees, especially when looked 
at from a distance.

Relevant zone

Glance

Throttle

Throttle release
Brake onset

Brake

Glance Glance Glance

Zebra crossing v isible
Pedestrian starts to walk

Glance

Figure 2. Throttle, brake and glance behaviour for a person releasing the throttle before the pedestrian starts 
to walk during the “walking”-situation. The boxplot on top illustrates that 35% of the drivers released the 
throttle before foveating the pedestrian, and 7% started to brake before foveating the walking pedestrian.
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2. Results
In the “none”-situation, 27% of the participants did not 

glance to the left in the relevant zone. In the “standing”-
situation, 7% did not glance to the left. In the “walking”-
situation all participants glanced left, foveating the pedestrian
(chi-square(2)=10.4; p=.006). In that situation, 35% of the
participants released the throttle before foveating the
pedestrian after he started to move, and 7% even started to 
brake before foveating the pedestrian.

Figure 2 illustrates one participant’s behaviour in the
“walking”-situation, combined with boxplots for throttle 
release timing and brake onset. The person in the example 
glances left after the zebra crossing becomes visible (second 
glance in illustration), but before the pedestrian starts to walk.
The throttle is released before the next glance occurs, upon 
which the brake pedal is pressed.

3. Discussion
Our data indicate that foveal vision is used when 

pedestrians are present, presumably to identify whether they 
want to cross the street. However, it also seems like peripheral
vision can be enough to confirm the absence of pedestrians in 
the relevant areas. In the “none”-situation one in four 
participants did not foveate the left roadside, which on its own 
could be taken as a sign that they missed checking for
potential traffic with priority. However, in combination with 
the high foveation rates in the other two situations, the finding 
can also be interpreted such that foveation occurs if 
information obtained peripherally motivates foveation. In this 
case, peripheral vision is used to “preview” information and 
the subsequent fixation to confirm the preview foveally 
(Vater et al., 2020). 

A further indication for peripheral vision being used is 
the fact that about a third of the participants release the gas 
pedal before having foveated the pedestrian after he starts 
walking towards the zebra crossing. This means that they very 
likely noticed the movement with peripheral vision and 
prepared themselves for action by releasing the gas before a
foveal confirmation of being on collision course with the 
pedestrian. This then led to further action in the form of 
braking to let the pedestrian pass. That actions are initiated 
based on information in peripheral vision is known from 
sports. For example, high-level martial arts athletes fixate the 
chest of the opponent and are able to react to the attacking 
limb (hands or feet) without looking at the limbs (Hausegger, 
Vater, & Hossner, 2019).

Given the mentioned field study, we would have 
assumed a higher reliance on peripheral vision to confirm the 
absence of relevant traffic. It could be speculated that the
simulator environment contributes to a more extensive usage 
of foveal vision. This could be due to the somewhat unnatural 
movement of cars, pedestrians and cyclists that require more 
foveation than one would otherwise need to interpret human 
motion (Blake & Shiffrar, 2007). It could also be connected 
to the environment being overly simple, such that participants 
glance around due to understimulation. Therefore, we 
recommend a follow-up study in the field controlling for 
pedestrian behaviour.

4. Conclusions
Even though difficult to measure with conventional 

methods, peripheral vision appears to be an integral part of 

visual information acquisition in driving, especially when 
confirming the absence of relevant traffic. This is important 
to consider in driver attention monitoring, as an absence of a 
foveation to a relevant area not necessarily entails that the
area was not considered by the driver. We recommend more 
elaborate studies determining the role and assessment of 
peripheral vision in driving.
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The Box Task (BT) combined with a Detection Response Task (DRT) is a method to assess different dimensions of 
secondary task demand caused by portable (electronic) devices or in-vehicle systems. This paper presents a 
comprehensive analysis of the DRT using an evidence accumulation model. The aim was to replicate influences of 
cognitive load on the model parameter using two secondary tasks. Furthermore, potential practice effects of the BT + 
DRT were investigated using three baseline drives (i.e., performing the BT + DRT without secondary task engagement) 
throughout an experimental session. A Wald-distributed model revealed a significant increase in the rate of evidence 
accumulation across all baseline drives. Additionally, the response omission parameter decreased. In contrast, cognitive 
task demand resulted in a lower rate of evidence accumulation, a higher response threshold, a higher omission 
probability and a slightly faster non-decision time. The results suggest a substantial practice effect throughout an 
experimental session, which highlights the relevance of a sufficient practice duration. Since typical changes in 
information processing under divided attention were confirmed, it is assumed that the BT + DRT can be used as a valid 
instrument to assess secondary task demand. 
 

1. Introduction 
Minimizing driver distraction is a crucial part when 

developing in-vehicle information systems (IVIS). To assess 
the task demand while driving, a relatively new method was 
developed – the Box Task combined with a Detection 
Response Task (BT + DRT; Hsieh & Seaman, n. d.). The 
method is based on the Dimensional Model of Driver 
Demand (Young et al., 2016), which distinguishes between 
cognitive and physical (i.e., visual-manual) secondary task 
demand. Previous studies suggest a high sensitivity of the BT 
to visual-manual task demand, while the DRT is particularly 
sensitive to cognitive demand (Morgenstern et al., 2020a; 
Morgenstern et al., 2020b). 

Evidence accumulation modeling describes the 
process of stimulus detection as an accumulation of stimulus 
information (evidence) from a starting point to a response 
threshold (Ratcliff & Van Dongen, 2011). A response to the 
stimulus is initiated when the amount of accumulated 
evidence reaches the threshold (Ratcliff & Van Dongen, 
2011). Based on reaction times and response accuracies, four 
key model parameters can be estimated. First, the rate of 
evidence accumulation, which is sensitive to the efficiency in 
processing stimulus-related information. Second, the height 
of the response threshold. More conservative (i.e., cautious 
or accurate) responses require more evidence and are 
reflected in higher response thresholds. Third, the starting 
point of evidence accumulation, which varies from trial-to-
trial. And fourth, the non-decision time, which summarizes 
the duration for stimulus encoding as well as motor response 
execution (Ratcliff & Van Dongen, 2011). Moreover, an 
omission parameter for missing responses was proposed, 
describing the probability that the stimulus encoding fails or 
that no evidence can be sampled from an encoded stimulus 
(Matzke et al., 2017a; Matzke et al., 2017b). Evidence 

accumulation models were previously used with the DRT 
(e.g., Tillman et al., 2017; Castro et al., 2019). A (one-
boundary) Wald model revealed that cognitive load was 
associated with a lower rate of evidence accumulation, a 
higher response threshold, a faster non-decision time as well 
as a higher response omission parameter (Castro et al., 2019).  

The aim of this paper was to analyze whether the 
effects of Castro et al.’s (2019) investigation can be replicated 
for the BT + DRT to ensure its validity. Furthermore, 
potential practice effects of the BT + DRT were investigated 
throughout an experimental session. 

2. Method 

2.1 Participants 
In total, 32 participants with a mean age of 27 years 

(SD = 6.7) participated in the study. 

2.2 Material 

2.2.1 BT + DRT 
The Box Task (BT) is designed as a continuous 

tracking task in which a dynamic box has to be kept within 
two boundaries using a steering wheel and gas pedal (for a 
detailed description see Trommler et al., 2021). In parallel, a 
tactile Detection Response Task (DRT) is used according to 
the ISO Standard (see ISO 17488, 2016). That means, 
participants should respond to a vibration stimulus which is 
placed on their shoulder by pressing a button on the steering 
wheel. The hit rate and the mean reaction time for hits were 
captured.  
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2.2.2 Secondary Tasks 
For the conditions with secondary task engagement, 

two cognitive tasks were used in an easy and difficult version 
– the n-back task (Kirchner, 1958) and memory scanning task 
(MST; Sternberg, 1966). During the n-back task, participants 
were instructed to recall the number at a predetermined 
position within a series (0-back (easy version) versus 2-back 
(difficult version)). During the MST, different city names 
were presented acoustically while the participants had to 
answer whether the item was included in a memorized set of 
two (easy version) versus five (difficult version) German city 
names or not. 

2.3 Design and Procedure 
The cognitive secondary task was a within-subjects 

factor with five levels: no secondary task, easy and difficult 
version of secondary task 1 as well as easy and difficult 
version of secondary task 2. The duration of practice of the 
BT + DRT with 1.5, 3 or 4.5 minutes of practicing was 
examined as a between-subjects factor. Both independent 
variables were balanced. 

An experimental session started with a practice trial of 
the BT + DRT depending on the three practice conditions. 
For each secondary task condition (n-back task or MST), 
there was a test block consisting of two trials (easy and 
difficult task version). These trials were performed as dual-
task conditions, i.e., performing the BT + DRT with 
secondary task engagement. Before (initial baseline), 
between (intermediate baseline), and after (final baseline) the 
two test blocks, three baseline drives (i.e., performing the 
BT + DRT without secondary task engagement) were 
conducted. Each trial had a duration of 210 seconds. 

3. Results 

3.1 Model Estimation 
For the model estimation, DMC (Heathcote et al., 

2019) was used. A Wald model was employed based on 
previous findings (e.g., Castro et al., 2019). Thus, a separate 
rate of evidence accumulation, response threshold, non-
decision time and omission probability was calculated for 
each of the seven trials (three baseline drives and four dual-
task conditions). Additionally, the starting point of evidence 
accumulation varied across trials. The results can be found in 
Figure 1 to 4 in Appendix A. 

3.2 Parameter Tests 
For the parameter tests, Bayesian p-values were 

calculated (see Matzke et al., 2015). 

3.2.1 Secondary Task Demand 
A lower efficiency in processing stimulus-related 

information under divided attention was confirmed by a 
significantly decreased rate of evidence accumulation for all 
dual-task conditions compared to the baseline drives (all 
p < .001). Furthermore, compared to all baseline drives, a 
significant increase in the response threshold was observed 
for the dual-task conditions (all p < .001). A slight but also 
significant difference between the baseline and dual-task 
conditions was found for the non-decision time, with faster 
encoding and motor execution processes when cognitive load 

was present (all p < .001). Likewise, the probability of 
omissions increased significantly for all dual-task conditions 
compared to the baseline drives (all p < .001). 

Moreover, all dual-task conditions differed 
significantly from each other in the rate of evidence 
accumulation (all p < .001), except for the easy and the 
difficult MST. Additionally, response thresholds were almost 
equivalent for all dual-task conditions, except for the difficult 
n-back task, which was associated with a significantly lower 
response threshold than the other dual-task conditions (for the 
difficult n-back task and easy n-back task: p = .021). The 
omission parameter revealed significant differences between 
all dual-task conditions, except for the easy MST and the easy 
n-back task (for difficult MST and easy n-back task: p = .002; 
all other: p < .001). 

3.2.2 Baseline Drives 
The rate of evidence accumulation increased 

significantly between the initial and intermediate baseline 
drive (p < .001) as well as between the intermediate and final 
baseline drive (p = .009). Furthermore, the omission 
probability decreased significantly between the initial and 
intermediate baseline drive (p < .001). No significant 
differences were observed in the response threshold and the 
non-decision time. 

4. Conclusion 
Previous findings regarding the influence of cognitive 

load on the DRT were confirmed. Due to limited-capacity 
attention, the efficiency in information processing decreased 
and failures in stimulus encoding or evidence sampling 
increased in the presence of cognitive load. In addition, 
cognitive load led to a higher response caution as well as a 
faster non-decision time. These findings underpin the validity 
of the BT + DRT. 

Furthermore, the rate of evidence accumulation 
increased significantly across the three baseline drives. This 
suggests a substantial practice effect throughout the 
experimental session. However, in-depth analyses for the 
three practice conditions are pending. The results could have 
implications for a sufficient duration of practicing the 
BT + DRT. 
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Fig. 1. Rate of evidence accumulation across the task 
conditions. Error bars represent Bayesian 95% credible 
intervals. 

Fig. 2. Response threshold across the task conditions. 
Error bars represent Bayesian 95% credible intervals. 

Fig. 3. Non-decision time across the task conditions. Error 
bars represent Bayesian 95% credible intervals. 

Fig. 4. Probability of omissions across the task conditions. 
Error bars represent Bayesian 95% credible intervals. 
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Abstract: Driver inattention contributes to many road accidents, with fatigue playing a prominent 
role. Hence, driver assistance systems that monitor driver fatigue and intervene (e.g., by alerting the 
driver) can be beneficial in reducing fatigue-related accidents. This paper reviews the literature on 
fatigue detection using heart activity (e.g., heart rate variability, heart rate) and respiration indices. 
We aim to point to the most reliable physiological indices impacted by fatigue and present state-of-
the-art driver fatigue detection algorithms and their accuracy. Our review shows that heart rate, 
systolic blood pressure, and respiration rate are among the most predictive indicators of driver fatigue. 
Our review also shows that when using valid physiological indices in conjunction with cutting-edge 
classification techniques, it is possible to differentiate fatigued from non-fatigued drivers with an 
accuracy sometimes as high as 95%. Our review can assist developers of fatigue detection systems. 
 

1. Introduction 
Fatigue, a psychophysiological state 

characterized by decreased alertness and vigilance, 
is one of the leading causes of road accidents 
(Bharadwaj et al., 2021), possibly because fatigued 
drivers might fail to pay attention to the road and 
traffic (Wang et al. 2018). Thus, driver assistance 
systems (DAS) that would monitor drivers' states 
and alert them about their fatigue might improve 
driving safety. Accordingly, potential developers 
of such DAS would benefit from a literature review 
that outlines the best indicators from a wide range 
of fatigue indices, e.g., blood pressure (BP), heart 
rate (HR), heart rate variability (HRV), and 
respiration rate (RR), as well as the latest 
classification algorithms, e.g., support vector 
machine (SVM) and neural network (Jeon et al., 
2014; Liang et al., 2008).  

This paper presents a review on fatigue 
detection using heart activity, respiration indices. 
We aim to point to the most reliable indices 
impacted by fatigue and present state-of-the-art 
driver fatigue detection algorithms and their 
accuracy. 

2. Method 
The review process involved three stages: (1) 

identification of relevant literature, (2) a meta-
analysis for effect size in two steps, and (3) 
evaluation of common driver fatigue classification 
models and their accuracy. 

2.1 Search strategy and selection criteria 
Relevant literature was identified through 

Google scholar, IEEE, and ScienceDirect. The 
search process used a combination of fatigue 
keywords ("fatigue", "drowsiness") along with 
physiological indices ("ECG", "HR", "HRV", 
"Respiration rate"). We also conducted the search 
with and without driving-related terms ("drivers" 
and "accidents"). The following inclusion criteria 
were used: studies reporting accuracy, effect sizes, 
or statistical significance. 

2.2  Sample characteristics 
A total of 25 papers were included in this 

review based on the preceding criteria. The 
aggregated number of participants was 761. The 
psychophysiological indices in the retrieved 
studies were: ECG time-domain indices (RMSSD, 
RMSDD, pNN50, RRI, HR), ECG frequency-
domain indices (Total Power, VLF, LF, HF, LF/HF, 
LF-Normalized units (NU), HF-Normalized units 
(NU), asymmetry of the spectrum, median 
frequency of the power spectrum, BW50), 
nonlinear-domain indices (SDNN, Entropy, SD1, 
SD2, SD1/SD2, Hurst exponent, Short scaling 
exponent) and other parameters, such as systolic 
blood pressure (SBP), diastolic blood pressure 
(DBP), inspiration-to-expiration (I: E), and RR. 
The classification techniques used for driver 
fatigue detection included Linear Discriminant 
Analysis (LDA), Multimodal Fusion Recurrent 
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Neural Network (MFRNN), Neural Network, and 
Support Vector Machines (SVM). 

2.3 General Procedural Framework 
Data from each study were analyzed using 

meta-analytic techniques (see Del Re, 2015; 
Mikolajewicz & Komarova, 2019). We used a 
three-stage approach to identify valid physiological 
indices of driver fatigue. First, we assessed which 
parameters are significantly affected by fatigue. 
Next, we examined the pooled effect size 
(Hedges’s g) of the subset of features identified. 
Last, we presented the accuracy, sensitivity, and 
specificity of different fatigue detection algorithms. 

3. Results 

3.1 Parameters Evaluation 
Table 1 demonstrates which parameters are 

significantly affected by fatigue driving (marked in 
bold text). We only considered parameters that 
were reported in at least two different studies. Thus, 
we excluded many of the indices that we listed in 
sub-section 2.2. The 1st column in Table 1 presents 
a selection of indicators used to detect driver 
fatigue, and the 2nd column shows the direction of 
change in these indicators under fatigue. 

The numbers in square brackets in the 2nd 
column refer to the reference I.D. in Appendix A. 
The 3rd column in Table 1 shows the 'significant 
increase to significant decrease ratio'. Finally, the 
4th column shows the absolute value of the natural 
logarithm of the ratio divided by its standard error, 
with a larger value indicating a greater deviation 

from the "no-effect" assumption (see Footnotes a-
b, Table 1).  

Results reveal that HR (Ln = 1.78), LF/HF 
(Ln = 1.73), SDNN (Ln = 1.66), VLF (Ln = 1.62), 
and LF (Ln = 1.60) are among the physiological 
indicators that were most markedly and 
consistently affected by fatigue manipulations, 
followed by HF (Ln = 1.35), I: E (Ln = 1.29), SBP 
(Ln = 1.17), and RR (Ln = 0.80). 

3.2 Overall Effect Size and Heterogeneity 
Table 2 shows the effect sizes and 

heterogeneity of key indices. In driving-simulator 
studies, the effect sizes ranged between -1.8 to 3.15 
and the p-value between 0.000 to 0.084. In real 
driving studies, the effect sizes ranged between -
0.55 to 0.49 and the p-value between 0.289 to 0.424.   

Overall, the highest effect estimate was 
found for HR (Hedge's g = -1.80), LF/HF (Hedge's 
g = -0.61), SDNN (Hedge's g = 2.65), VLF 
(Hedge's g = 3.15), and LF (Hedge's g = 0.71). 
Regarding the overall direction of change, SDNN, 
VLF, LF, HF, and I: E had higher values if driving 
while fatigued, whereas HR, LF/HF, SBP, and RR 
had lower values.  

3.3 Classification Evaluation 
Table 3 presents the classification results of 

fatigue states (fatigued/not fatigued) with different 
physiological indices, classifiers, and methods to  
detect fatigue. Accuracy ranged between 58% and 
95%; sensitivity ranged between 59% and 95%, 
and specificity was between 70% and 98%. SVM-
based prediction model with entropy data provided 

Table 1. Driver fatigue-related changes in HR, Respiratory, and BP indices. 
Indices Increase| Decrease| Non-Significant Effect Increase-to-

Decrease Ratio 
LN (Increase-to-
Decrease) |/S.E. 

HR I=0|D=7[1,4,6,12,17] |n.s.=6[13,22] 0.33[0.1,1.12] 1.78 
LF/HF I=1[8] |D=8[2,3,6,8,10,14,15,17] |n.s.=5[6,13,22] 0.36[0.12,1.14] 1.73 
SDNN I=5[6,8] |D=0|n.s.=1[22] 6[0.72,49.84] 1.66 
VLF I=5[6,10,17] |D=0|n.s.=0 11[0.61,198.94] 1.62 
LF I=10[2,6,7,8,15,16] |D=3[6,10,17] |n.s.=4[6,17] 2.27[0.83,6.2] 1.60 
HF I=9[2,6,8,10,15,17] |D=3[6,7,17] |n.s.=6[6,8,13] 1.92[0.75,4.96] 1.35 
I: E I=3[20] |D=0|n.s.=0 7[0.36,135.52] 1.29 
SBP I=0|D=3[6,17] |n.s.=2[4,6] 0.33[0.05,2.12] 1.17 
RR I=1[1] |D=3[20] |n.s.=1[22] 0.5[0.09,2.73] 0.80 

Note. SBP: systolic blood pressure; I: E: inspiration-to-expiration; RR: respiration rate. (a) The Increase to decrease ratio 
used a modified count of the decrease and increase counts: Decrease new =Decrease+0.5*non-significant +0.5 and Increase 
new= Increase +0.5*non-significant+0.5. This formulation minimizes the differences between the significant increase and 
significant decrease in the case of a small pull of studies. The 0.5 addition is common for small sample sizes to avoid 
dividing by zero. (b) The standard error for the Ln (Increase to decrease ratio) is (1/Increase new+1/decrease new) ^0.5. 
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the best accuracy compared to the other 
classification models, with sensitivity, specificity, 
and accuracy of 95%. 

The neural network model applied to the 
spectral image of the PSD data and MFRNN model 
with HR data were also found to have good 
accuracy (90% and 92% accuracy, respectively). 
On the other hand, the LDA model with HR data 

provided a relatively low classification accuracy 
(64%). Finally, using the LDA model with HR and 
respiratory indicators combined yielded the lowest 
accuracy (58%) but the highest specificity (98%). 

4. Discussion and Conclusions 
The objective of this review was to assess the 

feasibility of estimating driver fatigue using heart 

Table 2. Pooled effect size and dispersion of effects. 

Indices S K N Q2 I2(%) τ2 Effect size (Hedges’s g) Increase-to-
Decrease Ratio t P 

HR 5 7 135 4.38 0.00 0.06 -1.80 [-2.4, -1.19] -7.31 0.0003 
LF/HF 7 10 153 1367.74*** 0.99 0.57 -0.61 [-1.17, -0.05] -2.46 0.0363 
SDNN 3 6 59 2 0.00 0.20 2.65 [1.77,3.53] 7.73 0.0006 
VLF 2 4 80 0 0.00 0.00 3.15 [1.72,4.58] 7.01 0.0059 
LF 4 7 103 0 0.00 0.00 0.71 [0.54,0.88] 10.46 0.0000 
HF 4 10 103 0.17 0.00 0.00 0.46 [-0.07,0.99] 1.98 0.0787 
I: E 1 3 30 1490.63*** 1.00 0.38 1.34 [-0.19,2.87] 3.76 0.0640 
SBP 3 5 115 5.81 0.31 0.39 -1.38 [-2.44, -0.32] -3.63 0.0222 
RR 2 4 39 35.15*** 0.91 0.96 -1.35 [-3.03,0.34] -2.55 0.0841 
Data from real driving studies - only indices from at least two different studies 
LF/HF 3 4 39 548.58*** 0.99 1.34 -0.55 [-2.42,1.33] -0.92 0.4242 
SDNN 2 3 19 0.04 0.00 0.00 0.49 [-0.98,1.96] 1.43 0.2886 
Note. SBP: systolic blood pressure; I: E: inspiration-to-expiration; RR: respiration rate. Q2: heterogeneity between effect sizes; I2: 
the proportion of heterogeneity; τ2: The absolute value of true variance across studies; S: The number of studies meeting the 
inclusion criteria for this meta-analysis; K: The number of estimates (sometimes more than one per study); N: Accumulated 
sample size. Bold text indicates significant Hedge’s g values (P < 0.05); *** p<0.001. 
 

Table 3. Fatigue Classification Results 

Study Method N Indices Model Classification 
Results (%) 

Salvati et al. (2021) PERCOLS 3 0.0017Hz,0.0035Hz,0.0053Hz Analytical 
Formula 

Acc =63 

Vicente et al. (2016) Video – expert 
evaluation  

30 Respiratory frequency min 
(NU), Respiratory frequency 
min, LF (NU) median absolute 
deviation, LF median absolute 
deviation, LF (NU) min, LF 
min, HRI min 

LDA Acc =58 
PPV=96 
Se =59 
Sp =98 

Awais et al. (2017) Video - expert 
evaluation 

22 LF(NU), HF (NU), LF/HF, VLF 
(NU), LF(NU), HF (NU), 
LF/HF, VLF (NU) 

SVM Acc =70 
Se =69 
Sp =70 

Li & Chung (2013) PERCOLS 4 Entropy SVM Acc =95 
Se =95 
Sp =95 

Li & Chung (2013) PERCOLS 4 LF/HF SVM Acc =69 
Se =62 
Sp =75 

Ahn et al. (2016) Well-rested vs. 
sleep-deprived 

11 HR LDA Acc =64 

Patel et al. (2011) Video - expert 
evaluation 

12 Spectral image of the PSD Neural 
network 

Acc =90 

Du et al. (2021) KSS 20 HR MFRNN Acc =92 

Note. LDA: linear discriminant analysis; SVM: support vector machine; PERCLOS: a measure of eye-closure; MFRNN: 
multimodal fusion recurrent neural network; KSS: Karolinska sleepiness scale; Acc: accuracy; Se: sensitivity; Sp: 
specificity; PPV: positive predictive value. 
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rate and respiratory indices. We evaluated which 
physiological indicators are most useful for 
detecting driver fatigue and surveyed the utility of 
different data reduction methods and classification 
algorithms.  

Results showed that HR, VLF, SDNN, LF, and 
LF/HF are promising indicators of driver fatigue, 
supporting previous findings (Chen et al., 2021). 
These findings are based on studies that utilized 
various evaluation methods (e.g., real-world 
observations and simulator experiments). It is 
important to note that the effect sizes and p-values 
obtained from real-driving studies were smaller 
than those of simulator studies. This is not 
surprising given the lack of research examining 
driver fatigue in real-road driving. More real-road 
driving studies are needed. 

Accuracy, sensitivity, and specificity in the 
studies reviewed ranged between 58%-95%, 59%-
95%, and 70% -98%, respectively. These values 
indicate that heart activity indices might have a 
strong potential for detecting fatigue. However, 
note that our review consists of studies that 
analyzed various data sets using different 
classification algorithms, making it difficult to 
compare their results. Therefore, future empirical 
studies should test their performance on the same 
data sets to provide reliable comparisons between 
classification models. We also recommend that 
future research in driver fatigue detection 
investigate the utility of personalized detection 
algorithms. 

Despite the need for more empirical data on 
driver fatigue detection and for different 
approaches for analyzing this data (e.g., running 
different classifiers on the same data set), the 
findings of our review still offer valuable insights 
for both DAS developers and investors regarding 
DAS development considerations, implementation, 
and evaluation. Further, this study has potential 
applications for road safety researchers interested 
in biosignal-based driver fatigue detection. 
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Appendix A  
 

 
 

Table A1. A list of reviewed studies according to their domain, methodological characteristics and reported measures  
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1 Argyle et al. 
(2021) 

Psychol
ogy 

Laboratory HR, RR 34 2 2 0 

2 Balasubramanian 
& Bhardwaj 
(2018) 

Driving Simulator LF, HF, LF/HF 35 3 3 0 

3 Lee et al. (2020).  Driving Real Driving LF/HF 20 1 1 0 
4 Lal & Craig 

(2002) 
Driving Simulator DBP, SBP, HR 35 3 3 0 

5 Salvati et al., 
(2021) 

Driving Real Driving 0.0017Hz, 0.0035Hz, 0.0053Hz 3 0 0 1 

6 Liang et al. (2008) Driving Simulator SBP, DBP, HR, SDNN, HF, LF, VLF, LF/HF 40 30 30 0 
7 Zhao & Zheng 

(2012) 
Driving Simulator Entropy, HF, LF 13 3 3 0 

8 Rodriguez-Ibañez 
et al. (2012) 

Driving Real Driving RMSDD, RRI, SDNN, HF, LF, LF/HF, and 
several spectrum indices  

10 22 22 0 

9 Vicente et al. 
(2016)  

Driving Simulator & 
Real Driving 

7 indices based on Respiratory frequency, HR, 
and LF  region.  

30 7 7 1 

10 Awais & Drieberg 
(2017) 

Driving Simulator VLF, LF, HF, LF/HF, VLF  
(both normalized and non-normalized values) 

22 4 4 1 

11 Li & Chung 
(2013) 

Driving Simulator LF/HF, Entropy 4 0 0 2 

12 Ahn et al. (2016) Driving Simulator HR 11 1 1 1 
13 Jung, Shin & 

Chung (2014) 
Driving Field test HF, HR, LF/HF, pNN50, RMSSD, RRI 2 15 15 0 

14 Patel et al. (2011) Driving Simulator Spectral image of the PSD, LF/HF 12 1 1 1 
15 Bhardwaj & 

Balasubramanian 
(2019) 

Driving Simulator LF, HF, LF/HF, SD1, SD2, SD1/SD2 20 6 6 0 

16 Huang et al. 
(2019) 

Driving Real Driving LF 6 3 3 0 

17 Liang et al. (2007) Driving Simulator SBP, HF, HR, LF, LF/HF, RMMSD, RRI, TP, 
VLF 

40 13 13 0 

18 Du et al. (2020)  Driving Simulator HR 20 0 0 1 
19 Viswanathan et al. 

(2011) 
Driving Simulator SDNN, RMSSD, VLF, LF, HF, LF/HF 20 0 0 1 

20 Kiashari et al. 
(2020) 

Driving Simulator RR, SD RR, I: E, SD I: E, RR, SD RR, I: E, SD 
I: E 

30 6 6 10 

21 Siddiqui et al.  
(2021) 

Driving Real Driving RR 40 0 0 1 

22 Heikoop et al. 
(2019) 

Driving Real Driving HR, LF/HF, SDNN, RR 9 4 4 0 

23 Babaeian& 
Mozumdar (2019) 

Control 
Center 

Simulator 24 features in frequency domains from the LF 
and HF regions 

25 0 0 16 

24 Khushaba et al. 
(2013) 

Driving Simulator 23 indices 31 0 0 3 

25 de Naurois et al. 
(2019) 

Driving Simulator RRI, SDNN, CV RMSSD,  RR, SDRR, CVRR, 
RMSSD RR, RRI, SDNN, CVRRI 

8 0 0 3 

Note. SBP: systolic blood pressure; DBP: diastolic blood pressure I: E: inspiration-to-expiration; RR: respiration rate; HR: heart rate; Sig: 
the number of significant reports; Estimates: the number of effect size reports; Accuracy: the number of accuracy estimates. 
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Abstract: Automation misuse can cause traffic hazards when drivers over-rely on automation and use it in ways that are 
not intended by the designers of the system. Automation abuse refers to designers of automation designing systems 
without regard to the consequences for human performance. In a driving simulator study, half of the participants were 
observed sleeping at least once during six drives with a conditionally automated driving (CAD) system. Sleep is an illicit 
driver behaviour in CAD because drivers must be available to take over vehicle control at system boundaries. However, 
sleep was not only observed in the driving simulator environment, but nearly half of the participants indicated that they 
intend to sleep during CAD in real life. CAD usage, gaze behaviour, subjective evaluation of CAD, trust and mental 
model of CAD were compared for participants who indicated they intended to sleep in CAD and participants who 
indicated no intention to sleep. The majority of participants understood that sleep is an illicit driver behaviour in CAD. 
Participants with the intention to sleep used the simulated CAD more and they reported higher comfort levels during 
CAD usage and perceived takeover situations as safer. Semi-structures interviews after the last drive indicated that 
drivers would sleep during CAD once they had some experience with the system. The results suggest that drivers, after 
gaining experience with CAD, become complacent and sleep during CAD even though they know that it can potentially 
lead to dangerous situations. Sleep during CAD is both automation misuse and automation abuse. Driver monitoring 
systems for CAD must detect and prevent sleep in drivers.  
 

1. Introduction 
When human operators of automated systems “rely 

uncritically on automation without recognizing its limits”, 
they may use it in ways not intended by the designers of the 
automation. On the other hand, designers of automation 
might design systems without considering the consequences 
for human behaviour (Parasuraman & Riley, 1997). In our 
driving simulator study on “naturalistic” usage of a 
conditionally automated driving (CAD) system, we observed 
that 14 of 30 participants napped at least once during six 
drives. All participants were instructed to remain 
“sufficiently alert” to be able to resume control of the vehicle 
at any time during the drives. In CAD (level 3 according to 
SAE, 2021), the driver must respond with a short notice to a 
request to intervene at system limits or system failures. In our 
study, participants did not receive a warning when they were 
classified as “unavailable” to take back control as it is 
requested for CAD systems (UNECE, 2021). A request to 
intervene was only issued when drivers reached sleep stage 
N2 (stable sleep according to AASM, 2017). After 
completing six drives with the CAD in the simulator, drivers 
were asked about their intention to use CAD in real life. Half 
of the sample said they would sleep during CAD in real life. 

Over-trust, high workload and a low (perceived) risk 
are associated with the misuse of automation (Parasuraman & 
Riley, 1997). In a naturalistic driving study, misuse of 
automation due to overconfidence in the system’s capabilities 
led to 57% of all safety-critical events (Kim, Song, & 
Doerzaph, 2020). A wrong understanding of the system or 
wrong ‘mental model’ is one factor that leads to over-trust 
and over-confidence in the system (Abraham, Seppelt, 
Mehler, & Reimer, 2017; Seppelt & Victor, 2020). Studies 
show that partially and conditionally automated driving 
contribute to the development of drowsiness (Neubauer, 

Matthews, & Saxby, 2014; Schömig, Hargutt, Neukum, 
Petermann-Stock, & Othersen, 2015; Vogelpohl, Kühn, 
Hummel, & Vollrath, 2019). The observed instances of sleep 
during our study could be partially explained by the simulator 
environment. However, half of the participants stated that 
they would sleep during CAD in real life. The aim of the 
presented study was to understand why drivers intend to sleep 
during CAD. 

2. Method 
The principle objective of the driving simulator study 

was to investigate behavioural adaptation to a CAD. 
Participants were invited to take part in six driving sessions 
in a high-fidelity driving simulator. During each drive, they 
could use a CAD system for motorways. Participants were 
instructed with the wording of §1b of the German Road 
Traffic Act, which specifies the responsibilities of the driver 
when using CAD: 

“[…] the driver may divert his attention from other 
traffic and control of the vehicle; he must, however, remain 
sufficiently alert that he can comply with the obligation [to 
retake control in response to a request to intervene]” 

During each drive, participants experienced system 
boundaries and requests to intervene with a takeover time 
budget of 15s. Two of the driving sessions, the Baseline drive 
and the Sleepy drive (see Table 1), were designed with the 
aim of investigating the effects of fatigue and sleepiness. The 
EEG was measured during both drives. The Sleepy drive was 
scheduled at 6 a.m. and participants were sleep deprived to 
promote sleepiness during the drive. The driving environment 
was designed to be monotonous in both drives, with low 
traffic volume and fog to limit visibility. Sleep stages were 
coded according to the American Academy of Sleep 
Medicine standard (AASM, 2017) based on EEG. Eye-
tracking parameters were measured using a SmartEye® four-
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camera system. Driving and system parameters were 
recorded using Silab®. For a more detailed description of the 
study design and procedure, please refer to Metz et al., 2021. 

2.1 Post-drive questionnaire and interviews  
After each drive, participants completed a short 

version of the L3Pilot common questionnaire (Metz et al., 
2020), which included questions on trust and attitudes 
towards CAD, willingness to use and mobility-related 
questions. The scale ranged from 1 (strongly disagree) to 5 
(strongly agree). The questions on the mental model of CAD 
were added specifically for this study. 

Although the Sleepy drive was designed to induce 
sleepiness, we did not expect participants to sleep. After 
observing participants falling asleep, we designed an 
interview guideline on intention to sleep during AD and 
conducted post-drive interviews with a subsample. The 
interview guideline included the following questions, among 
others: 

1.  Did you sleep during the study when the automated 
driving system was active? Did you sleep intentionally?  

2.  If you could use such a system in real life, would 
you sleep when it was active?  

3. Is it possible to respond appropriately to a request 
to intervene when you are asleep? 

2.2 Sample 
N = 31 participants (13 female, mean age = 37, SD = 

12) took part in the study. The interviews were conducted 
with a subsample of 22 participants (7 female, mean age = 41, 
SD = 12). All participants held a valid driving license and had 
completed an extensive driving simulator training.  

2.3 Data analysis 
The data of one participant were excluded from the 

analyses due to data loss, resulting in a final sample of N = 
30 participants. A Multivariate Analysis of Variance 
(MANOVA) was performed to compare the effects of 
relevant behavioural measures and questionnaire responses 
between participants with the intention to sleep during CAD 
and participants without the intention to sleep during CAD. 
The dependent variables were: 
 System usage (%): proportion of time the system was 

activated (measured with Silab) 
 NDRA (%): proportion of driving with CAD which was 

spend on non-driving related activities (coded by the 
experimenter throughout the drives) 

 PRC: Percentage Road Center, proportion of time the 
participant’s gaze was directed to the windshield 
(measured with SmartEye®) 

 PerCLOS: Percentage of eyelid closure, an eye-
tracking based measure of driver drowsiness (Dinges & 
Grace, 1998), measured with SmarteEye®) 

 Willingness to use: “I would use this system if it was in 
my car.” 

 Perceived safety: “I felt safe when driving with the 
system active.” 

 Workload: “Driving with this system was demanding.” 
 Trust: “I trust the system to drive.” 
 Comfort: “Driving with the system active was 

comfortable.” 
 Increased drowsiness: “Driving with the function on 

long journeys would make me tired.” 
 Safety during takeover: “During the takeover I always 

felt safe.”  

3. Results 
14/30 participants experienced EEG-verified sleep at 

least once (Observed Behaviour). In the questionnaire after 
the sixth driving session, 15/30 participants stated that they 
would sleep at least very infrequently if they had CAD in their 
car (Behavioural intention). In the same questionnaire, 
participants were asked about their mental model of CAD. 
They had to indicate if a statement was correct (Yes) or 
incorrect (No) or if they were not sure (I don’t know). 2/30 
participants stated that sleeping is allowed in CAD and three 
participants were not sure if it is allowed (Mental model, see 
Table 2). 

3.1 Behavioural data and questionnaire data 
The MANOVA revealed significant effects of system 

usage, NDRA engagement, willingness to use, comfort and 
perceived safety during takeover on the behavioural intention 
to sleep (for an overview of statistical figures, see Table 3). 

Table 1 Overview study sessions 

Session Group 1 Group 2 
1 Short drive Short drive 
2  Short drive Short drive 
3 Baseline drive Sleepy drive 
4 Short drive Short drive 
5 Sleepy drive Baseline drive 
6 Short drive Short drive 

 

Table 2 Overview of observed behaviour during the 
study, behavioural intention in real usage and mental 
model of CAD 

Observed 
behaviour 

Behavioural 
intention 

Mental model  
(Sleep allowed) 

  Yes No I 
don’t 
know 

Sleep  Yes 2 6 3 
 No 0 3 0 
No sleep Yes 0 4 0 
 No 0 12 0 
     
Row 6a  Row 6b Row 6c   
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3.2 Interview data  
When interviewed after the drive, 7/22 drivers stated 

that they would sleep when using a CAD system. They stated 
that time would pass more quickly and they would catch up 
on sleep. Some participants indicated that they would only 
sleep under certain conditions, for example only in low traffic 
scenarios or only on familiar routes. Some participants 
indicated that they would observe the system first and if it 
worked as intended, they would feel safe enough to sleep. In 
general, participants who intended to sleep indicated that it 
would make their journey easier. Only one participant 
believed that it is possible to respond appropriately to a 
request to intervene after sleep. 

4. Discussion 
Sleep is an illicit behaviour during CAD and it can 

lead to dangerous situations if drivers are not able to take over 
vehicle control at system boundaries. Despite repeated 
experience with system boundaries, half of the participants of 
our driving simulator study stated their intention to sleep 
during CAD. The majority of the sample was aware that 
sleeping is not allowed in CAD. Thus, a wrong system 
understanding was not the reason for participants’ intention 
to sleep. Contrary to Parasuraman and Riley’s (1997) 
definition of automation misuse as being associated to over-
trust, we found no relationship between trust and intention to 
sleep. Participants who were generally more willing to use 
CAD and used it more frequently during the study indicated 
their intention to sleep in CAD. This was also reflected in 
interview statements that participants found it useful and 
comfortable to sleep while travelling. Increased sleepiness 
due to automation or the objective drowsiness during CAD 

use, as measured with PerCLOS, did not influence the 
intention to sleep in CAD. The perceived safety of driving 
with CAD did not have an effect, but the perceived safety 
during takeovers had an effect on the intention to sleep. One 
explanation for this could be that drivers who experience 
takeover situations as safe might believe that they can handle 
these situations safely after waking up from sleep. It seems 
that after drivers gain experience with the system, they 
become complacent (Parasuraman & Manzey, 2010). 
Although they are aware of system boundaries, they develop 
the false feeling that “everything is fine” when in fact, sleep 
can lead to hazards in takeover situations (Wörle, Metz, 
Othersen & Baumann, 2020). However, it has to be taken into 
account that in our study, although we used EEG to monitor 
driver state and detect sleep in drivers, we did not warn 
participants before they fell asleep. That way, the CAD 
system enabled drivers to sleep and did not prevent them from 
falling asleep. Drivers sleeping during CAD in our study and 
drivers’ intention to sleep is an abuse of automation. CAD 
enables drivers to retrieve from the driving task and therefore 
increases the risk for sleep. 

5. Conclusions 
Despite knowing that it is not allowed, drivers might 

become complacent and sleep when using a CAD system. 
Sophisticated driver monitoring systems should be 
implemented not only to detect drowsiness, but also to 
prevent drivers from falling asleep. If a driver falls asleep, a 
minimal risk maneuver should be initiated to ensure safety.  
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Assessment of the effectiveness of several countermeasures in reducing 
driver fatigue and associated risks for safety during autonomous driving. 
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Abstract: Driving an autonomous vehicle gradually induces Passive Fatigue (PF), and is likely to compromise safety when 
the driver is required to take back manual control. Literature suggests that thermal stimulation, auditory stimulation and 
secondary tasks engaging during manual driving are countermeasures that mitigate PF. However, no study to date 
attempted to replicate these results in autonomous driving conditions. To this end, we plan to conduct a randomized 
controlled experiment on a high-fidelity driving simulator (n=100). The study will employ a between-group design with 
the ‘type of countermeasure’ as an independent variable. To test the effect of those countermeasures on PF, five 
experimental groups will therefore be created, i.e. Control group; Thermal group with 4-min cooling at 18°C; Audio group 
with music listening group; Trivia group with secondary task, and Light condition with blue and red light. PF will be 
assessed using the Karolinska Sleepiness Scale and ocular parameters, while driving performance will be measured based 
on reaction times to a safety hazard. Finally, user comfort will be evaluated using the comfort Likert scale in order to 
determine which of the five countermeasures leads to the best compromise between risk-reduction and comfort. The aim 
of this study is to determine the effectiveness of the countermeasures described above in reducing driver fatigue and 
associated risks for safety while preserving satisfactory levels of comfort. 100 participants will be recruited. Results are in 
progress but in this paper we show first results on fatigue performance and driving performance. Electrocardiogram data 
analysis is in progress in order to find cardiac or respiratory signatures of PF before behavioral signs. 

1. Introduction 
The Take Over (TO) situations are critical and 

currently the focus of research. After a long period of 
autonomous driving, the driver must be in a state that allows 
him to take back control of the vehicle in a safe and secure 
manner. So it is crucial to look into the notion of Active 
Fatigue (AF) and Passive Fatigue (PF).  

Indeed, several studies have also shown performance 
decrements in situations of cognitive overload or underload. 
Following these studies, Desmond and Hancock (2001) 
proposed a differentiated model of cognitive fatigue: active 
or passive. AF would be associated with cognitive overload 
whereas PF derived from underload and monotony. 
Workload reduction may be effective only for AF with PF 
calling for different countermeasures (May & Baldwin, 
2009). According to this model, in driving situations AF 
results from “continuous and prolonged task-related 
perceptual-motor adjustments,” while PF results from, 
“system monitoring with either rare or no overt perceptual-
motor response requirements'' (Desmond & Hancock, 2001, 
p. 455).  

In concrete terms, we could say that AF occurs when a 
person manually controls a system for extended periods of 
time, while PF occurs during periods of underload, requiring 
infrequent use of the controls (Eisert, 2018; Bernhardt et al., 
2019 ; May & Baldwin, 2009; Matthews & Desmond, 2002). 
Given that driving automation can induce underload 
conditions, PF may be more of a concern than AF to operators 

using automation in modern operational environments 
(Bernhardt et al., 2019; Saxby et al., 2013). 

Driving an autonomous vehicle gradually induces PF, 
and is likely to compromise safety when the driver is required 
to take back manual control. Literature suggests that thermal 
stimulation, auditory stimulation and engaging in secondary 
tasks during manual driving are countermeasures that 
mitigate PF (Navarro and al, 2019). However, no study had 
attempted to replicate these results in autonomous driving 
conditions. 

2. Method 

2.1 Setup 
To this end, we conducted a randomized controlled 

experiment on a high-fidelity driving simulator on 100 
participants. The study employed a between-group design 
with the type of countermeasure as an independent variable 
(i.e. thermal stimulation, auditory stimulation, secondary task 
engaging, light countermeasure). 

For thermal stimulation, the factor was tested at one 
level: 4 minutes cooling at 18° C, because 15 degrees is not 
comfortable for the user (Landstrom et al, 1999). The cooling 
duration and temperature are chosen based on previous 
studies (Schmidt, et al, 2017; Schmidt, Bullinger, 2017). The 
thermo-neutral climate was maintained (i.e. 24°C). To 
achieve cooling, we simulated the air conditioner to simulate 
a car vent that blows the wind towards the face, because facial 
stimulation is effective (Collins, and al 1996; Dalton, and al 
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2007; Health and als, 1990). Cooling began 4 minutes before 
the take-over request (see Figure 1). 

 

Figure 1. Illustration of simulator setup 

For the auditory stimulation, participants were asked 
to bring a playlist composed of heteroclite songs they like 
(Dalton, and al 2007). Music was played at comfort level 
immersively in the carriage (around 75 dBA) during the entire 
driving (Turner and als, 2017; Vogelpohl and als, 2019).  

For light stimulation, an ingenious and innovative 
countermeasure, we had red and blue LED lights around the 
cabin, as discovered by Elloit 2015, who thinks light could be 
a promising way to reduce fatigue. 

For the secondary task engaging condition, 
participants were asked to play the “TRIVIA game”, which 
consists of multiple choice questions (with 3 or 4 possible 
answers) that were read out and also displayed on a screen. 
Participants responded by pressing the buttons located on the 
center of the steering wheel.  

To test the effects of those countermeasures on PF, five 
experimental groups therefore was created, i.e. control group 
(Control); 4-min cooling at 18°C (Thermal) ; music listening 
group (Audio); static red and blue light (Light); secondary 
task engaging group (Trivia).  

PF was assessed using the Karolinska Sleepiness Scale 
(KSS) and ocular parameters, while driving performance was 
measured based on reaction times to a safety hazard. Finally, 
user comfort was evaluated using the Bedford scale in order 
to determine which of the four countermeasures leads to the 
best compromise between risk-reduction and comfort. 

 
Figure 2. Illustration of the safety hazard 

2.2 Purpose 
The aim of this study is to determine the effectiveness 

of the countermeasures described above in reducing driver 
fatigue and associated risks for safety while preserving 
satisfactory levels of comfort. 100 participants were 
recruited. Take Over (TO) situation was described in Figure 
2, occurring 40 min after the beginning without informing 
participants.  

First, individuals willing to participate answered an 
online form consisting of the Pittsburgh Sleep Quality Index 
(PSQI) and a demographic questionnaire. Selected 
participants demonstrated good sleep quality (PSQI        score 
< 6) and no regular intake of nicotine or drugs likely to 
interfere with cognitive functioning.  

Then, participants were matched into blocks of twenty 
individuals according to demographic criteria (i.e. same 
gender, similar age and driving experience). Within each 
block, participants were randomly assigned to one of the five 
experimental conditions in order to control for these 
demographic criteria. All participants were paid 30€ upon 
completion of the experiment.  

3. Results 

In this study, ANOVA always used the type of 
countermeasure as a grouping factor, and only changed the 
dependent variable (DV). 

3.1. KSS 
ANOVA: when T0’KSS as a DV shows no significant 

difference (F(4,95)=1.865, p>.001). So, the KSS score has no 
statistical difference for the five groups before the beginning 
of the scenario. 

 
ANOVA: when T35’KSS as a DV shows significant 

difference (F(4,95)=2.607, p<.001, η²p=0.099). Post Hoc 
Tests reveal an almost significant difference between Audio 
and Control (t=2,687 ; p<0.05) show audio better for 
awakeness. 

ANOVA: when ΔKSS (difference between KSS’0 and 
KSS’35) as a DV shows significant difference 
(F(4,95)=4.357, p<.001, η²p=0.155). Post Hoc Tests revealed 
a significant difference between: Audio vs Light (t=2,98; 
p<0.05) Trivia vs Control (t=2,775; p<0.05) and Trivia vs 
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Light (t=3,288; p<0.05). 

3.2. Pupils diameter 

The objective measure of fatigue where we recorded 
120’’ before TO. The more the pupils are dilated, the more 
the participant is “awake”.  

ANOVA: when pupil diameter as DV shows no 
significant difference(F(4, 95) = 1.656, p = 0.167, η²p = 
0.065). 

3.3. Fatigue questionnaire 
The Fatigue questionnaire included 4 dimensions : 

Physical fatigue, mental fatigue, motivation and stress with 
5-points Likert scales. 

On Physical fatigue, a mix ANOVA when Time as 
repeated factor (before vs after) shows significant difference 
(F(4,95) = 4.854, p < .001,η²p =0.018), no significant effect 
of mental fatigue (F(4,95)= 0.769, p >.05) and Stress (F(4, 
95) = 0.064, p >.05). 

On Motivation, a mix ANOVA with Time as repeated 
factor (before vs after) shows significant difference (F(4,95) 
= 33.531, p <.001,η²p =0.113). 

3.4. Take over performances 

3.4.1. Time to take over the steering wheel after the 
TO Request 

ANOVA: when time to reach the steering wheel as DV 
shows significant difference (F(4,95) = 3.422, p <.001, η²p 
=0.126). Post Hoc tests reveal significant differences between 
: Audio vs Trivia (t = 2,957; p <0.05) Light vs Trivia (t = 
3,116; p<0.05). 

3.4.2. Time to take over the pedals (accelerator or 
brake)  

ANOVA: when time to reach the pedals as a DV shows 
no significant difference (F(4,95) = 1.127, p =0.349, 
η²p=0.045). 

3.4.3. First time watching the middle and side rear 
view mirrors after the TO request 

ANOVA: when first time to watch the middle rear 
view mirror as a DV shows no significant difference 
(F(4,50)=0.615, p=0.654). 

ANOVA: when first time to watch the left side rear 
view mirror as a DV shows significant difference : (F(4,38) 
=2.994, p =0.030) : Audio with longer Control and Light 
condition. 

Many participants did not look at the middle mirror in 
the 60-second interval after TO. On average, participants 
watched it after the critical event. 

3.4.4. Agreeability rating of the countermeasures 

We do student tests on the Likfert scale (7 points,1 
not pleasant, 7 very pleasant). 

 Audio and Trivia condition are significant the most 
pleasant (F(4, 95) =14.189, p < .001, η²p = 0.359), Thermic 
condition is neither pleasant nor unpleasant with all others 
conditions (p > 0.05) and Light is Very slightly unpleasant 
(F(4, 95) = 37.93, p < .001, η²p = 0.517) (Figure 3 ). 

 

Figure 3. Comfort perceived in function condition 
of countermeasure. 

4. Discussion 

4.1. Impact of driving scenario and countermeasures on 
Fatigue 

Increased KSS scores for each group. Significant 
impact difference on KSS scores. No significant impact on 
the objective measure of fatigue (pupils diameter). This study 
confirms that autonomous driving increases fatigue 
(Induction). Listening to music and playing games seem to be 
promising ways to counteract this fatigue. 

4.2. Fatigue questionnaire 

Regardless of the group, participants were slightly 
more physically tired and less motivated after the driving 
scenario than before, but not affected by remediation 
conditions. 

4.3. Impact of countermeasures on Take Over 
performances 

Participants in TRIVIA conditions were slower to take 
control back of the steering wheel and then think about the 
pedals later.  

Watching the middle and side rear view mirrors is not 
a priority for drivers because they see them between 13 and 
40 seconds after TO request, and more than half of the 
participants didn't look at it.  

4.4. Impact of countermeasures on Reaction to the 
critical events  

More collisions in the Control group show no 
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difference between the groups concerning the way to avoid 
the accident, but Control participants were slower to react to 
the critical event. 

4.5. Agreeability of countermeasure  

Audio and Trivia were judged more pleasant than other 
conditions significantly : they are promising ways to 
counteract this fatigue as previous results ( Navarro et al 
2019). 

5. Conclusions and perspectives 
On subjectives fatigue, Audio and Trivia are the best 

countermeasures. Indeed, few of the countermeasures : Audio 
longer for first glaze and rear mirror in less time to take over 
on steering wheel : perhaps overconfidence. We need to test 
more in detail in future new experiments. 

Moreover, for reaction to the critical event : 
participants of the control group seem to have had more 
difficulties to properly react. So countermeasures have a 
positive effect on performance of TO. 

Finally, Trivia conditions are the best compromise 
between risk-reduction and driver comfort. But it could 
involve an immersion problem. 

This experiment is one of the first studies to examine 
the impact of fatigue due to a long period of autonomous 
driving on TO performances. Most of the studies : 
monotonous driving scenario but not autonomous. We plan to 
more control Take Over (TO) situations, situations more 
critical (eg less visual information to prevent driver, more 
difficult…). 

Finally we need to investigate other promotive 
remediation and analyse ECG to find PF signature and predict 
it. 
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Abstract: Sleeping during a trip is a promising feature of highly automated driving systems. However, sleep inertia may 
reduce the hedonic benefit of taking a nap. We investigated effects of time of day, individual chronotype, and driving 
time on subjective sleep inertia during highly automated driving in a simulator study. N = 20 participants (half 
morningness-, half eveningness-chronotypes) completed one driving session in the early morning and another in the late 
evening. Both sessions consisted of two manual drives, interrupted by a 50-minute nap while driving in automated mode. 
Participants indicated their subjective arousal, wellbeing and motivation to continue manual driving every five minutes. 
Results show not only that the participants felt worse in the evening than in the morning but also that arousal, wellbeing, 
and motivation were reduced if the chronotype did not fit the time of day. In the manual drive before the nap, arousal, 
wellbeing and motivation to drive decreased throughout the drive. After the nap, they remained on a low, but stable 
level.  Napping during high automated driving thus provides a certain benefit by averting a further impairment – 
especially for morningness types who take a nap in the early morning. 
 

1. Introduction 
In contrast to partially or conditionally automated 

driving, high driving automation (SAE Level 4; SAE, 2021) 
will enable the driver to completely refrain from the driving 
task. Sleeping during the trip is one of multiple conceivable 
use cases of highly automated driving (Becker et al., 2018; 
Kyriakidis, Happee & de Winter, 2015) and promises 
recovery from sleepiness (Hartzler, 2014; Milner & Cote, 
2009) 

However, level 4 equipped vehicles might request the 
driver to take over the driving task at the end of the 
Operational Design Domain (ODD; SAE, 2021). Estimated 
effects of sleep recovery are likely to be opposed by the 
phenomenon of sleep inertia which is defined as “grogginess, 
disorientation, and sleepiness that can accompany 
awakening from a nap” (Rosekind et al., 1995). Former 
studies demonstrated that sleep inertia impairs performance 
in various tasks (Ferrara & De Gennaro, 2000; Hilditch & 
McHill, 2019; Tassi & Muzet, 2000). In the context of 
automated driving, take over performance is worsened by 
sleep inertia (Wörle, Metz & Baumann, 2021; Wörle, Metz, 
Othersen & Baumann, 2020). The extent of sleep inertia is 
influenced by several external factors, like the time of day 
(Hilditch & McHill, 2019; Tassi & Muzet, 2000), as well as 
individual factors, like the personal chronotype (Ma et al., 
2022). 

Previous research focused mainly on investigating 
the effects of sleep inertia on task performance and driving 
behaviour. However, it seems plausible that sleep inertia 
affects also the subjective wellbeing negatively and thus 
reduces the hedonic benefit of a nap. This in turn might 
prevent drivers taking their naps even if possible and 
thereby increase the risk of fatigue induced accidents when 
the vehicle leaves the level 4 ODD. Therefore, the aim of 
the presented study was to assess subjective sleep inertia 

during highly automated driving in dependence of the time 
of day and chronotype.  

2. Method 

2.1 Procedure 
The participants were invited for three experimental 

driving sessions in the high-fidelity driving simulator of the 
Wuerzburg Institute for Traffic Sciences (WIVW). To 
assess influences of the time of day in the context of sleep 
inertia, one of the three drives took place in the early 
morning (6 a.m.), another in the late evening (9 p.m.). The 
order of the three sessions was partially randomized. 
Procedure and results of the third drive are reported 
elsewhere. 

To ensure that participants were sleepy at the 
beginning of the sessions, they were allowed to sleep no 
more than four hours in the night before taking part in each 
of the experimental drives. The drives started with a 30 
minute manual drive on a motorway with a (fictional) speed 
limit of 180 km/h. After that, participants were instructed to 
activate the highly automated driving system and to sleep. 
After 50 minutes of automated driving, participants were 
awakened by a request to intervene, asking the participants 
to take over the driving task promptly. The takeover was 
followed by a second 30 minute manual drive which was 
identical to the first manual drive.  

2.2 Measures  
At the beginning and every five minutes during the 

manual drives, participants were asked to indicate their 
subjective arousal (“How activated do you feel at the 
moment?”), wellbeing (“How well do you feel at the 
moment?”), and motivation to continue the manual drive 
(“To what degree would you like to continue the manual 
drive at the moment?”). The participants answered the 
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Fig. 1: Time courses of A) arousal, B) wellbeing, and C) motivation across the experimental conditions. 

questions verbally on 9-point Self Assessment Manikin 
(SAM) scales (Bradley & Lang, 1994; depiction retreived 
from Laghari et al., 2013) and in total seven times before 
and seven times after sleeping. As an exception, the first 
inquiry after the takeover was not conducted immediately 
but retrospectively, five minutes afterwards in order not to 
bias the driving behaviour during takeover. The wording of 
the questions was adapted respectively (“How activated did 
you feel five minutes ago immediately after takeover?” and 
analogously for wellbeing and motivation).  

During the manual drives, different measures of 
driving and glance behaviour, heartrate, and performance in 
an auditory vigilance task were collected but are reported 
elsewhere. Sleep was measured with 
electroencephalography (EEG; Brain Products GmbH) and 
confirmed according to the American Academy of Sleep 
Medicine standard (AASM, 2017). 

2.3 Sample 
Previous to the study, N = 183 participants  were 

screened with the German version of the reduced 
Morningness-Eveningness Questionnaire (rMEQ; Randler, 
2013). N = 20 participants (7 female, mean age = 42, SD = 
15) were selected according to their individual chronotype 
and took part in the study (n = 10 were morningness types 
with rMEQ score ≥ 18 and n = 10 were eveningness types 
with rMEQ score ≤ 11). All participants held a valid driving 
license and had completed an extensive driving simulator 
training. 

2.4 Data Analysis 
Univariate mixed Analyses of Variance (ANOVA) 

for each of the three subjective measures were performed to 
examine the impact of different factors on arousal, 
wellbeing and motivation to continue the drive in the 
context of sleepiness and sleep inertia. Time of day (2-level 
within-subjects factor), chronotype (2-level between-
subjects factor), driver state (sleepiness vs. sleep inertia; 2-
level within-subjects factor), and number of inquiry during 
the manual drive (7-level within-subjects factor) were 
included as independent variables in the model.  

3. Results 

19 of 20 participants experienced EEG-verified sleep 
in the morning drive, 18 of 20 in the evening drive. The 
univariate ANOVAs showed that the participants felt 
significantly worse in the evening (lower wellbeing) and 
were less motivated to drive manually than in the morning. 
There was no statistically significant difference concerning 
the mean arousal. 

There was no significant main effect of chronotype 
but significant interaction effects between the time of day 
and the chronotype for all three dependent variables. As can 
be seen in figure 1, arousal differed mainly in the morning, 
wellbeing in the evening, and motivation for both times of 
day between the two chronotypes. For all three measures, 
this effect derived mainly from the morning types, differing 
between the times of day, whereas the evening types did 
sparsely distinguish between morning and evening drives. 
Arousal, wellbeing and motivation where thus better if the 
time of day did fit to the chronotype for morningness types, 
but not for eveningness types.  

Across all conditions, the arousal, wellbeing, and 
motivation decreased before sleeping but remained more or 
less stable after sleeping. Accordingly, the interaction 
effects between driver state and number of inquiry were 
significant for arousal and motivation and marginally 
significant for wellbeing. On a descriptive level, only in the 
morning drive, the arousal of the morningness types 
improved slightly after sleeping. All statistical results are 
listed in table 1.  
 

4. Discussion 
Sleep is a desired use case of high driving automation. 

In our study, participants were instructed to sleep during two 
simulator drives and were requested to drive manually 
before and after sleeping. We examined the time course of 
the subjective arousal, wellbeing and motivation to drive 
during manual driving in dependence of time of day, driver 
state, and individual chronotype. 

Overall, there was no benefit of sleeping during high 
automated driving in the proper sense as arousal, wellbeing 
and motivation to continue the manual drive did not improve 
after sleeping compared to before sleeping. On closer look, 
however, sleep seemed to avert a further decrease of the 
subjective ratings. Further, the ratings differed in 
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dependence of the individual chronotype and time of day: 
Whereas eveningness types rated their arousal, wellbeing 
and motivation on a comparable level in the morning and in 
the evening, morningness types distinguished between both 
times of day. In the morning drive, the arousal of the 
morningness types even improved slightly after sleeping.  

Limiting factors like the impact of partial sleep 
deprivation as methodological tool to induce sleepiness must 
be discussed. 

Further analyses are planned to assess whether the 
subjective wellbeing after sleep depends on the depth of 
sleep which is measured by EEG. Additional analyses will 
reveal if and how sleepiness and sleep inertia affect driving 
behaviour and to what extent this correlates with the 
participants’ subjective wellbeing. 

5. Conclusions 
In our study, sleeping during highly automated 

driving did not improve the subjective arousal, wellbeing 
and motivation in the subsequent manual drives. 
Nonetheless, sleeping provides a certain benefit by averting 
a further impairment – especially if morningness types took 
a nap in the early morning.  
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Abstract: Heart rate variability (HRV) has been considered as a potential physiological marker for driver fatigue. 
However, consensus has not been reached for how HRV changes during the development of fatigue, due to inconsistent 
results in the literature. One potential cause for inconsistent results is that different causal factors were used to introduce 
fatigue. The aim of this study is to investigate how HRV parameters change during driving in relation to fatigue caused 
by sleep related and task related factors. Data from a real road experiment, with 89 participants who drove four times 
over a 180 km route, were used for the analysis. We investigated how time of day and time-on-task factors influence HRV 
parameters. The result shows that different HRV parameters react differently in relation to time of day and time-on-task 
factors. The result emphasizes the importance of considering the causal factors when interpreting results from driver 
fatigue studies and when developing fatigue detectors based on physiological measures.  
 

1. Introduction 
Physiological measurements have potential to 

complement conventional driver monitoring systems based 
on driving performance and facial features when facing the 
challenges of application of automated driving systems 
(Gonçalves & Bengler, 2015). Heart rate variability (HRV), 
a physiological marker reflecting changes of the cardiac 
sympathetic and parasympathetic branches of the autonomic 
nervous system, is of interest for detecting drivers’ fatigue 
during real life driving (Lohani et al., 2019).  

Many studies have investigated the relation between 
driver fatigue and HRV (Buendia et al., 2019; Jung et al., 
2014; Lenis et al., 2016; Li & Chung, 2013; Lu et al., 2021; 
Patel et al., 2011; Persson et al., 2020; Vicente et al., 2016). 
However, inconsistent results can be found regarding how 
HRV parameters change when the driver transitions from 
alert to fatigued state. Several studies suggested LF/HF to be 
an important indicator of fatigue, as a reflection of the balance 
between parasympathetic and sympathetic nerve activity. 
Both increased and decreased LF/HF, as well as changes in 
several other HRV features, have been reported when drivers 
become fatigued. One potential cause of the inconsistency 
can be that different interventions were used to cause fatigue.  

Fatigue is a complex phenomenon caused by multiple 
factors. It has been suggested that driver fatigue has both 
sleep related and task related causes (May & Baldwin, 2009). 
Sleep related fatigue is influenced by the circadian rhythm 
and the sleep homeostat, which depends on sleep duration and 
time awake since last sleep episode. Task related fatigue 
depends on time-on-task as well as the mental task load, 
where both underload and overload can contribute to fatigue.  

Studies have taken different approaches to introduce 
fatigue to drivers. For sleep related fatigue, some studies used 
different time of day to perform driving tasks, and some have 
introduced partial or complete sleep deprivation before the 
driving session. When it comes to task related fatigue, some 

studies have opted to use monotonous driving tasks to speed 
up the development of fatigue, and some studies have relied 
on the time-on-task effect for development of fatigue with 
continuous and prolonged driving tasks. 

The purpose of this study is to investigate 
relationships between HRV parameters and sleep related and 
task related factors. In this study we used data from real road 
motorway driving in both afternoon and night to investigate 
the HRV changes associated to time of day and time-on-task 
factors. 

2. Method 

2.1 Dataset 
The dataset consists of driving data from 89 drivers 

(36 female and 53 male). Each participant had four driving 
sessions in two different days. In each day, the participant had 
one driving session in the afternoon (starting at 15:00 or 17:00) 
and one at night (starting at 01:00 or 03:00). On one day the 
driver drove with partial automated driving mode, and the 
other day with manual driving. The test route comprised a 90-
km section of a dual-lane motorway (road E4, Sweden) where 
the participants drove from exit 111 to exit 104 and back, 
resulting in a 180 km drive. The posted speed limit was 120 
km/h on the whole section. 

Lead II electrocardiogram among several other 
physiological measurements was recorded with bio-amplifier 
with a sampling frequency of 512 Hz. The recordings were 
then down sampled and stored with 256 Hz. 

Detailed description of the experiment and analysis 
with other physiological measures, partial automated driving 
condition and subjective sleepiness rating can be found in 
(Ahlström et al., 2021; Lu et al., 2021). 

2.2 Signal Processing 
PhysioNet cardiovascular signal toolbox was used for 

the ECG and HRV analysis (Vest et al., 2018). The RR 
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intervals were extracted from the ECG measurement with 
visual inspection performed to remove cases with low signal 
quality that leads to wrong peak detection. HRV features were 
then extracted with 5-min wide sliding window with 1-min 
step size. Time domain features including NN mean, SDNN, 
RMSSD, and frequency domain features including VLF, LF, 
HF, LF/HF, and total power were extracted. The description 
of the features can be found in (Shaffer & Ginsberg, 2017). 
All data processing and analysis were performed with Matlab 
2021b (MathWorks Inc., MA, USA). 

2.3 Statistical Analysis 
All 5-min epochs were grouped by time-on-task and 

day/night driving. For the time-on-task factor, each drive was 
divided into four 20-min long segments, two with outward 
and two with return driving. The first 20 min segment was 
excluded for the analysis to eliminate the influences at the 
start of the driving caused by being attached with sensors, 
talking to the test leader and getting familiar with the task, etc. 

The influence of time of day and time-on-task on HRV 
metrics were analysed with two-way ANOVA test. The HRV 
parameters with skewed distribution were logarithmic 
transformed. For comparison between groups, paired T tests 
were performed. For these tests, the level of significance was 
set at p < 0.05, and Bonferroni correction for multiple testing 
was applied. 

3. Results 
The mean value and standard error of mean of HRV 

features in different time-on-task and time of day segments 
are shown in Fig 1. 

The result of the two-way ANOVA test is shown in 
Table 1. We can find significant effect from time of day and 
time-on-task on almost all selected HRV features, except that 
the effect from time of day was not significant on VLF. In 
addition, the interaction of the two variables had significant 
effect on SDNN, VLF, LF, LF/HF and total power. 

When it comes to comparisons between afternoon 
drive and the night drive for each time-on-task segment, most 

 
Fig. 1. Mean value of HRV features in three different time-on-task segments (x axis) and separated by afternoon (blue) and 
night (red) driving. Error bars represent standard error of mean. 

Table 1 Results of ANOVA test.  
HRV 

features 
Time of day 

(df=1) 
Time-on-task 

(df=2) 
Interaction,  

time of day * time-on-task 
 F p F p F p 
NN mean 298.96 <0.0001 29.39 <0.0001 0.46 0.6300 
SDNN 40.10 <0.0001 46.69 <0.0001 7.19 0.0008 
RMSSD 48.13 <0.0001 7.65 0.0005 0.44 0.6443 
VLF 2.36 0.1249 47.70 <0.0001 10.37 <0.0001 
LF 41.15 <0.0001 66.11 <0.0001 8.02 0.0003 
HF 11.24 0.0008 4.32 0.0134 0.50 0.6069 
LF/HF 9.89 0.0017 59.88 <0.0001 6.83 0.0011 
Total power 14.87 0.0001 46.41 <0.0001 8.79 0.0002 

Bold field indicates p<0.0167 
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features show significant differences, but there was no 
significant difference in mean values between afternoon and 
night for the first time-on-task segment for SDNN, LF, HF, 
and LF/HF. When comparing the first and last time-on-task 
segments in afternoon or night driving, significant increase 
can be found for all features except for HF in afternoon 
driving. 

4. Discussion and Conclusions 
In this study we investigated the influence of two 

fatigue factors on HRV parameters with data from a real road 
driving experiment. Different response patterns were found 
for different HRV parameters. For NN mean (heart rate) and 
RMSSD, time of day has a strong effect showing from the 
beginning of the driving, while the time-on-task has a smaller 
effect, and no significant interaction can be found between 
the two factors. For SDNN, LF and LF/HF, no significant 
difference can be found for afternoon and night driving at the 
beginning of the driving, but the night driving is causing 
steeper change on time-on-task compared to afternoon 
driving. 

Fatigue caused by different factors has different 
influence on driver performance and countermeasures may 
vary accordingly (Williamson et al., 2011). The result from 
this study shows different HRV parameters react differently 
in relation to time of day and time-on-task factors. This 
difference may indicate a physiological difference in sleep 
related and task related fatigue. This knowledge will be 
valuable when interpreting results from related studies where 
different fatigue manipulation methods were applied. It also 
emphasizes the importance of considering the fatigue causing 
factors when designing future studies and developing fatigue 
detectors based on physiological measures. 
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Abstract: The presented simulator study investigated the effectiveness, user experience and usability of an innovative 
driver monitoring system (DMS) for partially automated driving, called “Jeannie”. This virtual assistant provided 
continuous visual emotional feedback dependent on drivers’ monitoring behaviour and issued warnings and speech 
outputs in response to prolonging eyes-off or hands-off driving. Furthermore, it supported the drivers maintaining an 
adequate attentional state, e.g. by relieving them from distracting tasks. Jeannie was compared to a more conventional 
DMS that only displayed warnings in the instrument cluster. The two DMS variants were comparably effective in 
preventing hands-off and eyes-off driving and where both highly accepted. However, user experience was higher for 
Jeannie.  
 

1. Introduction 
When driving with a partially automated system 

(Level 2 (L2); SAE, 2018) the driver is still responsible to 
monitor the roadway and to be ready to react to a system limit 
or error at any time. Therefore, driver monitoring systems 
(DMS) should assure that drivers keep their hands on the 
steering wheel and their eyes on the road, and warn if drivers 
do not fulfill their responsibilities. For the hands-on 
requirement, clear regulations exist how and when systems 
should intervene by issuing warnings (UNECE regulation 
R79, 2017). There are currently no such regulations for visual 
attention warnings. Naturalistic driving studies provided 
evidence that drivers may not adequately meet their 
responsibilities when using L2 systems. With active Tesla 
Autopilot (with hands-on requirement), drivers have taken 
their hands off the wheel more frequently than during manual 
driving (Morando et al., 2020). Blanco et al. (2015) found that 
visual inattention warnings encouraged drivers to monitor the 
road. However, over the course of the simulator study, some 
drivers became habituated and ignored the warnings to 
complete a non-driving related task.  

A DMS should support drivers’ understanding of the 
responsibility for a continuous monitoring, should be 
accepted, and not perceived as paternalism. To identify the 
characteristics of a comprehensive and user-friendly DMS, 
we developed two different DMS. Both variants issued 
warnings in response to prolonging hands-off or eyes-off 
behavior. While the conventional DMS only issued discrete 
warnings in the cluster display, the innovative DMS 
additionally provided continuous visual emotional feedback 
to the driver. Dependent on drivers’ behavior, the emoji-like 
avatar called “Jeannie” continuously changed its emotions. 

2. Method 

2.1 Automated system and HMI 
A prototypical L2 system was implemented in the 

static WIVW driving simulator. It included two distinct 

modes: hands-off and hands-on driving. The system state was 
indicated in the instrument cluster display (Fig.1). It 
constantly displayed a symbol for L2 driving (green icon) and 
two separate indicators for drivers’ responsibilities: a steering 
wheel with either hands on or hands off the wheel (dependent 
on system mode) and an iconic eye symbol indicating the 
responsibility to monitor the roadway. An additional text box 
included the name of the system and displayed the drivers’ 
responsibilities (“driving assistant active; monitor traffic 
environment; keep hands on the wheel”).  

  
Fig. 1. HMI for the L2 system in the instrument cluster. 

2.2 Driver monitoring systems 
Two different driver monitoring systems were 

implemented as a between subject factor: a conventional 
DMS and an innovative DMS. Both DMS used the same 
sensors and measured whether the drivers had their hands on 
the wheel during L2 hands-on mode and whether they kept 
their eyes on the road. Hands-on detection was implemented 
in the steering wheel. Eyes-off detection was measured with 
the SmartEye® system. Glances towards the instrument 
cluster, other areas inside the vehicle or too long intervals of 
tracking losses were defined as distraction. 

The warning strategy of the conventional DMS for 
hands-off driving was based on the requirements of the 
UNECE R79: a yellow hands-off symbol was displayed as a 
visual warning if hands-off time exceeded 15s. After 30 
seconds, a visual warning in red together with a speech output 
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(“please take hands on the wheel”) was triggered.  Finally, 
after 60 seconds, if the driver has not responded to the 
previous warnings, a safe stop has been initiated. The warning 
strategy for eyes-off driving in the conventional DMS was 
defined as follows: if the driver was distracted for 4 seconds, 
the first warning stage was triggered (yellow eye icon), the 
second stage was triggered after 7s (red eye icon and speech 
output: “Monitor traffic situation”). A safe stop has been 
initiated after 10s.  

The innovate DMS also used these warning stages and 
the respective HMI feedback in the instrument cluster but 
added a virtual assistant called “Jeannie”. Jeannie was shown 
on an additional display positioned in the upper part of the 
centre console. Besides the discrete warnings, it provided 
continuous feedback on drivers’ current monitoring and 
hands-off/on behavior by displaying various emotional states. 
If the drivers adequately monitored the roadway and had their 
hands on the wheel, Jeannie looked happy. As soon as the 
drivers took their attention off the road or took their hands off 
the wheel, Jeannie’s facial expression became neutral and 
subsequently turned to an unhappy state in several stages. If 
the drivers looked back to the road or grabbed the wheel, 
Jeannie first got neutral and after 5s happy again (Fig. 2). In 
contrast to the conventional DMS, Jeannie provided a more 
human-like speech output at the second warning stage. 
Another characteristic of Jeannie was that it provided drivers 
with specific support in dedicated use cases by offering voice 

interaction (see chapter 2.4). Glances to Jeannie were not 
defined as distraction by the DMS.  

2.3 Test sample 
The sample consisted of 30 subjects (14 female). 

Mean age of the subjects was 41 years (SD = 14.9 years).  

2.4 Test drives and test procedure 
After very reduced instructions about the L2 system 

without information about the DMS, each driver performed 
four drives. In drive A, the drivers experienced L2 driving 
intuitively in several use cases for about 20 minutes (mainly 
driving in hands-off and hands-on mode). In drive B, specific 
use cases were introduced where drivers were explicitly 
instructed, e.g., to text with a friend via the smartphone. 
While drivers with the conventional DMS had to type the 
conversation, drivers with the innovative DMS were 
supported by Jeannie who provided voice interaction.  
In drive C, the drivers were explicitly instructed to direct their 
attention away from the road and to take their hands off the 
steering wheel in order to experience the DMS warning stages 
subsequently as well as the emotional feedback by Jeannie. 
In drive D, drivers again experienced the DMS warning 
stages but now via the DMS system from the other condition.  

 

 

 

 
Fig. 2. Emotional stages of Jeannie based on visual distraction. 

2.5 Dependent measures 
As a measure for effectiveness, the number of received DMS 
eyes-off and hands-off warnings in drive A was counted. 
System usability was assessed via SUS (Brooke, 1996) after 
drive A and B. User experience was assessed via UEQ after 
drive A and drive B (Laugwitz et al., 2008). Finally, drivers 
should indicate whether or not they want Jeannie as a DMS 
for L2 driving. 

3. Results 
The comparison of the number of hands-off and eyes-

off warnings showed that both DMS variants were equally 
effective to assure drivers’ adequate responsibility in L2 
driving. Drivers received a comparable low number of hands-
off warnings (χ2 = 3.167, p = .367). Eyes-off warnings were 

generally more frequent as drivers explored the system and 
the HMI intensively during drive A. However, the number of 
warnings did not differ between the DMS variants 
(χ2 = 11.667, p = .473) 

System usability measured by SUS was also 
comparably high in both conditions and reached very good to 
excellent values (t(28) = -.243; p = .810). In the Jeannie 
condition, usability increased on a descriptive level from 
drive A to B after experiencing the support functions from 
Jeannie. A multivariate ANOVA with the UEQ scales 
attractiveness, pragmatic, and hedonic quality as dependent 
variables revealed a significantly higher user experience of 
Jeannie (Wilks‘ λ = .716, F(3,26) = 3.44, p = .031, ηp² = .28): 
Analyses of the subscales showed that this difference was 
mainly based on a higher hedonic quality of Jeannie which 
even increased from drive A to B (factor DMS: F(1,28) = 6.84, 
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p = .014, ηp² = .20; factor drive: F(1,28) = 4.25, p = .049, 
ηp² = .13).  

When asked whether drivers would choose Jeannie or 
not in a partially automated ride, eight drivers in the Jeannie 
condition and six drivers in the conventional DMS would 
choose Jeannie. Drivers from the Jeannie condition preferred 
the supportive function but not the continuous emotional 
feedback, which some drivers found additionally distracting.  

4. Discussion and conclusions 
The results revealed that both DMS variants were 

comparably effective in preventing hands-off and eyes-off 
driving. Both variants were highly usable. Jeannie achieved a 
higher user experience. This rating was mainly based on the 
additional supportive functions and the more human-like 
speech interaction while the continuous emotional feedback 
was not that appreciated. The results can be used as 
motivation to create more innovative but still effective and 
accepted DMS solutions for L2 driving. 
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Abstract: This paper provides insights into response and recovery following silent system malfunctions when drivers 
either keep their hands on or off the steering wheel during automated lateral and longitudinal control (Level 2). A test 
track study was carried out with 37 participants, with a between-group design for hands on or off the steering wheel. In 
automated mode, every other lap was driven with/without cognitive load (implemented via a 1-back task). Participants 
experienced three unexpected steering events per lap requiring manual steering input. In the final lap, an unexpected 
lead vehicle event required drivers to brake or steer to avoid crashing. Maximum steering amplitude as well as the 
standard deviation of steering acceleration were larger for the hands-off group, without any effect of cognitive load. 
Hands-off participants also deviated further from lane center. For the unexpected lead vehicle event there was a trend 
that mind-on drivers, regardless of hands on/off, were quicker to brake than mind-off drivers.  
 

1. Introduction 
Recently, systems which explicitly allow the driver to 

remove their hands from the steering wheel while 
maintaining their eyes on the road have become 
commercially available. These hands-off (“L2”) assistance 
systems provide distance- and speed-keeping, and keep the 
vehicle within its lane. L2 systems still require drivers to look 
at the road and respond to any situation that could be risky or 
undesirable, making the physical driving task an intermittent 
activity with the potential of long periods of non-activity.  

This paper addresses two main research questions 
related to driving with L2 automation while experiencing 
repeated silent steering failures: (i) How does hands on/off 
the steering wheel affect initial reaction and recovery 
characteristics in a repeated steering event and in a single 
critical lead vehicle event, and (ii) how are reaction and 
recovery characteristics to lateral and longitudinal events 
affected by working memory load. 

1.1 Background 
Garbacik et al., (2021) found that for unexpected 

steering events, only drivers who had at least one hand on the 
steering wheel managed to stay in lane. Without hands on the 
wheel, drivers lose the neuro/sensory connection to 
appropriately guide their response to unexpected events 
(Benderius & Markkula, 2014; Mole et al., 2019). Therefore, 
they are expected to exhibit miscalibrated steering responses, 
such as higher steering amplitude or steering acceleration 
(Navarro, François, & Mars, 2016). For steering quality, 
McDonald et al., (2019) emphasize the difference between 
the response and recovery phase, pointing out that different 
models are needed to account for action selection (response) 
and then post-takeover (recovery) performance.  

Victor et al., (2018) conducted a test-track experiment 
on vehicle automation, where nearly 30% of hands-on eyes-
on drivers still crashed into a stationary object. For such 
longitudinal events, research suggests that there is no 
difference in response for driving hands-on or hands-off 

(Damböck, Weissgerber, Kienle, & Bengler, 2013). Victor et 
al. (ibid) suggest the reason for a lack of response was 
automation performing well for 30 minutes before the event. 
Drivers respond more quickly when they recognize the need 
for action (c.f. Larsson, Kircher, & Andersson Hultgren, 2014; 
Seppelt & Lee, 2019).  

For the mental control loop, working memory load 
inhibits a driver's ability to assimilate cues and predict on-
road events (e.g. Myers, Stokes, & Nobre, 2017). Predictive 
processing is essentially shut down (Engström, Markkula, 
Victor, & Merat, 2017), meaning that the top-down processes 
required to switch attention back to driving are unavailable. 
Drivers are thus only able to initiate automatized responses to 
events, such as responding to looming (Markkula, Engström, 
Lodin, Bärgman, & Victor, 2016).  

Here too, this study seeks to understand the interacting 
effect of working memory load on automatized and 
controlled driver response behaviors.  

2. Method 

2.1 Participants 
Participants were recruited via Facebook ads, and 

completed a screening questionnaire to balance the 
technology interest and age of the participants across groups. 
In total, 37 participants completed the drives with full vehicle 
data. The average and median age was 41 years (age range: 
25-60). All participants drove a car on a daily basis.  
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2.2 Procedure 
The study was conducted at the 5.7 km AstaZero rural 

road track in Sweden. Participants drove a Lincoln MKZ 
equipped with steering and speed keeping automation, based 
on GPS track following. The vehicle did not use any sensors 
for its automation, and longitudinal control was only paused 
(not deactivated) upon use of the brake pedal.  

Driving 65 km/h, Participants completed an 
introductory lap of fully manual driving, followed by four in 
automated mode, with at least one car safely overtaking the 
test vehicle each lap. 17 participants drove all laps hands-on, 
and 20 participants drove all laps hands-off (see Table 1). In 
automated mode, every other lap was driven with/without 
cognitive load. Cognitive load was imposed by means of the 
1-back task as described in Mehler, Reimer, & Dusek, (2011).  

During each automated lap, participants experienced 
three different steering events that required manual steering 
input to avoid going off road, approximately once every two 
minutes. These events included both omission (not turning 
when it should have, three seconds) and commission (turning 
when it should not, 8 degrees, two seconds). Thereafter the 
vehicle reactivated the normal GPS path-following. The 
steering events were validated trough a test drive with active 
steering system developers from Zenuity. 

 Steering events were carefully placed at safer sections 
of the test track, with the first (omission) event repeated every 
lap. A final event was designed to mimic that of Victor et al., 
(2018) where a lead vehicle did a cut-out in front of a 
stationary (soft) target vehicle. Automated steering was 
deactivated for safety reasons until the car had passed the 
target vehicle.  

This paper reports only on the first (repeated) event of 
each lap and the final event with the soft vehicle target. 

3. Results 

3.1 Response and recovery metrics 
 For the first event, the maximum steering amplitude 

(F(1,33) = 28.49, p < .001) as well as the standard deviation 
of steering acceleration (F(1,33) = 11.34, p <  .01) were larger 
for the hands-off group than the hands-on group, without any 
effect of mind on/off. For standard deviation of centerline 
offset, there was a clear difference of hands-off participants 
deviating further than hands-on (F(1,33) = 57.50, p < .001). 
There was also a trend (F(1,33) = 3.02, p = .09) that mind 
on/off influenced the standard deviation of centerline offset.  

For the repeated events, there was a learning effect in 
maximum steering amplitude and in centerline offset from the 
first event for hands-off (F(1,35) = 9.5, p < .001; F(1,35) = 
7.80, p < .001) but not for hands-on. In subsequent laps, there 
was no improvement in response quality but hands-off drivers 

had higher maximum steering amplitude, F(1,35) = 11.63, p 
< 0.01) and higher centerline offset (F(1,35) = 21.1, p < .001), 
see Appendix A, Figure 1 and Figure 2.  

For the soft vehicle target, the steering reaction time 
was no different between hands on/off. For brake response 
time, this event indicated a trend (F(1,35) = 3.51, p = .07) that 
mind-on drivers, regardless of hands on/off, were faster to 
initiate braking than mind-off drivers (Appendix A, Figure 3). 

3.2 N-back performance 
On average, the hands-off group outperformed the 

hands-on group at least for the first two laps. Performance 
improved after the first two laps for both groups. Two 
participants were excluded from analysis due to 
misunderstanding the n-back task. Due to the unbalanced 
nature of the study design, an ANOVA could not be 
performed. 

4. Discussion 
In repeated steering events, hands on or off the 

steering wheel affects response quality substantially for the 
first failure. The results for the hands-off drivers could be 
related to the expectation that the system was more competent, 
a misconception corrected by the first silent omission error. 
For subsequent failures, hands-off drivers continued to end 
up further outside their lane and with higher maximum 
steering amplitude, showing a miscalibration in their 
response process.  

For action selection in the unexpected lead vehicle 
event, mind-off drivers tended to take longer, or they 
responded when looming had become evident (Markkula et 
al., 2016). Automation supervision, in essence, introduces 
cognitive control requirements back into automatized manual 
control behavior (Engström et al., 2017). 

5. Conclusions 
No participant in the present study went off the road 

or collided into an obstacle. This may be due to the early 
occurrence of a steering event, and that such events kept 
happening. However, our results indicate that imperfect 
automation systems may not be sufficient to address neither 
the neuro/sensory disconnect from having hands off the 
wheel (i.e., the disruption in automatized processing), nor the 
automation-induced need to consciously process whether 
events will require a deliberate (controlled) response. These 
results have implications for the design of L2 systems in how 
engaging drivers’ hands and mind affect reactive and 
predictive driver behavior, respectively.  
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Appendix A  
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Fig. 1.  Driver first response for the repeated steering event, (a) Mean maximum excursion, (b) Mean maximum 
steering amplitude 
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Fig. 2.  Driver recovery for the repeated steering event, (a) Mean standard deviation of steering acceleration, (b) 
Mean standard deviation of centerline offset 

 
 
Fig. 3.  Brake reaction time to the soft target vehicle 
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Abstract: Using cooperative ITS services such as a traffic information feedback application could help road operators to 
inform road users in real time about traffic conditions. However, the interaction tasks involved should not distract road 
operators. We studied the effects of three levels of interaction task complexity using an application currently being 
deployed. 18 participants completed different tasks while driving an instrumented vehicle. Depending on the availability 
of the event to be reported on the first or second screen of the application, the interaction tasks required 1 press (first 
screen) vs. 2 presses (top of second screen) vs. 1 press, drag and drop and 1 press (bottom of second screen). The 
subjective, temporal, visual and cognitive demands of the three application interaction tasks were compared with each 
other and with a radio task deemed acceptable, and with two “artificial” tasks recognised for their high-level visual or 
cognitive demands. Subjective, temporal, visual and cognitive demands were higher for events reported from the second 
screen vs. the first screen. Compared to the high-demand tasks and the radio task, the interaction tasks with the first 
screen required lower subjective, temporal and cognitive demands and a similar visual demand. These findings suggest 
that the use of a traffic reporting application by road operators requiring no more than one press would be feasible 
without undue distraction, but that more complex interactions could pose a risk in the absence of training to lower the 
attentional demand. 

 

1. Introduction 
Thanks to the deployment of cooperative ITS  

(C-ITS), road operators can alert road users in real time of 
their interventions on the road network and the events they 
observe. This could help to improve comfort and road safety 
for both road operators and road users (AIPCR, 2019). As 
part of the European SCOOP project for the pre-deployment 
of C-ITS, the study of the a priori acceptability of the 
deployment of a traffic information reporting application 
(SCOOP application) among French road operator agencies 
revealed that one of the obstacles concerned the interference 
with the driving activity of road operators (Chahir et al., 
2019). 

In the scope of the ensuing C-Roads European 
project, this potential obstacle prompted the need to consider 
the distraction induced by the traffic information reporting 
application among road operators during driving. In order to 
investigate the distraction issue, a study was conducted to 
evaluate the intensity of the attentional demand related to 
different interaction tasks with the SCOOP application in 
order to help decision-making on the work processes of road 
operators with this application. 

The methodology used was based on those developed 
to assess the impact of different types of interactions with 
in-vehicle technologies (Mehler et al., 2016; Reimer et al., 
2013; Strayer et al., 2019; Zhang et al., 2015). The objective 
was to compare the demand required by three different 
levels of interaction task complexity with the application in 
terms of subjective, temporal, visual or cognitive 
demands (Strayer et al., 2019). 

2. Method 

2.1 Participants  
18 participants (all males) were recruited by one of 

the road operator agencies in which the SCOOP application 
was under deployment. Considering that it was conducted in 
only one of its departments, we tried to balance the study's 
participants among 3 different professional groups with 
potentially different knowledge of the application. 

2.2 Equipment, driving route and procedure  
Participants drove an instrumented vehicle equipped 

with a digital tablet and, in particular, 4 cameras, an eye-
tracker and a Detection Response Task (DRT) kit 
configured with the vibro-tactile stimulus (ISO, 2016). 

The experimental route was a two-lane dual 
carriageway with a speed limit of 110 km/h on the major 
portion. The procedure consisted of one familiarisation and 
5 experimental sessions. Each experimental session began 
with a session to train the participants on the different tasks, 
and ended with their completion of the perceived mental 
workload scale (Reimer et al., 2013). 

2.3 Tasks 
The application interaction tasks consisted in 

reporting an event supposedly encountered on the road 
while driving. The required interactions involved three 
different levels of interaction complexity: 1) an event 
available on the first screen, requiring 1 press; 2) an event 
available on the top of the second screen, requiring 2 presses, 
and 3) an event available on the bottom of the second screen, 
requiring 1 press, a drag and drop then 1 press.  
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Table 1 Results of the statistical analysis for each score with a mixed model considering the Task type. 

Demand 
standardised 
score 

SS MS NumDF DenDF F p 

       
Subjective 5.1179 1.706 3 51 17.301 < 0.001 
Temporal 26.821 8.9405 3 232.51 73.069 < 0.001 
Visual 1.6766 0.55887 3 218.25 8.3614 < 0.001 
Cognitive 419.54 139.85 3 306.26 6.7692 < 0.001 
 

These tasks were compared with a given acceptable 
radio task as specified by the automotive industry (Alliance 
of Automobile Manufacturers & Driver Focus-Telematics 
Working Group, 2006). Each participant also performed two 
secondary "artificial" reference tasks recognised for their 
high visual (Surrogate Reference Task) and cognitive (2-
back task) demands (Mehler et al., 2011; Reimer et al., 2013; 
Zhang et al., 2015). These tasks were used to calculate 
standardised scores. 

2.4 Data and statistical analysis 
For each trial involving the different tasks, the 

following items of data were recorded: 1) perceived mental 
workload, 2) time to complete the task, 3) percentage of 
time spent looking at the road while performing the task, 
and 4) reaction time to the DRT. 

These data items were respectively used to calculate 
four standardised scores (Strayer et al., 2019): 1) subjective 
demand, 2) temporal demand, 3) visual demand and 4) 
subjective demand. 

For each score, 3 different mixed models (Task type; 
Group; Task type x Group) were compared using the 
Bayesian Information Criteria. In all cases, the most likely 
model was the model considering only the Task type. 

3. Results 
The Task type had a significant effect on the four 

standardised scores (Table 1). 
The subjective demand and task duration time were 

higher for interactions with the second screen than the first 
screen. Furthermore, they were higher for interactions with 
the bottom than the top of the second screen. Also, the mean 
subjective demand and task duration were below the high 
references for any of the interactions with the application 
(Fig. 1 a & b). 

Visual and cognitive demands were higher for 
interactions with the second screen than the first screen, but 
similar for interactions with the top and the bottom of the 
second screen. Furthermore, the mean visual and cognitive 
demands were above the high references for any of the 
interactions with second screen of the application (Fig. 
1 c & d).  

Compared to the radio task, the interaction task with 
the first screen had lower subjective, temporal and cognitive 
demands but a similar visual demand. The interaction tasks 

with either the top or bottom of the second screen had a 
lower temporal demand, a similar cognitive demand and a 
higher visual demand. The subjective demand was similar 
for the top, but tended to be higher for the bottom of the 
second screen. 

4. Discussion 
The four indices of attentional demand show that the 

demand was higher when reporting an event from the 
second screen than from the first screen of the traffic 
information feedback application. 

Concerning the first screen, the subjective, temporal 
and cognitive demands were lower than those observed for 
the radio and the high-demand tasks, and the visual demand 
was similar to that observed for the radio task and high-
demand tasks. The application's use thus seems possible for 
events accessible from this first screen. 

Concerning the second screen, the temporal demand 
was lower than the high reference threshold set and that 
observed for the radio task. The subjective demand was also 
lower than the high reference threshold, and similar to that 
observed for the radio task. Nevertheless, the visual demand 
was higher than that observed for the radio and the high 
visual demand tasks. For the cognitive demand, it was 
similar to that observed for the radio and the high cognitive 
demand tasks. Consequently, with the current state of the 
interface, the application's use to report events from the 
second screen does not seem possible while driving. 

5. Conclusions 
The use of a traffic information feedback application 

by road operators seems possible without compromising 
their safety under certain conditions. An application used to 
report an event from a first screen presenting 5 items 
requires a low to moderate attentional demand, compatible 
with the driving activity. Nevertheless, the need to switch to 
a second screen to choose among different items and to 
possibly scroll through them requires a high attentional 
demand likely to cause distraction. This result calls for 
particular vigilance when training road operators in the 
application's use as a means to improve their knowledge of 
the location of events in order to reduce the attentional 
demand required for reporting events that are not directly 
accessible. 
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represent the score for the high demand reference tasks or for a duration of 24 seconds. Scores with different letters are 
significantly different (p < 0.05). Scores with similar letters and a quotation mark are not significantly different but 
approach significance (p < 0.1). 
(a) Subjective, (b) temporal, (c) visual, and (d) cognitive demands. 
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Abstract: Vehicles operating with multiple levels of automation include transitions: procedures changing vehicle 
automation state. An efficient human-machine interface (HMI) is needed to deliver information to drivers during state 
changes. In this study, three different HMI designs (Baseline, HMI-1, and HMI-2) to communicate upcoming transitions 
(to and from the vehicle) were developed based on the HMI framework method. All three HMI designs provide 
multimodal cues: a combination of visual, auditory, and haptic cues. HMI-1 includes an additional visual cue positioned 
on the circumference of steering wheel while HMI-2 includes a visual cue on the windshield. The HMI designs were 
evaluated in a driving simulator experiment with 24 participants. Both critical (unplanned) and non-critical (planned) 
transitions were presented to distracted (by a game on a touch display) participants at different time intervals. System 
usability (SUS) scores, a subjective measure, were higher for HMI-1 (mean score 81) than for two designs (Baseline:79, 
HMI-2: 79), but differences were not significant. HMI-1 had most desirable aspects. In a preference ranking, 67% of 
participants choose HMI-1 first, indicating higher desirability than both other designs which were each ranked first by 
only 17%. User comments received in post-experiment interviews indicated the desire for personalized HMIs to increase 
acceptance. From this study we conclude a preference for the HMI-1 design and recommend personalized HMIs with 
visual cues on the circumference of the steering wheel to be further developed and implemented in vehicles with multiple 
levels of automation. 
 
 

1. Introduction 
Vehicles equipped with multiple automation levels 

need to effectively, communicate their intentions and 
limitations to drivers, creating a need for a novel Human-
Machine interface (HMI). Previous studies have 
experimented using multimodal HMIs (visual, auditory, 
haptic etc.) to communicate automation related information 
as multimodality improves recognition, understanding and 
promotes faster (van Erp et al., 2015; Petermeijer et al., 2016)  
and intuitive interactions with users (Manawadu et al., 2017). 
Studies on transitions used light displays such as LED strips 
mounted on the windshield (Yang et al., 2018) steering wheel 
(Muthumani et al., 2020) door panel (Wilbrink et al., 2020) 
or even entire vehicle interiors (Dziennus et al., 2016)  for 
communication. However, only few studies investigated 
which position is best suited. One such recent study (Feierle 
et al., 2020) compared two positions (steering wheel vs 
windshield) for the additional light display with an auditory 
cue and found no significant difference for objective takeover 
time and subjective ratings. However, the study mainly 
considered two modalities for their investigation. 
Additionally, the study did not report on end-users’ 
preference towards HMI solutions.  

1.1 Objectives 
This study aims to compare the additional visual displays 
mounted at two positions (steering wheel vs windshield) 
assisting drivers when shifting from one automation level 
(AD-Assisted mode) to another (PD- Piloted mode). For this 
purpose, three multimodal HMIs with (HMI-1 and HMI-2) 
and without (baseline) additional light display informing 
drivers about upcoming transition were developed. The  

automation levels and the use cases used for the evaluation 
were based on the concepts in the Mediator project (Christoph 
et al., 2019). The objective of this study is to evaluate all three 
HMI designs in terms of perceived usability, desirability, and 
user preferences. 

2. Method 

2.1 Participants  
Twenty-four volunteers (2 female and 22 male) who were 
employees and consultants working at different departments 
at Autoliv, participated in the study with mean age of 44 years 
(SD=11.5), holding a valid driving license with driving 
experience ranging from 1-47 years. 

2.2 Human-machine interface designs 
In this study, multimodal HMI feedback systems were 

developed. The interaction between the various HMI 
components and driver were designed using the HMI 
framework method (Diederichs et al., 2020). Figure.1 
represents an example of HMI framework developed for the 
“HMI-1” design. The baseline design uses, instrument cluster 
(for visual icons) in-vehicle speakers (for sounds and voice 
messages) and seat belt (for belt pull). The other two designs 
provide an additional visual cue generated by 33 LEDs 
positioned of the circumference of steering wheel (for HMI-
1) and an array of 20 LEDs mounted on the windshield (for 
HMI-2). Additionally, the touchpad interface positioned on 
steering wheel yoke (both left and right) are used for 
activation of automation modes. In the baseline design, AD 
and PD mode availability is conveyed by a notification sound, 
voice message along with an animated  
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icon. The successful activation is conveyed with similar set 
of cues. The planned transition (from PD to manual) is 
communicated by a voice message followed by a “clock 
ticking sound” along with pulsating “hand-on wheel” icon 
including text display “Piloted driving disengaging, please 
take control” and a countdown timer. During unplanned 
transition (from PD to manual), the vehicle delivers a 
recurring voice message “Please take control”, continuous 
beeps” and a pulsating “hands-on wheel” icon with a display 
text (see Fig.2). Both HMI-1 and HMI-2 uses all set of cues 
from baseline design. However, the light pattern of the 
additional display is differentiated between the two designs 
(see Fig.2). In planned transitions LEDs switch off 
successively in a synchronised manner with “clock ticking 

Table 1 Experiment order 

Groups Lap 1 Lap 2 Lap3 
    
G1 Bas-(P)→(U) 

(P)→(U) 
H1-(U)→(P) 
(P)→(U) 

H2-(P)→(U) 
(P)→(U) 
 

G2 H2-(P)→(U) 
(P)→(U) 
 

H1-(U)→(P) 
(P)→(U) 

Bas-(P)→(U) 
(P)→(U) 
 

G3 Bas-(P)→(U) 
(P)→(U) 
 

H2-(U)→(P) 
(P)→(U) 

H1-(P)→(U) 
(P)→(U) 
 

G4 H1-(P)→(U) 
(P)→(U) 
 

H2-(U)→(P) 
(P)→(U) 

Bas-(P)→(U) 
(P)→(U) 
 

Bas-Baseline design; H1: HMI-1 design; H2: HMI-2 design;  
P: Planned transition; U: Unplanned transition 

 

Fig. 1. HMI framework method for HMI-1 design 

Fig. 2. All three HMI designs, automation levels and transitions 
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sound. During unplanned transitions LEDs start to pulsate in 
red.   

2.3 Experimental design and procedure 
A fixed base driving simulator was used for the study. The 
simulated driving scenarios consists of a three-lane motorway 
with no traffic. In AD mode, participants were asked to 
release their feet from vehicle controls (gas and brake pedal), 
but to keep the hands on the steering wheel without any 
steering. In PD mode, participants were asked to take their 
hands off the steering wheel and play a digital game (DOTS) 
on the centre stack display until receiving a transition request 
from the vehicle. Participants were divided into four groups 
(see Table. 1) and drove three laps (16 mins per lap) with one 
HMI design. At the end of each lap, participants were asked 
to fill in both a system usability score (SUS) (Jordan et al., 
1996) and HMI desirable aspects(Richardson et al., 2018) 
questionnaire. After completing all three laps, participants 
were asked to fill in the HMI design ranking questionnaire 
(custom-made for this study) followed by an interview.  
 

3. Results 

3.1 Usability: SUS score 
HMI-1 received a higher mean SUS rating (81) than 

HMI-2 (79) and baseline (79), (see Fig.3).However, no 
statistical significance is observed in repeated-measure 
ANOVA between the HMI designs (F(2,69)=0.19, p = 
0.834). 

 

3.2 HMI desirable aspects 
Desirability of HMI designs is shown in six categories 

(see Fig.5). HMI-1 received the highest scores. For all items 
participants chose “strongly agree” more often for HMI-1 
than for the other designs. For example, nearly 25% of 
participants strongly agreed to “provides appropriate trust” 
for HMI-1 design while only 8.3% strongly agreed to this 
with baseline and 16.7% with HMI-2. 
 

3.3 HMI design ranking 
 

Results from the HMI design ranking (see Fig.4), 
showed that 67% of participants have chosen HMI-1 as Rank 
1, compared 17% for Baseline and 17% for HMI-2 design. 

 

 
Fig. 4. Ranking for all three HMI designs 

 

3.4 Interview 
Unstructured participant feedback collected at the end 

of the experiment highlighted the importance of 
personalization HMI designs with user comments like: “I do 
like the LEDs showing the activation I like the way the LEDs 
progress towards taking control. Not sure if I really like the 
LEDs indicating the two modes are ready for activation. I 
think I would rather leave that function behind” Additionally, 
comments were also received on each HMI interfaces. 

4.  Discussion 
Three HMI designs assisting drivers of automated 

vehicles during transitions were evaluated. HMI-1 included 
visual cues on the steering wheel and obtained the highest 
SUS score (81): this can be interpreted as “excellent” design 
according to the adjective rating scale (Bangor et.al, 2009). 
However, no statistical difference is observed between the 
HMI designs which is in line with the study comparing 
additional displays (Feierle et al., 2020). 

Additionally, user comments suggest refining the 
design according to individual preferences, i.e., 
personalization. Still, a proper balance between safety and 
user needs must be maintained.  

There are limitations. Transition scenarios were 
investigated without presenting a hazard or threat situation in 
the simulated environment, which could influence the results. 
Additionally, LED illumination patterns were evaluated only 
in a simulator environment which could provide different 
user response when tested in a real vehicle. Another limitation 
is the sample size used for study. Future research 
investigation should focus on understanding the HMI design 
implications in a real vehicle environment and conducting 
more user tests to understand the personalization aspects in 
detail. As this could help HMI designer to understand balance 
between safety and user preferences. 

The findings from this study contribute to designing 
the final HMI for the Mediator project 
(https://mediatorproject.eu/). The developed final HMI will 
further be evaluated with end-users to measure the 
effectiveness and user acceptance. 

 

17%

17%

67%

67%

13%

21%

17%

71%

13%

Rank 1

Rank 2

Rank 3

Baseline HMI-1 HMI-2

Fig. 3. SUS scores for all three HMI designs, x show the 
mean value, the red line is the median 
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5. Conclusions 
HMI designs for mode transitions with visual cues on 

steering wheel improve perceived usability, desirability, and 
user preference. Enabling personalization of HMI elements 
can further improve the attractiveness of HMIs. We 
recommend personalized HMIs with visual cues on 
circumference of the steering wheel to be further developed 
and implemented in vehicles with multiple levels of 
automation. 
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Abstract: Cell phones (or smartphones) have become an essential part of daily functions. However, using the phone 
while operating machinery, such as driving, leads to problematic consequences and compromises safety. There have 
been legislative, technological, and educational strategies and countermeasures but their effectiveness on reducing 
distracted driving behaviours is inconclusive, suggesting the need to investigate other contributing factors and 
mitigation efforts. This article aims to propose a new framework that includes social needs, habitual use of smartphones, 
and self-control as core contributing factors to problematic phone use while driving. Preliminary data was collected and 
structural equation modelling is being used to test the relationships of the latent constructs within the framework. 
Results will be included soon. This framework bridges the distracted driving literature with psychological needs and 
technological adoption literature and provides testable hypotheses for future research. In addition, it offers suggestions 
for the framing of messaging for awareness champions and pledges as well as comprehensive research efforts to better 
understand the underlying contributing factors of problematic phone use while driving and distracted driving.   
 

1. Introduction 
Mobile cellular phones, especially smartphones 

(henceforth, cell phones), have become an integral part of our 
daily functions. The cell phone subscriptions have been 
growing steadily in the past two decades: in 2019 there were 
109.46 subscriptions per 100 people worldwide and 134.46 
subscriptions per 100 people in the U.S. (World Bank, 2019). 
Recent studies indicate that an average individual spends over 
four hours a day on their phone (Curtin, 2018) and 79% of 18 
to 44 year-olds have their phone on them for 22 hours a day 
(Stadd, 2013). 

What is alarming is when using cell phones while 
operating machinery, such as driving a car and being 
distracted by interactions with phones (Strayer & Fisher, 
2016; World Health Organization & National Highway 
Traffic Safety Administration, 2011). Prior studies have 
documented the impact of visual, cognitive, and manual 
distraction and researchers have attempted to detect and 
mitigate distraction by technological means (Caird et al., 
2014; Kashevnik et al., 2021; Leipnitz et al., 2022). For 
example, cell phone blocking technologies can be activated 
when built-in phone sensors detect movement such as in a 
moving vehicle and subsequently silence the phone, redirect 
incoming calls to voicemail, or automatically reply to 
incoming text messages with a pre-programmed message. 
Although a recent study indicated feasibility to use 
smartphone-based blocking technology to collect phone use 
data (McDonald et al., 2019), subjective data indicated that 
many drivers are motivated to find ways to cheat the 
technology or use a passenger’s phone when theirs are locked 
while driving (Creaser et al., 2015). 

In addition, legislative efforts have been introduced to 
regulate the use of cell phones and other electronics by drivers. 
Currently, 23 states, the District of Columbia (D.C.), Puerto 
Rico, Guam, and the U.S. Virgin Islands ban all drivers from 
using hand-held cell phones while driving. While some 

studies document a limited or short-lived positive impact of 
the laws on cell phone use rate and traffic fatalities (Lim & 
Chi, 2013; Rocco & Sampaio, 2016), others find no evidence 
of change after legislative effects are in place (Highway Loss 
Data Institute, 2009; McCartt & Geary, 2004) 

Numerous local, state, and federal agencies are 
dedicated to end distracted driving by promoting campaigns 
(e.g., NHTSA’s “U Drive. U Text. U Pay.”) and increase 
public’s awareness by issuing public service announcements. 
Additionally, cell phone service providers, car manufacturers, 
and insurance companies (e.g., AT&T’s “It Can Wait”) 
encourage people to take pledges for never picking up the 
phone while driving. 

In general, the effect of these existing legislative, 
technological, and educational efforts seems to be 
inconclusive. Distracted driving affects drivers, their families, 
the workforce, and the society; therefore, everyone has a role 
to play and the responsibility to model positive behaviours 
(Gauld et al., 2019). More efforts are needed to develop long-
lasting, effective, and sustainable programs and campaigns 
and the associated messaging and framing to really make a 
difference in changing behaviours, attitudes, and experiences 
(Arnold et al., 2019; Li et al., 2014). 

The current study aimed to propose a new framework 
and include potential contributing factors that have not been 
explored. Specifically, we attempted to identify psychosocial 
factors that are relevant to social needs, habitual use, and self-
control. We argued that one of the key psychological 
functions of cell phones or smartphones is its social function 
in the sense of fulfilling needs of belongingness regardless of 
physical place and building up social networks and 
connection to the world outside (Srivastava, 2005). Similarly, 
fear of missing out and social connectedness have been found 
to be related to phone use in general (Przybylski & Weinstein, 
2013). The concept of belongingness and social needs are 
considered a driving force for individuals seeking social 
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 connection via physical or virtual interactions with their 
social groups (Verduyn et al., 2017).   

Another construct – habitual use – is related to 
attachment. Smartphones have been described as having 
characteristics of an attachment bond (Ainsworth, 1985): as 
digital companions (Carolus et al., 2019), digital pacifiers  
(Diefenbach & Borrmann, 2019; Melumad & Pham, 2017),  
forms of gratification (Fullwood et al., 2017), social entity 
(Carolus et al., 2019; Srivastava, 2005), reward mechanism 
(Aranda & Baig, 2018), and virtual friend (Fullwood et al., 
2017). A third construct – self-control – is related to the fact 
that drivers are aware of the danger of problematic phone use 
while driving and the bans and regulations associated with it 
and yet they irrationally use the phones while driving. Drivers 
may pace their interactions with the phones or other 
distracting secondary tasks when they feel bored, traffic is 
light, road conditions are not challenging, or the importance 
of the phone call is high (Oviedo-Trespalacios et al., 2018; 
Wandtner et al., 2016). In other words, self-regulation plays 
a role in how and when drivers pick-up or put-down the 
phones and needs to strike a balance between the strength of 
an impulse and own ability to inhibit such desire (Kelley et 
al., 2015).     

We hypothesized that social needs drive an 
individual’s habitual use of cell phones, and habitual use and 
self-control then lead to problematic phone use while driving 
(see Figure 1).    

 
 

Fig. 1. Proposed framework 

2. Method 
An online, anonymous survey was used for this work. 

This study received the Institution Review Board approval 
from the first author’s university. This survey was 
administered via Qualtrics and posted on Mechanical Turk.   

2.1 Participants  
Individuals who held the status of an Amazon 

Mechanical Turk Master (Lovett et al., 2018) (workers who 
have demonstrated high performance over time and meet the 
performance requirements put forth by Mechanical Turk) 
were invited to participate. Individuals also had to be an adult 
and be residing in the U.S. Initially, 402 participants 
completed the survey and received the compensation of USD 
7; however; 8 of them did not pass the attention check 
questions (e.g., answering 1978 when the survey asked for the 
current year) and were removed from the dataset. Thus, the 
final sample size was 394. 

2.2 Procedures 
Individuals who accepted the invitation to participate 

in this study were first directed to the consent page and must 
agree to the requirement of completing the entire survey. 
Once they indicated consent, they were asked to read the 
instructions as well as the definitions of the terminology used 
in the survey. The instructions also emphasized that they 
should answer the survey honestly and that there were no 
right or wrong answers. Survey questions were presented one 
at a time and participants could skip questions, although they 
were encouraged to answer all the questions. On average, 
participants took 16 min to complete the survey.  

2.3 Key Measures 
The survey included several previously validated 

psychosocial scales: The Need to Belong Scale (Baumeister 
& Leary, 1995), the Fear of Missing Out Scale (Przybylski et 
al., 2013), Perceived Attachment to Phone Scale (Weller et 
al., 2013), Habitual Smartphone/Internet Behaviour Scale 
(Limayenm et al., 2003; van Deursen et al., 2015), the Self 
Regulation Scale (Diehl et al., 2006), and the Boredom 
Proneness Scale (Farmer & Sundberg, 1986; Vodanovich et 
al., 2005).The rest of the survey items were developed by the 
authors, including sources of news and information, 
importance of social connectedness, driving frequency, 
annual mileage, car accident involvement, phone use while 
driving frequency, mobile application use while driving, as 
well as demographic questions (participants’ age, gender, 
residence, state of residence, race and ethnicity, education, in-
come, and employment status).  

2.4 Analytical Strategy 
Structural Equation Modelling approach is being used 

to examine the measurement models between the observed 
variables and the latent constructs as well as the relationships 
among the latent constructs. The proposed framework and the 
structural relationships among the variables are presented in 
Figure 1.  

3. Results 

3.1  Sample Characteristics 
The sample consisted of 219 men and 175 women who 

lived in the U.S. and the ages ranged from 20 to 76, with the 
average being 40.89 (SD = 11.21) years. Participants came 
from 45 states (no data came from Alaska, Arkansas, North 
Dakota, South Dakota, and Vermont). Of the 394 responses, 
190 chose “suburban,” 125 chose “urban,” 77 chose “rural,” 
and 2 chose “other” as their primary residence area. The 
majority of the participants identified their race and ethnicity 
as White (n = 307) (61 as Asian, 20 as Black, 12 as 
Hispanic/Latino/Spanish origin, 11 as American 
Indian/Alaska Native, 1 as Native Hawaiian/Other Pacific Is-
lander, and 2 as Other). In terms of education level, 219 
participants reported having a college degree, followed by 
having some college (n = 70), having a graduate degree (n = 
56), having a high school diploma (n = 47), and having some 
high school education (n = 2). The annual household income 
item included five options: most of participants selected the 
45-70 K (n = 115) and 25-45 K (n = 105) options, followed 
by the 70-110K option (n = 69), <25K option (n = 62), 



120

3 
 

and >110K option (n = 43). More than half of the participants 
reported having a full-time job (n = 258) (22 worked part-
time, 82 were self-employed, 3 were a student, 27 were 
unemployed).  

3.2 Structural Equation Models 
Currently, the SEM is still being conducted and the 

results will be available when the full paper is due, should the 
abstract is accepted.  

4. Discussion and Conclusions 
Distracted driving as well as the precursors and 

consequences are complex and multifaceted behavioural, 
psychological, public health, and transportation safety issues. 
Cell phones afford many contemporary benefits but using 
them while driving a vehicle put the users and others in 
danger. As researchers consider distracted driving behaviours 
modifiable and preventable (Bingham, 2014; Brown et al., 
2016), better understanding of the underlying psychological 
needs and motivations is critical in guiding the design of 
regulatory and educational efforts. There is a critical need to 
investigate the occurrence of interrelated distracting 
behaviours and how drivers change their communication 
preferences, as these behaviours may be motivated by some 
common needs. For example, the framing of messages, 
educational activities, and pledges can be better aligned with 
target users’ psychological needs and motivations. “Your 
friends can wait” might be more comprehensively perceived 
than “It can wait” by acknowledging the social component 
and the significance to relationship maintenance. 
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Abstract: A growing body of research demonstrates the effect of texting while driving (TWD) on driver 
performance. It is shown that TWD is responsible for poor driver performance and increased accident 
probability. The current review aims to explore the articles examining the effect of TWD on driver 
performance, and to create a holistic picture of this relationship. Twenty three articles met the selection 
criteria of this review. The articles are classified into two categories. At the first category, the articles 
examining the effect of only TWD on driver performance is included. At the second category, the 
articles comparing the effect of handheld and hands-free TWD on driver performance is analyzed. 
Driver performance was measured based on six indicators, which are accident probability, lateral 
vehicle control, longitudinal vehicle control, reaction time, visual scanning behavior and workload of 
drivers. The review revealed that the TWD had a great effect on driver’s accident probability, lateral 
vehicle control, longitudinal vehicle control, reaction time, visual scanning behavior and cognitive 
workload. Also, studies comparing the effect of handheld and hands-free TWD showed that the 
handheld TWD has the most degrading effect on driver performance. 

 

1. Introduction 

Of all driver distractions, TWD is 
considered the most dangerous driver 
distraction (Caird et al., 2014). Drivers have to 
move their eyes from road to phone, 
comprehend the content in the message and 
typed to reply, and thus may lose control over 
the steering wheel at hand. This process 
highlights that TWD results in at least three 
distraction types; cognitive, visual, and 
physical distraction. Notwithstanding its highly 
dangerous nature, TWD is becoming more 
popular, especially among young drivers. The 
study conducted with high school students In 
the USA revealed that 38% of 101,397 
participants reported TWD at least once (Li et 
al., 2018). Another study surveying US drivers 
of all ages showed that 60% of 1211 drivers 
reported TWD, whereas the highest number of 
cell phone use while driving belonged to young 
drivers (Gliklich, et al., 2016). Haste (2005) 
reported critically high TWD among UK 
drivers, which was about nine out of ten drivers 
(89%). Hill, et al. (2019) stated that one-third 
of 220 participants reported engaging in TWD 

daily in Ukraine. Data from South Africa also 
presented a similar pattern. 60% of drivers 
recruited in the study accepted that they often 
engage in TWD (Oyedemi and Kgasago, 2017). 
These studies showed that these alarming rates 
of TWD are not regional but a global issue. 
Thus, understanding its impact on driver 
performance has attracted researchers for more 
than a decade. 

The studies regarding its impact on driver 
performance clearly showed the magnitude of 
this threat. Numerous studies utilizing driving 
simulator or instrumented car was published 
and addressed similar problems such as 
decrements in control over the vehicle (Yannis 
et al., 2016; McKeever, Schultheis et al., 2013), 
increased crash risk (Lansdown, 2019), 
degrading visual scanning performance 
(Rudin-Brown et al., 2013) and increase in 
drivers' workload (Young, et al., 2014) and 
reaction time (Lyngsie, et al., 2013). 

There are many studies reviewing driver 
distraction or mobile phone use while driving 
and their impact on driver performance (Young 
et al., 2007; Oviedo-Trespalacios et al., 2016). 
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However, to the best of our knowledge, there 
was a lack of comprehensive review study 
focusing on the impact of TWD on driver 
performance, despite the popularity and 
seriousness of this issue.  

The current study aimed to review studies 
investigating the texting-while-driving (TWD) 
behavior and driver performance. Thus, the 
studies measuring drivers’ performance under 
the influence of TWD texting will be presented 
and their findings will be synthesized in 
following sections. 

2. Method 

The literature related to texting while 
driving (TWD) and driver performance was 
examined. Peer-reviewed articles were 
obtained via Scopus database 
(www.scopus.com). Firstly, "texting while 
driving" is used as an only keyword since it is 
the most common term referring to the texting 
behavior in driving context. Secondly, 
"texting" is combined with either "driving" or 
"driver performance" in order not to miss any 
related documents. Additionally, the search 
was done by selecting "title, abstract, keyword" 
option. The duration of documents were set as 
"all years" to present while document type was 
selected as "article" and "article in press". 
Finally, the search was resulted in 487 article in 
total. The several articles were excluded from 
study based on which i) the language of the 
document was not English ii) they were 
duplicated iii) full-text and abstracts could not 
be reached iv) the focus of study was not on 
texting but was on mobile phone use in general 
or distracted driving v) "texting while driving" 
was the dependent variable. After the exclusion 
process, twenty three articles remained to 
examine. 

3. Results & Conclusions 

One of the most salient effects of TWD 
was on accident probability. Drews et al.'s 
(2009) study showed that almost all accidents 
occurred while drivers were texting. Bendak 
(2015) and Lansdown (2009) also showed that 
TWD had increased the accident number more 
than four times and five times, compared to 
driving without distraction. Additionally, the 

TWD related accident numbers were reported 
even higher on relatively riskier road 
environments. For example, the accident risk 
was higher on urban roads compared to rural 
roads (Yannis et al., 2014), on highways 
compared to town roads (Bendak, 2015), and in 
heavy traffic compared to moderate traffic 
situations (Yannis et al., 2016). 

Furthermore, the lateral vehicle control 
performance was also degraded by TWD and 
contributed to the crash risks (Lyngsie et al., 
2013; McKeever et al., 2013). The majority of 
the studies showed that TWD significantly 
affected the lane management performance. 
The drivers did not seem to be aware of the car's 
position within lanes or the steering wheel's 
position at hand (Rudin-Brown et al., 2013). In 
parallel to accident probability, the lane 
deviation due to TWD was higher in high-risk 
road conditions, such as in tunnels (Rudin-
Brown et al., 2013), and on city roads with 
many stimuli (Lyngsie et al., 2013). Another 
important finding was that the impairments in 
lateral vehicle control continued for a little 
longer after TWD ended (Thapa et al., 2015). 
That is, drivers needed more time to reattend 
the road conditions after they unhanded the 
phone 

The impairments in visual scanning 
behavior underlied how distracted driver's 
accident involvement was paved with TWD. 
Related studies showed that drivers' eyes off 
the road significantly contributed to poor 
performance and crash risk (Lansdown, 2001). 
Drivers kept their eyes off the road for 31% of 
driving time on highways (Bendak, 2015), or 
that number of glances off the road was 30-50 
times higher while TWD compared to 
undistracted driving. Thapa et al. (2015) also 
suggested that the continued degradations in 
driver performance after the texting sessions 
might be due to the residual effect of fixing 
eyes back to the road from the phone. 

It was not surprising since texting requires 
drivers to divert their attention to the phone 
instead of the road and make mental effort to 
comprehend the text's content and reply 
accordingly. It should be noted that the drivers' 
reaction time was measured by objective 
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indicators like brake response to front cars' 
brake lights, whereas workload was measured 
by a self-report method. It was assumed that the 
drivers recognized how effortful the driving 
safely while texting was. 

The effect of TWD on longitudinal vehicle 
control was not considered degrading the driver 
performance, if statistically speaking. The 
majority of studies showed that TWD 
engagement decreased vehicles' speed and 
increased the following distance and headway 
time/distance (Choudhary and Velaga, 2017; 
Yannis et al., 2014, etc.). These findings were 
attributed to the drivers' attempt to compensate 
for the risks of TWD. Caird et al. (2014) 
suggested that an increase in the following 
distance could be the attempt to create a safety 
buffer to reduce the crash risk. Similarly, 
Rudin-Brown et al. (2013) stated that, the speed 
reduction was higher in TWD conditions in 
high-risk road environments such as tunnels, 
than in low-risk road environments. It showed 
that the drivers' compensation effort increased 
along with the increased risks on the road. 

Four studies reviewed here were 
conducted to examine whether texting via a 
speech-based interface and an in-vehicle 
system being safer than texting with a handheld 
phone. In general, there was a evidence that 
handheld texting was more degrading than 
texting with other modalities in all driver 
performance indicators (Terken et al., 2011; 
Chen et al., 2020; He et al., 2014; Owens et al., 
2011). Chen et al. (2020) suggested that 
handheld texting was riskier and required more 
effort to compensate for the accident 
probability. However, these results did not 
imply that hand-free texting contributed to safe 
driving. The accident probability, drivers' 
mental workload, lane deviations, and reaction 
times were still increased in other texting 
conditions, compared to undistracted driving 
(Terken et al., 2011; Chen et al., 2020; He et al., 
2014; Owens et al., 2011). 

Concerning the findings above, it is clear 
that TWD is a highly threatening risk for the 
drivers' safety. Its effect can be observed on 
almost every performance indicator directly or 
indirectly thorough another performance 

indicator. For example, the significant effect of 
TWD on the lateral control can be related to the 
duration of drivers' eyes off the road. Hence, 
while planning countermeasures for TWD, it 
should be noted that targeting one or two 
performance indicators could be ineffective. 

Despite knowing the risks of TWD, the 
newer and presumably safer ways to keep 
drivers "in touch" is being developed every 
day. Some studies show that, in some cases, the 
effect of TWD can be reduced by using new 
methods of hands-free texting, such as speech-
based texting or texting via an in-vehicle 
system. It should be kept in mind that these 
methods are not risk-free; indeed, they carry a 
considerable risk of accidents (He et al., 2014) 
and become a burden for road safety. Thus, 
instead of technological developments 
regarding new ways of texting within vehicles, 
road safety researchers should emphasize the 
TWD banning legislation, enforcements, and 
interventions. 
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Abstract: Road crashes are a leading cause of death and disability in adolescence. Various factors can contribute to 
these crashes including overt risk-taking but also distracted, inattentive, and unfocused driving. Adolescent drivers are 
likely to be more susceptible to these issues if they experience sleep issues or have symptoms associated with inattention 
(e.g., ADHD) or sluggish cognitive tempo (SCT). In this study we surveyed 365 teenage drivers aged 16-18 years living in 
New Zealand. The survey included measures of aberrant driving, self-reported sleep habits and issues, inattention and 
SCT. Smartphone use while driving was significantly associated with sleep issues, inattention and SCT symptoms among 
teens who drive unsupervised, but not those who only drive under supervision (i.e., Learners). Unfocused driving 
showed small correlations with daytime sleepiness, inattention and SCT symptoms among all teen drivers. Overt risk-
taking while driving showed no correlations with sleep issues, and only small correlations with SCT symptoms (for all 
teen drivers) and inattention (for unsupervised drivers only). The results highlight that sleep issues, inattention 
symptoms and SCT symptoms are key risk factors for both distracted and inattentive driving among young drivers, 
especially those driving without supervision. 
 

1. Introduction 
Road crashes are a leading cause of death and 

disability in adolescence (Toroyan & Peden, 2007). Risky 
driving includes not only overt risk-taking while driving (i.e., 
speeding, aggressive driving, and driving after substance use), 
but also inattentive, distracted, and unfocused driving (Nada-
Raja et al., 1997). Risky and inattentive driving, as well as 
insufficient sleep and daytime sleepiness, are common 
contributory factors to road crashes (Martiniuk et al., 2013; 
Shope et al., 2008).  

Adolescents with conditions or characteristics 
affecting attention, such as attention deficit hyperactivity 
disorder (ADHD) or sluggish cognitive tempo (SCT) 
symptoms, may be more susceptible to some forms of risky 
driving, especially unfocused driving and driver distraction. 
SCT often overlaps with but is psychometrically distinct from 
the ADHD-I inattentive subtype; it is characterized by 
symptoms of daydreaming, daytime sleepiness, slowed 
thinking, and lethargy (Müller et al., 2014). SCT symptoms 
have been associated with functional impairments, including 
executive dysfunction, emotional dysregulation, and daytime 
sleepiness (Flannery et al., 2017). These issues are likely to 
be exacerbated by sleep issues; ADHD and SCT symptoms 
may act as mediators in the relation between poor sleep and 
risky driving (Jerome et al., 2006; Watling & Watling, 2021).  

The current online survey study was designed to 
explore associations sleep issues, inattention and SCT 
symptoms have with aberrant driving in teenaged drivers, 
especially distracted, unfocused and risky driving.  

The research was conducted in New Zealand, where 
teenagers can obtain a Learner licence at 16 years, a 
Restricted licence (which permits unsupervised driving under 
most conditions) at 16.5 years, and a full licence at either 17.5 
years (if they complete an approved driver training course) or 
18 years (default minimum age).  

2. Method 

2.1 Participants 
The sample included 365 teenager drivers aged 16-18 

years (M = 17 years 3 months, SD = 8.3 months) who lived in 
New Zealand. This included 159 teens with a Learner licence 
who only drove under supervision, 148 with a Restricted 
licence, 30 with a full licence, and 28 who reported driving 
unsupervised despite having no licence or only a Learner 
licence. 

There were 196 females (54%), 159 males (44%), and 
10 individuals who identified as gender diverse or did not 
specify gender. Participants self-reported their ethnicities as 
84.7% New Zealand European, 11.0% Māori, 3.0% Indian, 
2.2% Samoan, 1.6% Chinese, and 11.5% other (multiple 
ethnicity selections were permitted). 

Ethical aspects of the research were approved by the 
University of Otago Human Ethics Committee (21/031). 
Participants were recruited via online ads on Facebook and 
Instagram and through targeted emails to New Zealand 
secondary schools, with data collection occurring from May 
to August 2021. 

2.2 Measures 
Participants completed measures to assess self-

reported sleep duration, sleep issues and daytime sleepiness, 
SCT symptoms, general inattention, and driving behaviour 
including risky, distracted, and unfocused driving. 

To assess sleep issues, participants were asked if they 
had difficulty initiating sleep, staying asleep, and/or returning 
to sleep following waking at least three nights a week over 
three months or longer. These questions map onto DSM-5 
criteria for risk of insomnia (APA, 2013). 

The Epworth Sleepiness Scale for Children and 
Adolescents (ESS-CHAD; Janssen et al., 2017) was used to 
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assess daytime sleepiness. Participants rated their likelihood 
of falling asleep in eight situations on a 4-point scale from 0 
(would never fall asleep) to 3 (high chance of falling asleep). 
Scores are summed across items. Possible scores range from 
0 to 24 with higher scores indicating increased daytime 
sleepiness. 

SCT symptoms were measured using the Child 
Concentration Inventory 2nd edition (CCI-2; Becker, 2015), 
which requires participants to rate how frequently they 
experience symptoms (e.g., “My mind feels like it is in a fog”) 
on a 4-point scale from 0 (never) to 3 (always). The CCI-2 
contains 16 items, but previous research has shown three 
items do not show discriminant and convergent validity 
(Becker et al., 2020) so only 13 items were used to calculate 
CCI-2 summary scores. Possible scores range from 0 to 39 
with higher scores indicating more SCT symptoms. 

Attentional difficulties were assessed with a 9-item 
self-report adaptation of the inattention items employed by 
Beebe et al. (2008) from the Vanderbilt Assessment Scale 
(Wolraich et al., 2003). Attention items (e.g., “Had difficulty 
keeping attention to what needed to be done”) were rated on 
a 4-point scale from 0 (never) to 3 (very often). Possible 
scores range from 0 to 27 with higher scores indicating more 
inattention symptoms. 

Distracted and unfocused driving were assessed using 
the Behaviour of Young Novice Drivers Scale (BYNDS; 
Scott-Parker et al., 2010; Scott-Parker & Proffitt, 2015). 
Specifically, the Unfocused Driving (BYNDS-UD; 13-items) 
and Smartphone Use (BYNDS-SMP; 7-items) subscales from 
an updated version of the BYNDS (Jannusch et al., 2020) 
were used for analyses. Participants rated driving behaviours 
(e.g., “You misjudge the speed of an oncoming vehicle”, 
“You read messages on your smartphone”) on a 5-point scale 
from 1 (never) to 5 (nearly all the time). 

Risky driving was assessed using the risky driving 
subscale of the Dula Dangerous Driving Index (DDDI-RD; 
Dula & Ballard, 2003). This included 12 items (e.g., “I will 
drive if I am only mildly intoxicated or buzzed”) rated on a 
5-point scale from 1 (never) to 5 (always). For comparability 
DDDI and BYNDS scores were averaged across items to 
derive subscale scores between 1 and 5, with higher scores 
representing more frequent aberrant driving. 

2.3 Procedure 
Participants completed an anonymous online survey 

through REDCap (Research Electronic Data Capture; Harris 

et al., 2009), a secure online platform used to create and 
manage online databases and surveys.  

After indicating consent participants completed the 
self-report measures in 2.2, then demographic questions. 
Participants were then taken to a separate survey where they 
could enter a prize draw. Finally, participants were presented 
with links to websites on safe driving.  

3. Results 

3.1 Descriptive statistics 
All scales showed good reliability (see Table 1) and 

the full possible range was observed (i.e., there were 
participants at both extremes of all scales). 

Over half the participants (55.6%) were classified as 
having sleep issues, in that they reported having initiating 
sleep, remaining asleep and/or returning to sleep.  

Table 1 Descriptive statistics for each measure 

Scale M (SD) Range Cronbach’s 
alpha 

ESS-CHAD 7.1 (4.2) 0–24 .76 
CCI-2 16.8 (9.0) 0–39 .95 
Inattention (Vanderbilt) 8.5 (5.7) 0–27 .90 
BYNDS-UD 1.8 (0.5) 1–5 .82 
BYNDS-SMP 1.8 (0.8) 1–5 .91 
DDDI-RD 1.3 (0.5) 1–5 .91 

3.2 Correlations 
Because all three driving-related subscales were 

positively skewed, and insomnia symptoms was a binary 
category, Spearman’s rho was used to correlate driving 
behaviour with sleep, inattention and SCT symptoms. 
Because driving behaviour differs between supervised 
learners and unsupervised drivers, the sample was split into 
two subgroups.  

As shown in Table 2, smartphone use while driving 
was significantly positively correlated with self-reported 
insomnia, daytime sleepiness, inattention and SCT symptoms 
in unsupervised but not supervised drivers. 

In contrast, unfocused driving showed similar patterns 
for unsupervised and supervised drivers: small correlations 
with daytime sleepiness and small to moderate correlations 
with inattention and SCT symptoms, although the 
correlations were larger for unsupervised drivers. 

Table 2 Spearman’s rho correlations [and 95% confidence intervals] between measures 
 Insomnia ESS-CHAD CCI-2 Inattention 
Smartphone use (BYNDS-SMP)     

Restricted/Full/unsupervised  .18 [.04, .31] .23 [.09, .36] .21 [.07, .34] .20 [.06, .33] 
Supervised learner drivers -.01 [-.17, .16] .08 [-.08, .24] .06 [-.10, .22] .12 [-.05, .27] 

Unfocused driving (BYNDS-UD)     
Restricted/Full/unsupervised  .10 [-.04, .24] .22 [.08, .35] .39 [.26, .50] .37 [.24, .49] 
Supervised learner drivers .10 [-.07, .26] .19 [.03, .34] .24 [.08, .39] .31 [.15, .45] 

Risky driving (DDDI-RD)     
Restricted/Full/unsupervised  .02 [-.12, .16] .05 [-.09, .19] .16 [.02, .30] .20 [.06, .33] 
Supervised learner drivers .03 [-.13, .19] .10 [-.06, .26] .06 [-.10, .22] .27 [.11, .41] 
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Risky driving was not correlated with insomnia or 
daytime sleepiness but did show small correlations with 
inattention for both groups and a small correlation with SCT 
for unsupervised drivers only. 

4. Discussion 
 
The current results indicate that distracted and 

unfocused driving in teenagers is associated with SCT and 
inattention symptoms and daytime sleepiness, especially for 
unsupervised drivers. Further analyses (in the full paper) will 
explore potential moderators and mediators of these 
relationships. The fact that these symptoms were not 
significantly correlated with smartphone use for supervised 
learners suggests that supervisors may attenuate some, but not 
all, undesirable driving behaviours. 

Notably, most of the sample were classified as having 
symptoms of insomnia. This high percentage is concerning 
but consistent with previous research in New Zealand 
adolescents (Galland et al., 2020). There are biological and 
social explanations for why adolescents may experience 
inadequate sleep. 

The construct of unfocused driving measured in the 
current study represents primarily unintentional errors and 
lapses, such as misjudging driving situations or diverting 
attention to irrelevant stimuli like music or roadside 
advertisements. This subscale showed the strongest 
correlations observed in the study, with inattention and SCT 
symptoms for unsupervised drivers. In contrast, the more 
volitional risky driving behaviours measured by the DDDI-
RD subscale showed very few significant associations, with 
only small associations mainly for inattention. This shows 
that adolescents experiencing inattention and SCT symptoms 
are not necessarily at risk for dangerous driving in general, 
but for specific forms of aberrant driving that are directly 
related to their cognitive symptoms and characteristics. 

5. Conclusions 
Sleep issues, inattention symptoms and SCT 

symptoms are key risk factors for both distracted and 
inattentive driving among young drivers, especially those 
driving without supervision.  
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Abstract:  
 
Achieving national agreement and harmonisation on a technology neutral approach to road use policy in the Australian 
Federal system of government presented a unique set of challenges within a complex stakeholder environment.  
 
Informed by the work of the National Transport Commission, Australian transport ministers have now approved a 
national policy- and subsequent amendments to the Australian Road Rules (ARR) – to address all sources of distraction 
while driving and provide a technology neutral approach to regulating interactions with technology.  The policy is 
designed to manage the distraction risks posed by technology while encouraging innovation and ensuring technology that 
has the potential to improve safety is not constrained. The agreed policy encompasses a hybrid approach, using both 
prescriptive and performance-based rules, to clarify safe and unsafe interactions with technology. The policy intent is to 
reduce the road crash risk associated with driver distraction and provide better outcomes for road users regardless of the 
technology used.  
 
The policy addresses the problem in the model Australian Road Rules (ARRs), through which uniform rules are 
prescribed for all road users across Australia, about the lack of clearly identified distracting activities that affect driving 
performance.   
 
Amendments to the ARRs deliver on the national policy.  Broadly the amendments include- 
 

• a broad prohibition to use technology (while the vehicle is moving or stationary but not parked), with lower risk 
interactions permitted by exception with inbuilt and mounted devices and motorcycle helmets 

• prohibition of all physical interactions and restriction of visual interactions with wearable devices  
• prohibition of all visual and physical interactions with non-mounted portable devices 

 
The national amendments are currently being adopted within state and territory transport legislation across Australia. 
 
 

1. Introduction 
 
Since 1999 the Australian Road Rules (ARRs) relating to 
driver distraction have been the basis for regulatory 
instruments used in Australia to deter unsafe driver 
engagement with secondary tasks while driving.  
 
The ARRs regulate a broad range of sources of distraction 
that impact a driver’s ability to maintain proper control and at 
the same time focus on specific types of technology that cause 
driver distraction, rather than on distracted driving 
behaviours and interactions that are known to be most risky 
from a safety perspective. The specific rules only preclude or 
limit the use of specific technology devices – mobile phones, 
visual display units and television receivers – while 
permitting their use as driver aids. 
 

The ARRs – 
 

• have not kept pace with the arrival of the smartphone 
and modern technology devices (including those 
built into the vehicle) 

• inconsistently treat the sources of distraction and 
safety risks associated with certain 

   behaviours 
• can be confusing for road users and police regarding 

what technology devices are legal and illegal to use 
when driving. 

 
The new Australian approach expands on the status quo, 
improves the ability to address all sources of distraction and 
is not limited to interactions with technology. It requires that 
drivers must ensure safe execution of non-driving-related 
tasks. 
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Technology neutral rules in road use regulatory settings for 
driver distraction in Australia provide an opportunity to 
encourage innovation and ensure that technology with the 
potential to improve road safety is not prohibited. Emerging 
transport technologies can provide opportunities to improve 
transport productivity and reduce deaths and injuries. 
 
The approved Australian national policy framework for 
driver distraction focuses on driver behaviour and targets 
high-risk interactions with technology that are proven to 
significantly increase crash risk while driving. 
 
It promotes the safe use of technology to operate a vehicle, 
conduct the professional driving task and navigate with a 
preference for lower risk audio and voice communication 
functionalities. 
 
The new ARRs approved by all Australian governments 
prescribe rules for using electronic devices when driving.  
The rules cover how a person can interact with devices, what 
a person can use a device for and what the device may display 
on a screen. There are different rules depending on the device 
being used including inbuilt and mounted devices, motorbike 
helmet devices, wearable devices and portable devices.  
 
Achieving national agreement and harmonisation in the area 
of road use policy in the Australian Federal system of 
government, however, presented a unique set of challenges. 
Each state and territory of Australia has near exclusive 
responsibility for road transport policy regulation.  
 
Constitutionally, the Australian Commonwealth government 
has no direct powers of administration in this area unless 
incidental to another power conferred by the Australian 
constitution. 
 
Another significant challenge was the need to ensure 
enforceability of new rules and clear community education 
about what is and is not allowed with respect to interaction 
with technology.   
 
The agreed national policy framework and associated 
legislation represents three years of complex reform 
consultation and negotiation to produce a set of model rules 
suitable for implementation across Australia. 
 

2. Australian Policy Approach/Method 
 
The Australian policy approach was underpinned by five 
broad based principles as follows: 

• An overarching requirement for a driver to have 
proper control of a vehicle to encourage safe use of 
technology regardless of whether an interaction is 
prohibited or not. 

• Prescriptive rules for drivers are easily understood 
by the public and law enforcement agencies 

• Prescriptive rules for drivers apply to all technology 
devices capable of wireless communication, 
electronic data retrieval, and/or displaying 
electronic data by display or projection 

• Prescriptive rules for drivers apply to device 
interactions and functionalities known to result in an 
increased crash risk 

• Voice-based interactions are permitted. There are no 
restrictions on voice-based interactions so long as 
the display is not visible to the driver in the normal 
driving position. 

 
Based on these principles the national policy offers a 
suite of regulatory and non-regulatory approaches, 
including: 

 
• A performance-based road rule – a tool to address 

both the observable driver and vehicle behaviours 
that cause and/or indicate the driver’s lack of control 
of a vehicle whether or not the source of the lack of 
control is based on a driver’s interaction with 
technology.   

• Prescriptive road rules – introduction of four new 
device categories with a short, specific set of 
permitted and prohibited driver activities with 
technology addressing high-risk interactions to 
clarify what the public can and cannot do safely 
while driving. 

• Non-regulatory tools – There are non-regulatory 
initiatives across the Australian transport system 
that will support the effectiveness of the changes to 
the ARRs.  These include a safe driving guideline, 
public education campaigns and nationally-
consistent messaging to ensure a shared and 
consistent understanding about the responsibilities 
of drivers in relation to driver distraction as well as 
the intent of the new road rules.  This would capture, 
for example, the obligation on the driver to keep a 
proper lookout by paying attention to the 
surrounding road conditions and being able to 
intervene if required.  

 
The four device categories targeted by the policy include 
inbuilt/mounted technology, wearables, portables and 
motorcycle/bicycle helmets. 
 
The prescriptive element in the policy approach aims to 
encourage the take-up of new technologies (such as enhanced 
voice-user interfaces) consistent with Australian transport 
ministers’ priority to remove barriers to innovation and 
embrace new and emerging technologies. 
 

3. The Governance and Stakeholder Environment 
 
Since 2003, through an Intergovernmental Agreement (IGA), 
Australian States and Territories and the Commonwealth 
government have committed to improving transport 
productivity, efficiency, safety and environmental 
performance and regulatory efficiency in a uniform or 
nationally consistent manner.   
 
The National Transport Commission (NTC) is responsible for 
development, maintenance and negotiation of transport 
related laws as tasked by transport ministers and departments 
of state.  The NTC acts as a body independent of any one 
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Australian jurisdiction to practically deliver legislation 
outcomes which removes perceptions of conflict between 
Australian State and Commonwealth priorities.  
 
 
Australian governments expect the NTC alongside Australian 
jurisdictions to lead core law reform. The commitment of 
Australian governments includes developing nationally 
consistent regulatory reform arrangements for road transport 
through the work of the NTC.  Where appropriate, these law 
reforms may be expressed as model legislation so that 
consistency is promoted and maintained. The legislation for 
the driver distraction rules is prescribed in this way, and while 
they have no legal force in and of themselves, it is expected 
that the parties to the IGA will implement the agreed model 
legislation into local transport laws so that lawful 
enforceability and compliance is achieved.   
 
Approval of model legislation requires unanimous agreement 
of all parties to the IGA. Achieving agreement with respect to 
national model uniform legislation presents many challenges 
because of the need to navigate the tension between the desire 
for a national response to emerging problems and the need to 
respect the constitutional separation of legislative powers 
between the Commonwealth and State and Territory 
jurisdictions.  
 

4. Enforcement Challenges 
 
Before the approval of the national policy and model 
legislation, the ambiguity of the rules for driver distraction 
made it difficult for enforcement agencies to identify 
behaviours that could result in distraction thereby reducing 
the driver distraction rules’ safety benefits.  
 
Australia’s new vehicle market is small and therefore vehicle 
manufacturer’s decisions about in-vehicle technologies has a 
direct effect on the potentially distracting features available 
to Australian motorists to use while vehicles are in motion or 
stationary but not parked. This means that enforcement of the 
road rules is one of the main regulatory tools to minimise 
driver distraction.  
 
Achieving clarity in the new driver distraction rules was key 
to ensuring support at the national level. It was essential to 
ensure to the greatest extent possible the ability for 
enforcement to determine the applicable rule to the observed 
driver behaviour and therefore improve enforcement’s 
likelihood to withstand scrutiny if questioned in a court of law.  
 
The use of prescriptive rules seeks to facilitate enforcement 
by reducing the level of judgement enforcement officers 
exercise when applying the new rules. In combination with 
the use of prescriptive rules, the new rules include a 
performance-based element to target both the causes and 
consequences of driver engagement in distracting activities 
generally, regardless of whether they are technology based 
and not explicitly prohibited by law. The performance-based 
element is designed to target the effects of distracting 
activities, as well as the sources of distraction prior to a crash. 
The approach aims to mitigate the consequences of a wide 

range of sources of distraction regardless of whether they are 
technology-based. A driver’s engagement in non-technology-
based activities, such as eating or attending to personal 
hygiene, may cause a driver to drive in a manner determined 
as failing to have proper control of a vehicle.  
 
Finally, the ability for the new rules to be sufficiently 
enforceable through photo evidence to align with Australian 
States and territories automated camera enforcement of 
illegal mobile phone use was a key priority.  
 
5. Australian Driver Distraction Model Laws 

 
The Model laws approved by all Australian governments 
prescribe rules for using electronic devices when driving.  
The rules cover how a person can interact with devices, what 
a person can use a device for and what the device may display 
on a screen. There are different rules depending on the device 
being used (e.g mobile phone, smart watch or a vehicle 
infotainment system).  For all electronic devices, however, 
the following interactions are prohibited: 

 
• Typing of text or numbers into the device 
• Scrolling through any content that is shown on a 

device’s display 
• Playing of movies, television shows, video games, 

animations, or other video content on a device that 
the driver can view 

• Reading of text messages, group chats, emails or 
viewing of websites on the device 

• Looking at social media or making video calls on the 
device.  

 
The following summarises the rules for the different devices 
captured by the approved national policy.  The rules provide 
a limited list of permitted interactions with technology, based 
on those interactions found by research to carry a lower risk 
of crash, including driver assistance functions such as 
navigation.  
 
 Visual and manual interactions found to carry a higher risk 
are consistently addressed through a broad prohibition to use 
technology (while the vehicle is moving or stationary but not 
parked), with lower risk interactions permitted by exception. 
It is permitted, however, to touch a device to stop an activity 
that is prohibited.  
 
This approach is applied as consistently as practicable across 
four device categories which is a departure from the status 
quo and indicates what drivers can and cannot do with 
specific devices. 
 
 

Inbuilt and mounted devices 
 
Drivers must not touch an inbuilt or mounted device to type 
text or scroll through what is shown on the screen.  
 
Drivers may interact with an inbuilt or mounted device in 
certain circumstances, some examples include, operating 
driving and vehicle systems, making a phone call, using 
navigation, playing music or other audio.  
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While a driver is permitted to touch an inbuilt or mounted 
device, the rules have been developed to only allow short 
interactions (for example, a single touch to select an option). 
If a driver needs to use the device for more than a moment, 
they will need to wait until they can safely pull over and 
legally park the vehicle.  
 
It is not intended to penalise a driver for prohibited functions 
enabled by vehicle manufacturers that the driver of a vehicle 
has no control over.   
 

 
 Motorbike helmet devices  
 

Motorbike riders must not touch a helmet device to type text 
or scroll through what is shown on a screen. 

 
Riders may interact with the helmet device in certain 
circumstances, some examples include, , making a phone call, 
using navigation, playing music or other audio.  
 
 

Wearable devices 
 

Users of wearable devices must not touch the device to use its 
apps or functions.  However, voice commands can be used to 
operate the device. 

 
The wearable device can only show the user content about the 
safety and operation of the vehicle, making a phone call, or 
playing music. 

 
Navigation and map functions on the device must not be 
visible to the driver in the normal driving position.  

 
Portable devices 
 

Drivers must not touch or hold a portable device regardless  
of whether it is on or off. 
 
Drivers must not be able to see anything on the portable 
device screen from the normal driving position apart from 
automatic notifications and basic information such as time, 
date and battery power. 
 
Drivers can use the portable device with hands-free controls 
provided the driver cannot see the screen from the normal 
driving position.  
  
 

6.    Conclusion 
 
The agreed Australian position on regulation of driver 
distraction through law includes a combination of 
performance-based and prescriptive rules.  
 
This combination provides: 
 

• A clear indication of permitted and prohibited 
interactions with technology based on high-risk 
interactions and behaviours identified by research. 

• A performance-based component that addresses any 
sources of distraction that could impair a driver’s 
proper control of a vehicle and clear view of the road 
and traffic. 

 
It is expected that this approach will provide the highest road 
safety-benefits in terms of reducing the number of fatalities, 
injuries and economic costs from accidents.  
 
In addition, there are non-regulatory initiatives across the 
Australian transport system that will support achieving the 
overall policy objective and enhance the effectiveness of the 
new model driver distraction rules.  
 

7.    References 
 

ABS 2019, 9208.0 – Survey of Motor Vehicle Use, 
Australia, 12 months ended 30 June2018, accessed 
at:https://www.abs.gov.au/ausstats/abs@.nsf/mf/9208.0 

AT&T 2015, Smartphone Use While Driving Grows Beyond 
Texting to Social Media, Web 

Surfing, Selfies, Video Chatting, 19 May 2015, accessed 
at:http://about.att.com/story/smartphone_use_while_driving
grows_beyond_texting.html 

Attorney-General’s Department 2019, Reducing the 
complexity of legislation, accessed 
at:https://www.ag.gov.au/LegalSystem/ReducingTheCompl
exityOfLegislation/Pages/default.aspx 

Australasian New Car Assessment Program (ANCAP) 2019, 
ANCAP Submission:Addressing NTC Issues Paper on 
Developing Technology-Neutral Road Rules for Driver 

Distraction, February 2019, accessed at: 
http://www.ntc.gov.au/system/files/webform/submission_dd
_ip/187/Developing-technologyneutral-road-rules-for-
driver-distraction-submission-ancap-safety.pdf 

Australian Light Vehicle Standards Rules, as at 22 
November 2019. 

Australian Mobile Telecommunications Association 2019, 
AMTA Submission to Nationa lTransport Commission 
Project: Developing technology-neutral road rules for drive 
rdistraction, February 2019, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
dd_ip/181/Developing-technologyneutral-road-rules-for-
driver-distraction-submission-amta-1.pdf 

Australian Road Rules, as at 19 March 2018. 

Ba, Y, Zhang, W, Peng, Q, Salvendy, G & Crundall, D 
2015, Risk-taking on the road and in the mind: behavioural 
and neural patterns of decision making between risky and 



134

5 
 

safe drivers, Ergonomics, July 2015, accessed 
at:http://dx.doi.org/10.1080/00140139.2015.1056236 

Beanland, V, Fitzharris, M, Young, K & Lenné, MG 2013, 
Driver inattention and driver distraction in serious casualty 
crashes: data from the Australian National Crash In-Depth 
Study, Accident Analysis & Prevention, vol. 54, pp. 99–107, 
accessedathttps://www.sciencedirect.com/science/article/abs
/pii/S000145751300047X 

Birrell, SA & Young, MS 2011, The impact of smart driving 
aids on driving performance and driver distraction, 
Transportation Research, Part F, no. 14, pp. 484–493, 
accessedatthttps://www.sciencedirect.com/science/article/ab
s/pii/S1369847811000751 

CCS Insight 2019, Optimistic outlook for wearables: 260 
Million Unit Sales in 2023,accessed at: 
https://www.ccsinsight.com/press/company-
news/optimistic-outlook-for-wearables/ 

Centre for Accident Research & Road Safety – Queensland, 
2017, Scoping Study of MobilePhone Use While Driving – 
final report, accessed 
at:https://eprints.qut.edu.au/121618/1/121618.pdf 

Cervantes, E 2019, Best smart motorcycle helmets to 
smarten up your ride, AndroidAuthority, 6 August 2019, 
accessed at: https://www.androidauthority.com/best-
smartmotorcycle-helmets-1014050/ 

Chevalier, A, Cunningham, M & Roberts, P 2019, ARRB 
response to the NTC’s Driver Distraction Issues Paper, 
Australian Road Research Board (ARRB), accessed 
at:https://www.ntc.gov.au/Media/Reports/(D2686DC6-
21DA-4139-888C-353B6BBD9B96).pdf 

Christie, R & Harrison, W 2003, Driver training and 
education programs of the future, Report No. 03/03, RACV 
Ltd, Melbourne 

Commissioner for Better Regulation 2016, Victorian Guide 
to Regulation, accessed 
at:https://www.vic.gov.au/sites/default/files/2019-
10/Victorian-Guide-to-Regulation.pdf 

Commonwealth of Australia, 2018a, National Road Safety 
Strategy 2011–2020, AustralianGovernment, accessed at: 
http://roadsafety.gov.au/nrss/ 

Commonwealth of Australia, 2018b, The Safe System 
approach, Australian Government,accessed at: 
http://roadsafety.gov.au/nrss/safe-system.aspx 

COAG 2007, A Guide for Ministerial Councils and National 
Standard Setting Bodies, BestPractice Regulation, October 
2007, accessed 
at:https://www.pmc.gov.au/sites/default/files/publications/C
OAG_best_practice_guide_2007.pdf 

Cunningham, ML & Regan, MA 2015, Taxonomy of Driver 
Distraction, Australian RoadResearch Board, Sydney 
(report for VicRoads). 

Deloitte 2018, Behaviour unlimited: Mobile Consumer 
Survey 2018 – The Australian cut,accessed at: 
https://www2.deloitte.com/au/mobile-consumer-survey 

Department of Infrastructure, Regional Development and 
Cities 2018, Community attitudes to road safety – 2017 
survey report, accessed 
at:https://infrastructure.gov.au/roads/safety/publications/201
8/pdf/community_att_17.pdf 

Department of Transport and Main Roads (Queensland) 
2019, Submission in response tothe National Transport 
Commission’s consultation Regulation Impact Statement 
ondeveloping technology-neutral road rules for driver 
distraction, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
distraction_ris/663/Developingtechnology-neutral-road-
rules-for-driver-distraction-RIS-submission-TMR.pdf 

Dingus, TA, Guo, F, Lee, S, Antin, JF, Perez, M, Buchanan-
King, M & Hankey, J 2016,Driver crash risk factors and 
prevalence evaluation using naturalistic driving 
data,Proceedings of the National Academy of Sciences, vol. 
113, no. 10, pp. 2636-2641. 

DriveRisk Australasia 2019, Submission: Developing 
technology-neutral road rules for driverdistraction, 
February 2019, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
dd_ip/180/Developing-technologyneutral-road-rules-for-
driver-distraction-submission-owen-neochi.pdf 

Ehsani, J, Bingham, C, Ionides, E & Childers, D 2014, The 
impact of Michigan's textmessaging restriction on motor 
vehicle crashes, Journal of Adolescent Health, vol. 54, 
pp.S68-S74, accessed 
at:https://www.researchgate.net/profile/C_Raymond_Bingha
m/publication/261837898_The_Impact_of_Michigan's_Text
_Messaging_Restriction_on_Motor_Vehicle_Crashes/links/
5653044108aefe619b18ec8c/The-Impact-of-Michigans-
Text-Messaging-Restriction-on-Motor-Vehicle-Crashes.pdf 

Elder, RW, Shults, RA, Sleet, DA, Nichols, JL, Thompson, 
RS & Rajab, W 2004,Effectiveness of mass media 
campaigns for reducing drinking and driving and 
alcoholinvolvedcrashes: a systematic review, American 
Journal of Preventive Medicine, vol. 27, no.1, July 2004, pp. 
57-65, accessed 
at:https://www.sciencedirect.com/science/article/abs/pii/S07
49379704000467 

Elliot, B 1992, Report on achieving high levels of 
compliance with road safety laws – areview of road user 
behaviour modification, Report No. 6, Brisbane: Travelsafe 
Committee,Legislative Assembly of Queensland. 

European Road Safety Observatory 2015, Driver 
distraction, accessed 



135

6 
 

at:https://ec.europa.eu/transport/road_safety/sites/roadsafety
/files/pdf/ersosynthesis2015-detail-
driverdistraction25_en.pdf 

FCAI 2019a, Written Submission in Response to Regulation 
Impact Statement – DevelopingTechnology – Neutral Road 
Rules for Driver Distraction, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
distraction_ris/443/Developingtechnology-neutral-road-
rules-for-driver-distraction-RIS-submission-FCAI.pdf 

FCAI 2019b, Australia’s new vehicle market, accessed at: 
https://www.fcai.com.au/sales 

Ferdinand, A, Menachemi, N, Sen, B, Blackburn, J, 
Morrisey, M & Nelson, L 2014, Impact oftexting laws on 
motor vehicular fatalities in the United States, American 
Journal of PublicHealth, vol. 104, no. 8, pp. 1370–1377, 
accessed 
at:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103220/
pdf/AJPH.2014.301894.pdf 

Ferdinand, A, Menachemi, N, Blackburn, J, Sen, B, Nelson, 
L & Morrisey, M 2015, Theimpact of texting bans on motor 
vehicle crash–related hospitalizations, American Journal 
ofPublic Health, vol. 105, no. 5, pp. 859–865, accessed 
at:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386499/
pdf/AJPH.2014.302537.pdf 

Financial Times 2018, Australia’s Uber drivers earn less 
than minimum wage, accessed 
at:https://www.ft.com/content/f9ce2cd8-d5c2-11e8-a854-
33d6f82e62f8 

Fitch, GM, Soccolich, SA, Guo, F, McClafferty, J, Fang, Y, 
Olson, RL, Perez, MA, Hanowski,RJ, Hankey, JM & 
Dingus, TA 2013, The impact of hand-held and hands-free 
cell phone useon driving performance and safety-critical 
event risk, National Highway Traffic SafetyAdministration, 
Washington, DC: Rep. No. DOT HS 811 757 

Fitzharris, M, Young, K & Bowman, D 2012, Potential 
benefits of ‘driver distraction’regulatory reform, Monash 
University Accident Research Centre, ClaytonFunkhouser, 
D & Chrysler, ST 2007, Assessing Driver Distraction Due 
to In-Vehicle VideoSystems through Field Testing at the 
Pecos Research and Testing Center, Report 
No.SWUTC/07/473700-00082-1, Southwest Region 
University Transportation Center, CollegeStation, TX, 2007, 
accessed 
at:https://static.tti.tamu.edu/swutc.tamu.edu/publications/tec
hnicalreports/473700-00082-1.pdf 

General Motors 2019, Marketplace, accessed at: 
https://gmmarketplace.gm.com/ 

Giang, WCW, Shanti, I, Chen, H-YW, Zhou, A & Donmez, 
B 2015, Smartwatches vs.smartphones: a preliminary report 
of driver behavior and perceived risk while responding 
tonotifications, Proceedings of the 7th International 
Conference on Automotive User Interfaces 

and Interactive Vehicular Applications, Nottingham, United 
Kingdom, Association forComputing Machinery, New 
York, pp. 154–161, accessed 
at:https://www.researchgate.net/profile/Wayne_Chi_Wei_Gi
ang/publication/280024357_Smartwatches_vs_Smartphones
_A_Preliminary_Report_of_Driver_Behavior_and_Perceive
d_Risk_while_Responding_to_Notifications/links/5626c0ea
08ae4d9e5c4d4699/Smartwatches-vsSmartphones-A-
Preliminary-Report-of-Driver-Behavior-and-Perceived-
Risk-while-Responding-to-Notifications.pdf 

Goodsell, R, Cunningham, M & Chevalier, A 2019, Driver 
Distraction: A Review of ScientificLiterature, Project No. 
013817, prepared for the National Transport Commission, 
accessedat: 
https://www.ntc.gov.au/sites/default/files/assets/files/Driver
%20distraction%20-
%20A%20review%20of%20scientific%20literature.pdf 

Hartley, J 2007, Driver distraction: a law enforcement 
perspective. In: Faulks, Regan,Stevenson, Brown, Porter & 
Irwin (eds.). Distracted driving, Australasian College of 
RoadSafety, Sydney, pp. 329–344, accessed 
at:http://acrs.org.au/files/papers/13%20Hartley%20A%20la
w%20enforcement%20perspective.pdf 

Hickman, JS, Hanowski, RJ & Bocanegra, J 2010, 
Distraction in commercial trucks 476 andbuses: Assessing 
prevalence and risk in conjunction with crashes and near-
crashes, FederalMotor Carrier Safety Administration, 
Washington, DC: Rep. No. FMCSA-RRR-010-049 

Highway Loss Data Institute, 2010, Texting laws and 
collision claim frequencies, HighwayLoss Data Institute 
Bulletin, vol. 27, no. 11, pp. 1–10, accessed 
at:https://www.iihs.org/media/fc495300-6f8c-419d-84d7-
c3b94d178e5a/enPLrA/HLDI%20Research/Bulletins/hldi_b
ulletin_27.11.pdf 

IBISWorld 2019a, Courier Pick-up and Delivery Services, 
Industry Report I5102 

IBISWorld 2019b, Ridesharing Services in Australia, 
Industry Report OD5540 

Insurance Australia Group 2019, Developing technology-
neutral road rules for driverdistraction, February 2019, 
accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
dd_ip/169/Developing-technologyneutral-road-rules-for-
driver-distraction-submission-iag.pdf 

Isler, RB, Starkey, NJ & Sheppard, P 2011, Effects of 
higher-order driving skill training onyoung, inexperienced 
drivers’ on-road driving performance,Accident Analysis 
andPrevention, no. 43, pp. 1818–1827 

Johnson, SB & Jones, VC 2011, Adolescent development 
and risk of injury: usingdevelopmental science to improve 
interventions, Injury Prevention, no. 17, pp. 50–54 



136

7 
 

Kemp, A & Gu, H 2017, Use of ride sharing and taxi 
services in New South Wales – A reportfor the Independent 
Pricing and Regulatory Tribunal, Houston Kemp, 
November 2017,accessed at: 
https://www.ipart.nsw.gov.au/files/sharedassets/website/shar
ed-files/pricingreviews-transport-services-admin-taxi-fares-
and-licences-from-july-2018/publications-taxifares-and-
licences-from-july-2018/consultant-report-houstonkemp-
use-of-ride-sharing-andtaxi-services-in-nsw-december-
2017.pdf 

Klauer, SG, Dingus, TA, Neale, VL, Sudweeks, JD, & 
Ramsey, DJ 2006, The impact ofdriver inattention on near-
crash/crash risk: an analysis using the 100-Car Naturalistic 
DrivingStudy data, National Highway Traffic Safety 
Administration, DOT HS 810 594, April 2006,accessed 
at:https://vtechworks.lib.vt.edu/bitstream/handle/10919/550
90/DriverInattention.pdf 

Kwon, O, Yoon, Y & Jang, K 2014, Evaluating the 
effectiveness of the law banning handheldcellphone use 
while driving, Safety Science, vol. 70, pp. 50-57, accessed 
at:https://www.sciencedirect.com/science/article/pii/S09257
5351400099X 

Lassa, T 2019, U.S. Auto Sales Totaled 17.25-Million in 
2017, accessed at:https://www.automobilemag.com/news/u-
s-auto-sales-totaled-17-25-million-calendar-2017/ 

Legislative Standards Act 1992 (Qld), section 4(3)(k). 

McKnight, AJ & Bahouth, GT 2008, Analysis of large truck 
rollover crashes, Association forthe Advancement of 
Automotive Medicine, vol. 52, pp. 281–288, accessed 
at:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256782/ 

Motorcycle Council of New South Wales 2019, National 
Transport Commission – Developingtechnology-neutral 
road rules for driver distraction – Consultation Regulation 
ImpactStatement, August 2019, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
distraction_ris/440/Developingtechnology-neutral-road-
rules-for-driver-distraction-RIS-submission-Motorcycle-
Council-of-NSW.pdf 

NHTSA 2019, Traffic safety facts research note: Distracted 
Driving in Fatal Crashes, 2017.Research note, DOT HS 812 
700, accessed 
at:https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublicati
on/812700 

NHTSA 2018, Traffic safety facts research note: Distracted 
Driving 2016. Research note,DOT HS 812 517, accessed 
at:https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublicati
on/812517 

NatRoad 2019a, Submission to the National Transport 
Commission: Developing technologyneutralroad rules for 
driver distraction – Issues Paper, February 2019, accessed 
at: 

http://www.ntc.gov.au/system/files/webform/submission_dd
_ip/189/Developing-technologyneutral-road-rules-for-
driver-distraction-submission-natroad.pdf 

NatRoad 2019b, Submission to the National Transport 
Commission: Developing technologyneutralroad rules for 
driver distraction – Consultation Regulation Impact 
Statement, August2019, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
distraction_ris/439/Developingtechnology-neutral-road-
rules-for-driver-distraction-RIS-submission-Natroad.pdf 

National Transport Commission 2017a, Changing driving 
laws to support automated vehicles– discussion paper, 
October 2017, accessed 
at:https://www.ntc.gov.au/Media/Reports/(E5695ACE-
993C-618F-46E1-A876391B8CD9).pdf 

National Transport Commission 2017b, Work Program 
2017–21, accessed 
at:https://www.ntc.gov.au/Media/Reports/(5221BAAC-
9DAB-B48F-54F2-C96CFD60D3CE).pdf 

OICA 2015, Recommended OICA Worldwide Distraction 
Guideline Policy Position, March2015, accessed at: 
http://www.oica.net/wp-content/uploads/OICA-Position-
Paper-Driver-Distraction-Final-2015-03-03.pdf 

OBPR 2007, Best Practice Regulation: A guide for 
Ministerial Councils and NationalStandard Setting Bodies, 
accessed 
at:https://www.pmc.gov.au/sites/default/files/publications/C
OAG_best_practice_guide_2007.pdf 

Olson, RL, Hanowski, RJ, Hickman, JS & Bocanegra, J 
2009, Driver distraction incommercial vehicle operations, 
Report No. FMCSA-RRR-09-042, US Department 
ofTransportation, Washington, D.C., 2009, accessed 
at:https://rosap.ntl.bts.gov/view/dot/17715 

Paine, M & Regan, MA 2018, Road Map for an Human 
Machine Interface Distraction SafetyRating, Australian 
Road Research Board, Sydney (report for VicRoads) 

Parnell, KJ, Stanton, NA & Plant, KL 2018, What 
technologies do people engage with whiledriving and why?, 
Accident Analysis and Prevention, no. 111, pp. 222–237 

Parnell, KJ, Stanton, NA & Plant, KL 2017, What’s the law 
got to do with it? Legislationregarding in-vehicle technology 
use and its impact on driver distraction, Accident 
Analysisand Prevention, no. 100, pp. 1–14, accessed 
at:https://www.sciencedirect.com/science/article/abs/pii/S00
01457516304535 

Regan, M, Hallett, C & Gordon, CP 2011, Driver distraction 
and driver inattention: definition,relationship and taxonomy, 
Accident Analysis and Prevention, no. 43, pp. 1771–
1781,accessed at: 
https://www.cambsdriveiq.co.uk/Regan_et_al_2011_driver_
distraction.pdf 



137

8 
 

Regan, M & Prabhakharan, P 2019, Submission to National 
Transport Commission inResponse to Issued Paper 
Developing Technology-neutral Road Rules for 
DriverDistraction, Research Centre for Integral Transport 
Innovation, University of New SouthWales Sydney, 
accessed at: 
https://www.ntc.gov.au/Media/Reports/(A352B22F-1424-
085D-76EC-24A6D33508AC).pdf 

Regan, M, Prabhakharan, P & Dixit, V 2019, Submission to 
National Transport Commissionin Response to Consultation 
Regulation Impact Statement Developing Technology-
neutralRoad Rules for Driver Distraction, Research Centre 
for Integral Transport Innovation,University of New South 
Wales Sydney, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
distraction_ris/655/Developingtechnology-neutral-road-
rules-for-driver-distraction-RIS-submission-transport-for-
RCITI.pdf 

Regan, M & Young, K 2007, Driver distraction: a review of 
the literature, In: I.J. Faulks, M.Regan, M. Stevenson, J. 
Brown, A. Porter & J.D. Irwin (Eds.) Distracted driving, 
Sydney,NSW: Australasian College of Road Safety, pp. 
379-405, accessed 
at:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
.469.4178&rep=rep1&type=pdf 

Revised Code of Washington 2019, Title 46, Chapter 46.61, 
Section 46.61.672, WashingtonState, United States of 
America, accessed 
at:https://app.leg.wa.gov/RCW/default.aspx?cite=46.61.672 

Road Safety Commission 2018, 2017 Preliminary summary 
of fatalities on WesternAustralian roads, Government of 
Western Australia, accessed 
at:https://www.rsc.wa.gov.au/RSC/media/Documents/Road
%20Data/Statistics/Annual%20crash%20statistics/annual-
prelim-crash-statistics-2017.pdf 

Roper, J 2017, A Study of the Effectiveness of the Hands-
Free Ordinance in San Antonio,Texas, accessed 
at:https://digital.library.txstate.edu/bitstream/handle/10877/6
626/RoperJacob.pdf?sequence=1&isAllowed=y 

Royal Automobile Association of South Australia 2019, 
Developing Technology NeutralRoad Rules for Driver 
Distraction: RAA submission to the National Transport 
Commission,February 2019, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
dd_ip/177/Developing-technologyneutral-road-rules-for-
driver-distraction-submission-raa.pdf 

Royal Automobile Club of Victoria 2019, Submission to 
Issues Paper for DevelopingTechnology-Neutral Road Rules 
for Driver Distraction, February 2019, accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
dd_ip/173/Developing-technologyneutral-road-rules-for-
driver-distraction-submission-racv.pdf 

Rudisill, TM, Chu, H, Zhu, M 2018, Cell phone use while 
driving laws and motor vehicle 

driver fatalities: differences in population subgroups and 
location, Annals of Epidemiologyvol. 28, pp. 730-735. 

Strayer, DL 2015, Is the technology in your car driving you 
to distraction?, Policy InsightsFrom the Behavioral and 
Brain Sciences, vol. 2, no. 1, pp. 157–165, accessed 
at:https://www.researchgate.net/profile/David_Strayer2/publ
ication/281479990_Is_the_Technology_in_Your_Car_Drivi
ng_You_to_Distraction/links/561bbe7f08aea80367242d2a/I
s-the-Technology-in-Your-Car-Driving-You-to-
Distraction.pdf 

Strayer, DL, Cooper, JM, Turrill, J, Coleman, JR & 
Hopman, J 2016, Talking to your car candrive you to 
distraction, Cognitive Research: Principles and 
Implications, vol. 1, November2016, accessed at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256443/ 

Strayer, DL, Cooper, JM, Goethe, RM, McCarty, MM, 
Getty, D & Biondi, F 2017, Visual andcognitive demands of 
using in-vehicle infotainment systems, Washington, DC: 
AAAFoundation for Traffic Safety, accessed at: 
https://aaafoundation.org/wpcontent/uploads/2017/11/Visual
andCognitive.pdf 

Strayer, DL, Cooper, JM, McCarty MM, Getty, DJ, 
Wheatley, CL, Motzkus, CJ, Mackenzie,KL, Loveless, SM, 
Esplin, J, Goethe, RM & Biondi, F 2018, Visual and 
cognitive demands ofusing Apple’s CarPlay, Google’s 
Android Auto and five different OEM infotainment 
systems,AAA Foundation for Traffic Safety, accessed at: 
https://aaafoundation.org/wpcontent/uploads/2018/06/AAA-
Phase-6-CarPlay-Android-Auto-FINAL.pdf 

Strayer, DL, Cooper, JM, Goethe, RM, McCarty, MM, 
Getty, DJ & Biondi, F 2019, Assessingthe visual and 
cognitive demands of in-vehicle information systems, 
Cognitive Research:Principles and Implications, vol. 4, no. 
18, accessed 
at:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588669/ 

Tesla 2019, Introducing Software Version 10.0, 26 
September 2019, accessed 
at:https://www.tesla.com/en_AU/blog/introducing-software-
version-10-0 

Transport Accident Commission 2016, Towards Zero 2016–
2020, Victoria’s Road SafetyStrategy and Action Plan, 
accessed 
at:https://www.towardszero.vic.gov.au/__data/assets/pdf_fil
e/0010/183556/STU_0206_RS_STRATEGY_2016_web.pdf 

Transport Accident Commission 2018, Young driver 
statistics, accessed at:http://www.tac.vic.gov.au/road-
safety/statistics/summaries/young-driver-statistics 

Transport and Infrastructure Council 2019, Transport and 
Infrastructure Council Strategic Work Programme, accessed 
at:https://www.transportinfrastructurecouncil.gov.au/publica
tions/files/Council_Strategic_Work_Programme.pdf 



138

9 
 

Transport for NSW 2019, Transport for NSW Submission, 
accessed 
at:http://www.ntc.gov.au/system/files/webform/submission_
distraction_ris/434/Developing-technology-neutral-road-
rules-for-driver-distraction-RIS-submission-transport-
fornsw.pdfDeveloping technology-neutral road rules for 
driver distraction October 2020 

Transport for NSW 2020, Mobile phone detection cameras, 
accessed 
at:https://roadsafety.transport.nsw.gov.au/stayingsafe/m
obilephones/technology.html 

Transport Workers Union 2018, Rideshare Driver Survey, 
accessed at: 
https://www.twu.com.au/Home/Campaigns/Rideshare-
Drivers/Rideshare-Survey-Infographic/ 

Tranter, P & Warn, J 2008, Relationships between interest 
in motor racing and driver attitudes and behaviour amongst 
mature drivers: An Australian case study, Accident Analysis 
& Prevention, vol. 40, no. 5, pp. 1683–1689 

Twisk, D 2007, Trends in risk of young drivers and 
countermeasures in European Countries, Paper presented to 
National Safety Council’s International Symposium on 
Novice Teen Driving: GDL and Beyond, February 5–7, 
Tucson, AZ  

Uber Technologies Inc. 2019, Common FAQs partners have 
before their first trip, Pre-first trip: Frequently asked 
questions, accessed at: https://www.uber.com/drive/new-
orleans/resources/prefirst-trip-faqs/ 

Ulleberg, P & Rundmo, T 2003, Personality, attitudes and 
risk perception as predictors of risky driving behaviour 
among young drivers, Safety Science, vol. 41, no. 5, pp. 
427–443 

Verschuur, WL & Hurts, K 2008, Modelling safe and unsafe 
driving behaviour, Accident Analysis & Prevention, vol. 40, 
no. 2, pp. 644–656 

The Washington Post 2017, A man using FaceTime killed a 
5-year-old girl in a highway crash. Was Apple to blame?, 2 
January 2017, accessed at: 
https://www.washingtonpost.com/news/the-
intersect/wp/2017/01/02/a-man-using-facetime-killed-a-5-
year-old-girl-in-a-highway-crash-was-apple-to-
blame/?noredirect=on&utm_term=.f0398399739b 

Washington State Legislature 2017, Distracted Driving – 
Electronic Devices – Dangerously Distracted Driving, 
Substitute Senate Bill 5289, accessed at: 
http://lawfilesext.leg.wa.gov/biennium/2017-
18/Pdf/Bills/Session%20Laws/Senate/5289-
S.SL.pdf?cite=2017%20c%20334%20  

Watson, B 1997, When common sense just won’t do: 
Misconceptions about changing the behaviour of road users, 
In: Bullen & Troutbeck (eds), The Second International 
Conference on Accident Investigation, Reconstruction, 

Interpretation & the Law: Proceedings, 20–23 October 1997 
(pp. 347–359), Brisbane 

Watson, JM & Strayer, DL 2010, Supertaskers: Profiles in 
extraordinary multitasking ability, Psychonomic Bulletin & 
Review, vol. 17, no. 4, pp. 479–485  

Williamson, A, Hatfield, J & Friswell, R 2019, Submission 
to the National Transport Commission regarding 
Developing technology-neutral road rules for driver 
distraction: Consultation regulation impact statement, 
Transport and Road Safety (TARS) Research Centre, 
University of New South Wales, accessed at: 
https://www.ntc.gov.au/submission_data/454 

Yagil, D 2005, Drivers and traffic laws: A review of 
psychological theories and empirical research, Traffic and 
Transport Psychology, Elsevier, Oxford, accessed at: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5
28.6758&rep=rep1&type=pdf  

Young, K, Horberry, T & Charlton, J 2019, Submission to 
the National Transport Commission on the Issues Paper: 
Developing Technology-Neutral Road Rules for Driver 
Distraction, Monash University Accident Research Centre 
(MUARC), accessed at: 
https://www.ntc.gov.au/media/1938/ntc-issues-paper-
developing-technology-neutral-road-rules-for-driver-
distraction-kristie-young-monash-university-accident-
research-centre-feb-2019.pdf 

Young, K & Lenné, M, 2012, Driver distraction regulatory 
reform in Australia, Monash University Accident Research 
Centre, Clayton. 

Young, K, Osborne, R, Koppel, S, Charlton, J, Grzebieta, R, 
Williamson, A, Haworth, N, Woolley, J & Senserrick, T 
2018, What are Australian drivers doing behind the wheel? 
An overview of secondary task data from the Australian 
Naturalistic Driving Study, Journal of the Australasian 
College of Road Safety, accessed at: http://acrs.org.au/wp-
content/uploads/What-are-Australian-drivers-doing-behind-
the-wheel-An-overview-of-secondary-task-data-from-the-
Australian-Naturalistic-Driving-Study.pdf 

Young, K & Regan, M 2003, Driver distraction: A review of 
the literature and recommendations for countermeasure 
development, Proceedings of the 2003 Road Safety 
Research, Policing and Education Conference, 24–26 
September, accessed at: 
https://acrs.org.au/files/arsrpe/RS030132.pdf  

Young, K & Regan, M 2007, ‘Driver distraction: A review 
of the literature’. In: Faulks, Regan, Stevenson, Brown, 
Porter & Irwin (eds), Distracted driving, Australasian 
College of Road Safety, Sydney, pp. 379-405, accessed at: 
http://acrs.org.au/files/papers/15%20Young%20A%20revie
w%20of%20the%20literature.pdf 

 



139 1 
 

Non-driving related task engagement in highly automated vehicles: How to 
mitigate emerging motion sickness? 
 
Claus Marberger 1*, Michael Schulz 2, Philipp Alt 2, Michael Teicht 3, Arnd Engeln 3 

 
1 Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 
Renningen, Germany 
2 Cross-Domain Computing Solutions, Robert Bosch GmbH, Robert-Bosch-Allee 1, 74232 Abstatt, Germany 
3 Institute for Mobility and Digital Innovation, Hochschule der Medien, Nobelstr. 10, 70569 Stuttgart, Germany 
*claus.marberger@de.bosch.com 
 
 

In this study, three evidence-based countermeasures to mitigate motion sickness in automated vehicles have been 
compared with respect to a control condition. The measures were based on visual anticipatory cues for vehicle motion or 
on the optimized alignment of the human body by seat adjustments. Test subjects (N = 28) experienced each condition 
on a 20 minutes’ drive in a highly automated vehicle on a closed test track. The non-driving related task was to read a 
text on a handheld tablet while being exposed to automated fore-aft movements (representing stop and go traffic 
conditions). None of the implemented countermeasures could be shown to significantly mitigate motion sickness under 
the circumstances of the study. The paper finishes by discussing methodological issues and possible confounding factors.  
 

1. Introduction 
Driving automation at SAE level 3 (SAE International, 

2021) and above is expected to enable non-driving related 
tasks (NDRT) for all passengers. At the same time a 
significant percentage of users will be confronted with issues 
of motion sickness – a phenomenon which is commonly 
explained by a mismatch of sensed and expected motion 
stimuli (Reason, 1978). In order to reduce the amount of 
mismatch, countermeasures of various kinds have been 
proposed and evaluated by researchers, e.g., elevated display 
positions in order to preserve as much environmental 
awareness as possible (e.g. Kuipers, 2018; Brietzke, 2021), 
peripheral visual cues indicating upcoming turn manoeuvres 
(Karjanto et al., 2018), anticipatory audio cues preceding 
fore-aft vehicle motion (Kuipers et al., 2020), compensation 
of horizontal accelerations by tilting/moving seats (Golding 
et al., 2013, Donohew & Griffin, 2009) or permanently 
reclined seating positions (Bohrmann & Bengler, 2019). 
Published studies typically report a positive (yet subtle) 
impact of the inspected countermeasures on the emergence of 
motion sickness. However, it is difficult to compare the 
effects of the countermeasures across publications since 
studies vary in type and level of applied motion dose, the 
recruited test sample or the way motion sickness is measured. 
According to the opinion of the authors there is also a lack of 
publications that aim to replicate the effects found in original 
studies. The aim of this study was to compare three 
implementations of evidence-based countermeasures 
according to the state-of-the art and to compare their 
effectivity in a controlled experimental setting. 

2. Method 

2.1 Research apparatus and motion profile 
The closed-track study was based on a research vehicle 

allowing to fully automate longitudinal and lateral control. 
The motion profile was designed to represent a continuous 
stop-and-go traffic scenario including frequent fore-aft 

acceleration events with peak values of +2 m/s² and  
-3 m/s², respectively. The maximum speed was limited to 
60 km/h and the duration of the drive was set to 20 minutes 
(see Fig. 1 for the longitudinal acceleration profile). Lateral 
accelerations were intentionally kept to a minimum. 

2.2 Test sample 
A total of N = 28 participants (14 females, 14 males) 

took part in the study. Their age ranged from 23 to 47 years 
(M = 35.61; SD = 7.62). All participants were screened in 
advance for increased susceptibility to motion sickness based 
on self-assessment. The average score of the test sample on 
the MSSQ Short scale was 19.18 which represents the 75th 
percentile of the population (Golding, 2006). Informed 
consent was given by all participants in advance. Every 
subject could terminate the trials at any time without negative 
consequences. 

2.3 Independent variables 
The experimental study was based on a within-subject 

design with the following 4 conditions, presented on 4 
separate days in counterbalanced order (see also Fig. 2). In all 
conditions, the participants were instructed to continuously 
read text on a handheld device. 

 
Fig 1: Longitudinal acceleration profile representing stop-
and-go traffic conditions. 
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2.3.1 Control condition 
The subject was seated on the driver’s seat behind the 

steering wheel in an upright sitting position (inclination angle 
of backrest: 25°; see Fig. 2a). 

2.3.2 Visual anticipatory cues 
The subject received dedicated visual cues below and 

above the text box on the handheld tablet (see Fig. 2b), 
preceding the actual onset of vehicle 
acceleration/deceleration by 1.3 seconds. The brightness of 
the visual cues was linked to the level of the upcoming 
acceleration (from transparent to full brightness). All other 
aspects were identical to the control condition. 

2.3.3 Dynamic seat adjustment 
In this condition the seat moved along a curved 

trajectory in longitudinal direction (cf. forward swing 

movement for braking, backward swing movement for 
accelerating). This dynamic seat movement was implemented 
as a pre-programmed adjustment of three seat actuators 
(forward-backward, tilt and backrest angle). The resulting 
inclination angles for the backrest were 30° (neutral position), 
up to 20° for positive vehicle acceleration and up to 40° for 
negative vehicle acceleration (see Fig. 2c). 

2.3.4 Permanently reclined seating position 
Participants were instructed to read the text while the 

backrest of the seat was permanently set in a reclined position 
(inclination angle of backrest: 40°; see Fig. 2d). Subjects 
could use the headrest while reading on the handheld device. 

2.4 Dependent variables 
The main dependent (subjective) variable was based 

on differences between pre and post scores of the Motion 
Sickness Assessment Questionnaire (Delta MSAQ) 
according to Gianaros et al., 2001. The questionnaire was 
administered before and after all test drives. 

2.5 Test procedure 
Each of the four trials started with a pre-drive 

questionnaire and basic instructions, followed by a 20 
minutes’ drive in the research vehicle. During the drive the 
participants were requested to continuously engage in the 
reading task. In order to monitor the development of motion 
sickness in real time, test subjects indicated their current level 
of motion sickness on a 10-point rating scale every 2 minutes. 
The safety driver sitting next to the participant was instructed 
to terminate the trial whenever the participant wishes or when 
the reported motion sickness level exceeded the value of 6. A 
post-drive questionnaire with interview followed in the office 
next to the test track location. 

3. Results 

3.1 General effects on motion sickness mitigation 
In order to compare the level of emerged motion sickness 

between the experimental conditions, the distribution of Delta 
MSAQ scores is analysed (see Table 1 and Fig. 3). A 
Friedman test (conducted with SPSS Statistics 26) did not 
reveal any significant differences between the experimental 
conditions (ꭓ2(3) = 4.79, p = 0.188, N = 28). 

 

 
a 

 
b 

 
c 

 
d 

Fig. 2.  Experimental conditions (see details in the text) 
(a) Control condition, (b) visual anticipatory cues, (c) 
dynamic seat adjustments, (d) permanently reclined seating 

Table 1: Descriptive statistics for Delta MSAQ scores 
across experimental conditions 

Condition Mean SD Median Min Max 
      
Control 14.68 18.67 6.60 -2.78 68.75 
Visual cues 13.72 15.08 8.68 -0.69 51.39 
Dynamic seat 11.76 15.86 7.64 -13.19 61.11 
Reclined seat 12.00 18.12 3.13 -4.17 76.39 
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3.2 Inter-individual differences 
Figure 4 shows the effectiveness of all three 

countermeasure conditions in relation to the control condition 
by comparing the increase/decrease of the MSAQ scores on 
an individual level. This explorative analysis highlights the 
large inter-individual differences: Each countermeasure 

seems to mitigate motion sickness for single participants (see 
negative values/green cells in Fig. 4), but not consistently 
across the test sample. Conversely, there is a clear indication 
that all countermeasures have the potential to increase motion 
sickness compared to the control condition (see positive 
values/red cells in Fig. 4). This result is also reflected in the 
verbal statements after the test drive. 

3.3 Relationship between self-reported motion sickness 
susceptibility and motion sickness occurrence 

Pearson correlation coefficients were computed to 
assess the linear relationship between the MSSQ Short 
scores and Delta MSAQ scores for each experimental 
condition: 
• Control condition: r(26) = .15, p = .460 
• Visual anticipatory cues: r(26) = .38, p = .047 
• Dynamic seat adjustment: r(26) = .30, p = .125 
• Reclined seating position: r(26) = .19, p = .327 

4. Discussion and conclusion 
This study was designed to (1) replicate existing 

findings for selected measures aiming to mitigate motion 
sickness in automated vehicles and (2) to compare their 
effectiveness in a controlled setting. Although great care has 
been taken to control for potential confounding factors (e.g., 
within subject design, same time of day, full permutation of 
trials, standardized instructions) the positive effects of the 
countermeasures found in related studies (see chapter 1) 
could not be confirmed under the circumstances of this study. 
Statistically, this can be explained by minor differences 
between means and especially by large differences between 
individual responses within the experimental conditions. But 
what are the determining factors that may explain the large 
variance within each experimental condition? Apart from the 
spread of self-reported susceptibility to motion sickness, the 
large variance within the experimental conditions may also 
result from intra-individual (day-to-day) variations in motion 
sickness susceptibility or from individually different 
reactions to the countermeasures presented in the experiment. 
In order to control for the day-to-day effect, several 
measurements for identical conditions would be needed. On 
the other hand, verbal feedback also indicates that differences 
in means could be enlarged by improving the implementation 
of countermeasures. Both aspects should be carefully 
considered for follow-up studies. After all, providing 
effective means to mitigate motion sickness is crucial to 
enable NDRTs in highly automated vehicles. 
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Abstract: Theoretical techniques to model and predict drivers’ visual behaviour during the execution of secondary in-
vehicle tasks, such as the extended keystroke level model (eKLM), are predicated on perfect task resumability during 
the interleaving of attention, i.e., it is assumed that the secondary task can resume without penalty – irrespective of task 
characteristics – as soon as attention is redirected to it. In practice, this is unlikely to be the case. Moreover, it is 
reasonable to opine that resumability may improve over increasing numbers of glances. A formative occlusion study was 
devised to explore search-and-touch HMI interactions in which the number of glances and task complexity varied, with 
the aim of deriving new eKLM resumability operators. 
 

1. Introduction 
Predictive modelling is a valuable tool that can be used 

to determine the expected level of visual demand associated 
with secondary tasks in a vehicle without extensive user 
testing (see: Large et al., 2018). However, modelling 
techniques often fail to account for any changes in 
performance due to the interleaving of primary and secondary 
tasks, notably when the secondary task requires multiple off-
road glances. In theory, predictive models often assume that 
the secondary task can resume without interruption as soon as 
the driver re-engages their visual attention and that each 
subsequent glance has the same net effect on resumability. 
However, it is reasonable to opine that, in practice, a driver 
may be better prepared to resume the secondary task in each 
subsequent glance due to cumulative increases in task 
familiarity and mental preparation. 

2. Background 

2.1 Keystroke Level Model 
The Keystroke Level Model (KLM) (Card, Moran, 

Newell, 1980) aims to predict how long it will take an expert 
user to accomplish a routine task without errors using an 
interactive computer system.  

KLM reduces the elements of interacting with an 
interface or system to individual operators, each representing 
a unique activity, such as mental preparation, moving, 
pointing, swiping, etc. Each operator has a defined time 
allowance and thus, complete task-time can be calculated by 
summing individual times in the sequence they must occur.  

In an automotive context, KLM task-time predictions 
can be used to estimate the visual demand (i.e. total duration 
of off-road glances) associated with an in-vehicle human-
machine interface (IV-HMI). However, this may be 
distributed over several glances, with the driver redirecting 
their attention to the road during the intervening time.  

KLM predictions fail to adequately articulate this 
interleaved attention. Indeed, directly equating task-time with 
off-road glance time fails to consider activities that may be 
possible (or may continue or conclude) without vision. It also 
fails to recognise that a driver will need to refamiliarise 
themselves with the secondary task in each subsequent glance. 

 
The extended-KLM (eKLM) (Pettitt, Burnett & 

Stevens, 2007) aims to address the first point by incorporating 
the underlying principles of the visual occlusion protocol in 
its predictions (ISO, 2017). The approach is predicated on 
three assumptions:  

1. During periods of vision, the operator sequence can 
progress without interruption; 

2. An operator that begins during a period of vision can 
continue into an occluded period providing it is not 
reliant on the provision of vision (e.g., moving hand 
towards HMI); 

3. An operator can only begin in an occluded period 
when vision is not required at any point in its duration 
(e.g., a keystroke operation in which the finger has 
already been moved to its target).  
The authors demonstrate significant correlations 

between observed and predicted results in a validation study 
(Pettitt, Burnett & Stevens, 2007). Nevertheless, the 
technique assumes that secondary task operators requiring 
vision can resume without penalty in each new glance (i.e. 
perfect resumability), and therefore fails to account for 
potential changes in behaviour and performance over 
multiple glances.  

3. Method 

3.1 Overview 
An occlusion study was devised to explore point-and-

touch HMI interactions, in which the number of glances was 
enforced (1, 2 or 3). Participants were always required to 
select the target in the final glance. For example, if provided 
with two glances, they were instructed to use the first glance 
to visually acquire the target and mentally prepare, and the 
second glance to complete the task; participants were only 
allowed to move their hand/arm during the final glance, and 
were told to do so only when they were confident that they 
could make the correct selection (thereby effectively 
segregating searching and pointing time). Task complexity 
(based on the structuring of the interface, number of elements 
and Fitts’ index of difficulty (Fitts, 1954)) varied. 



144

2 
 

3.2 Participants and Experimental Setup 
Twelve experienced drivers took part. Participants sat 

in the University of Nottingham Human Factors driving 
simulator and were presented an in-vehicle touchscreen HMI 
located in the centre console of the vehicle. 

Wearing occlusion glasses, participants were provided 
with either one, two or three “glances” for each task (and were 
told which before each task). Each glance provided 1.5s of 
vision (equivalent to a 2.0s off-road glance, in line with the 
occlusion protocol (ISO, 2017)). Thus, the total shutter open 
times (TSOT) were 1.5, 3.0, or 4.5s, respectively. 

Targets were either 6mm (ID=6.0) or 12mm (ID=5.0) 
wide, based on relevant literature (Jin, Plocher & Kiff, 2007; 
Sesto, Irwin, Chen, Chourasia & Wiegmann, 2012), and 
presented as structured or unstructured arrays of 1, 4, 9 or 25 
similar targets, arranged in a uniform square. Indices of 
difficulty (IDs) were calculated based on the width of the 
target and the distance from the participant’s hand to the 
target when their hand was placed on the steering wheel at the 
“10 o’clock” position, in line with Fitts (1954). 

3.3 Procedure 
For each condition (defined by the permissible number 

of glances – one, two or three), participants were required to 
find and select the target containing a designated number, 
which was spoken aloud to them. Participants completed 12 
tasks for each condition, and therefore completed 36 tasks in 
total.  

Tasks were presented in a randomised order to 
counteract learning effects. Participants were observed via 
cameras located inside the driving simulator. Videos were 
subsequently analysed using Behavioural Observation 
Research Interactive Software (BORIS) (Friard & Gamba, 
2016) to determine task-times and accuracy (i.e., task 
performance). In addition, resumability time was defined as 
the time it took participants to resume the task in the final 
glance (i.e., the time between the start of the final glance and 
the moment the participant’s hand left the steering wheel). 

3.4 Hypotheses 
It was predicted that resumability time would reduce 

with increasing number of glances and increase with 
increasing task complexity. In addition, task performance (i.e., 
accuracy of item selection) was expected to improve with 
increasing number of glances and decrease with increasing 
task complexity. 

4. Results 

4.1 Task Resumability 
Results show that the resumability time decreased 

with increasing number of glances, as expected. A Pearson’s 
Correlation analysis showed that the resumability time for 
each task was negatively correlated to the number of glances, 
such that as the number of glances increased, participants 
took significantly less time to resume the task (r=0.792, 
p<0.01). A Linear regression equation was derived showing 
this relationship: y = 0.77 – 0.24x. There was no significant 
correlation between ID (i.e., index of difficulty) and 
resumability time. However, complexity in terms of array 
size (i.e., number of potential targets) was positively 

correlated with resumability time (r=0.318, p<0.05), 
indicating that it took longer to resume the task when there 
were more potential targets to select.  

4.2 Task Performance  
Results show that task performance improved with 

increasing number of glances, as expected (Pearson’s 
correlation: r=0.385, p<0.05). In addition, a negative 
correlation was found between ID (i.e., task complexity) and 
accuracy, such that as ID increased, accuracy decreased (r=-
0.550, p<0.01). 

4.3 Derived Resumability Time Operators 
NHTSA guidelines (NHTSA, 2013) stipulate that an 

IV-HMI should only permit tasks expected to have an average 
success rate of 85% or higher. Resumability time was 
therefore derived using only data where accuracy was 85% or 
higher. In practice, this equated to tasks with an ID of 5.0 or 
less (i.e., 12mm targets) (which also suggests that smaller 
targets would not be permissible on an IV-HMI).  

Resumability time (‘operators’) differed based on 
secondary task characteristics (i.e., structuring and number of 
targets.) Mean values are summarised in Table 1. These 
should be applied in accordance with existing eKLM 
assumptions. 

5. Discussion and Conclusion 
The results indicate a cumulative effect, i.e., the time 

to resume the task reduced in each successive glance. This 
suggests that drivers built up and retained residual task 
familiarity and could therefore respond more quickly in later 
glances. In addition, the results suggest that complex search-
and-touch IV-HMI interactions could potentially be 
completed with greater efficacy if searching and pointing 
were segregated, i.e., by encouraging drivers to use an initial 
glance/s to mentally prepare/visually acquire their target and 
an additional, final glance to make the selection. 

It is noted that to extract the required data, the number 
of glances was enforced, and there was no provision to 
execute the task sooner, even if the participant was ready; we 
also imposed a strict >85% accuracy criterion when deriving 
operators. This may have artificially extended task-time in 
some situations, e.g., for less-complex tasks undertaken over 
multiple glances, and limited formative data.  

Using the newly derived resumability operators, 
predictions made using eKLM are likely to be more accurate, 
although findings will need to be validated with on-
road/simulator data in further work.  
 

Table 1 Derived eKLM Resumability Operators 

Number of  
Glances 

Resumability 
Operator 

1 
 

.44s 

2 
 

.29s 

3 
 

.27s 
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Abstract: This research demonstrates the driver attention of cyclists wearing different patterns of reflectors in twelve 
different visual traffic conditions that occur in an existing city environment at night. A driving simulator was used to 
include more naturalistic testing conditions and to achieve a relatively high level of experimental control. The accuracy 
and distance at which drivers would detect cyclists was measured. Cyclists were dressed in three different patterns of 
reflective clothing, i.e., biomotion, standard vest, and no reflective material at all, which is the minimum legal 
requirement. A 4.6 kilometer long route which included central areas of the city of Skövde was selected for the video 
recording of cyclists dressed in the different reflective clothing conditions. The participants were instructed to drive the 
car and maintain a speed of 50 km/h as the primary task and to toot the horn if they saw a cyclist. The major overall 
result was the significantly greater distance at which drivers detected cyclists with biomotion reflective clothing than the 
standard vest and no reflective material. Whereas the differences between standard reflective vests and no reflective 
material were not significantly different in many of the traffic situations. These results demonstrate that driver attention 
is triggered in a secondary task for cyclist biomotion at distances that provide more time to care for cyclist safety. 
 

1. Introduction 
The use of visual aids can increase the ability of 

drivers to detect cyclists at night and reduce the seriousness 
of injuries if a crash occurs (Kwan & Mapstone, 2004; 
Wood, 2020). The use of reflectors placed on critical parts 
of the human body have been shown to increase cyclist 
conspicuity at night (Wood, Tyrell, Marszalek, et al., 2011). 
Drivers detect cyclists with reflective clothing that enhances 
the movement of the human body (biomotion) at 
considerably longer distances than a reflective vest, which is 
a very often used piece of clothing by cyclists who want to 
be detected in darkness. Research (Wood, Tyrell, Lacherez 
& Black, 2017) has also shown that driver eye movements 
are quicker to fixate on cyclists who are wearing the 
biomotion reflector clothing than the reflective vest. 

The effect of the biomotion-patterned reflector 
placement stems from the sensitivity of human vision to the 
movement of other humans. This has been demonstrated in 
much research, which was promulgated by Gunnar 
Johansson (Johansson, 1973). This sensitivity can be 
exploited by placing reflective material on the joints of the 
human body so that visual conspicuity is increased for 
cyclists. Edwaard, et al., (2020) showed clear results of the 
conspicuity benefits of biological motion when cyclists were 
pedalling during the daytime. 

This research project addresses the effectiveness of 
cyclists wearing different patterns of reflectors on the 
distance it takes drivers to detect cyclists in different visual 
conditions that occur in an existing city environment. As a 
complement to our previous research (Hemeren, et al., 2014) 
we aimed to determine the distance at which drivers would 
detect cyclists dressed in different patterns of reflective 
clothing, i.e., biomotion, standard vest, and no reflective 
material at all on the cyclist, which is the minimum legal 
requirement. This distance effect is also addressed in 
different traffic contexts that might interact with reflective 
material. 

2. Method 

2.1 Participants  
Twenty-four participants (19 males, mean age 29) 

were recruited from the student population at the University 
of Skövde and from the circle of acquaintances of the 
experimenters. All participants had a valid driving license, 
but driving experience/frequency varied, from once a month 
to daily. All participants signed consent forms, and the 
experiment was conducted according to Swedish law and 
ethical guidelines. 

2.2 Design and Procedure 
Three clothing patterns were used (Fig. 1): biomotion, 

vest and the minimum legal requirement (legal), in which no 
reflector material was worn by the cyclists. The reflective 
material used in the biomotion and reflective vest conditions 
was 3M™ Scotchlite™ Reflective Material 8910 Silver 
Fabric. The reflective material on the reflective vest was 
replaced with the same reflective material used for the 
biomotion clothing. Importantly for comparison, the amount 
of visible reflective material in these two conditions was 
approximately the same.  

Twelve positions were also selected along the route 
for the placement of cyclists. The positions were selected to 
include well-lit areas with street lights and other light 
sources for commercial areas, no street lights and positions 
where the visibility of cyclists was partially obstructed by 
making a turn or by bushes along the road. The bicycles 
were placed in stationary training stands so that distance 
measures could be reliably made while cyclists pedalled. 
Each clothing condition was video recorded at each position 
for a total of thirty-six conditions. The spacing of the 
positions along the route was unevenly spaced in order to 
reduce expectancy effects about the presence of a cyclist. 

In the driving simulator, the instructions were to 
drive the car and maintain a speed of 50 km/h as the primary 
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Fig. 1.  Reflective clothing patterns from left to right: biomotion, vest and legal minimum. 

task. The gas pedal of the car was used to increase the speed 
of the recorded film to give the impression of acceleration. 
The secondary task was to honk the horn when a cyclist was 
detected. 

Each participant drove the route two times, 
which resulted in viewing each clothing condition six 
times for a total of 18 observations per participant. 
Since it was not practically feasible for each 
participant to view each clothing condition at each 
position, because of likely practice effects, the 
conditions were evenly divided among two groups of 
participants.  

3. Results 
There were twelve possible correctly detected 

cyclists for each of the thirty-six conditions due to the 
necessary balancing of conditions and to reduce practice 
effects. The detection results for each condition showed that 
drivers were generally accurate at detecting cyclists with the 
exception of two positions (9 and 11) along the route where 
detection accuracy for the legal condition (no reflective 
material) was 0 and 3 out of twelve. The detection accuracy 
for the vest condition for these two positions was also low, 4 
and 6 respectively, while the biomotion condition resulted in 
perfect detection in all twelve trials. 

The data for the distance at which cyclists were 
detected were entered into a between-groups ANOVA with 
position as a random factor. The means for detection 
distance as a function of clothing condition and route 
position are presented in Figure 2, which shows in positions 
1, 3, 4, 5, 6, 7, 8, and 10 that the biomotion patterns 
triggered detection at much greater distances than the legal 
and vest conditions. In these positions, the street paths were 
fairly straight and could give rise to early detection. For 
positions 2 and 12, there were curves where there was no 
sufficient distance between the car and the bicycle in order 
to detect biomotion patterns at a greater distance. 

The pattern of results across the different 
positions/places shows that the biomotion pattern of 
reflector placement (x̅ = 60.28, SEM=1.27) is detected at 
much greater distances than legal (x̅ = 31.67, SEM=1.32) or 
vest (x̅ = 33.56, SEM=1.32). The exceptions to this occur 
when the visibility of cyclists is obstructed. The main effect 
of reflector placement was significant, F(2,18) = 16.91, η2 = 
0.65, p < 0.001. Pairwise comparisons between the 
conditions for reflector placement show significant 
differences between the legal and biomotion conditions, 
t(227) = 10.46, p < 0.001, and between the vest and 
biomotion conditions, t(227) = 9.62, p < 0.001. The main 
effect of position was also significant, F(9,18) = 2.69, η2 = 
0.57, p < 0.001,. The interaction effect showed that the 

effect of the different reflector conditions varied as a 
function of position along the route, F(18, 309) = 9.16, η2 = 
0.35, p < 0.001.  

4. Conclusions 
The reflective biomotion clothing that triggers 

attention is superior to the vest and the legal minimum at 
almost twice the average distance. It is also important to see 
that this effect, however, varies as a function of the different 
night time visual traffic situations. A further more surprising 
result here is the lack of any significant average difference 
between the vest and legal minimum conditions. This 
indicates that cyclists should wear reflective clothing that 
can trigger driver attention by the placing reflective material 
on the joints of the human body. Driver distraction in areas 
with many different sources of light is also significantly 
reduced when cyclist biomotion is reflected. An application 
of these results could be developed for computational 
models that are used to detect cyclists, not only at night but 
during the daytime as well. 
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Fig. 2.  Distance detection in meters as function of reflector condition and place on route. Positions 9 and 11 are not 
included due to the very low detection accuracy for the legal and vest conditions. 
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Abstract: With the development of autonomous vehicles, drivers will become passengers. This evolution 
leads to a loss of agency that could affect the perceptual states of vehicle occupants and thus, induce car 
sickness for drivers. This study sought to identify the influence of agency levels on the severity of car 
sickness. 16 healthy subjects participated as front passengers/drivers (dual control vehicle) in a slalom 
session with oscillating lateral movements at 0.2Hz. Four different conditions were proposed: (1) passengers, 
(2) passengers with hands on the steering wheel (not driving), (3) drivers and (4) drivers with interventions 
of a simulated ADAS. Every test session comprised a baseline (5min), slalom (20min), recovery (5min) 
periods. For each period, participant level of car sickness was recorded. Before and after each test session 
participants completed the MSAQ. Finally, after each test session, the level of perceived control (LPC) and 
felt at ease with vehicle path were assessed. Our results reveal that car sickness severity is higher for 
passengers than drivers. Also, driving with ADAS interventions disrupts LPC of vehicle path, limiting car 
sickness recovery. In addition, passengers getting proprioceptive information by having their hands on the 
steering wheel exhibited increased LPC and reduced car sickness severity. For the first time, our results 
demonstrated, the importance of developing solutions allowing for better human-vehicle coupling, to limit 
the severity of car sickness due to autonomous driving, notably by improving the feeling of agency.

  
1. Introduction  

Cars, the most common form of transportation, 
could induce a specific type of motion sickness (MS) 
referred to as car sickness (CS) (Murdin et al., 2011). 
Nowadays, passengers are the most likely to develop 
CS symptoms while drivers remain almost unaffected 
(Rolnick and Lubow, 1991). However, with the 
current development of autonomous driving functions 
and autonomous vehicles, drivers will become 
passengers in their own vehicle (Wada, 2016). 
Consequently, the number of car occupants affected 
by CS could increase significantly (Kuiper et al., 
2018).  

This difference in susceptibility to CS between 
passengers and drivers depends on several factors: 
control, activity, anticipation (Wada, 2016). These 
factors partly refer to the notion of agency, which 
defines the level of intentional control over an action 
(Haggard and Chambon, 2012). Being agent in a 
situation can help mobilize attentional mechanisms 
and improve sensorimotor integration resulting in 
better performance in human machine interactions 
(Berberian et al., 2012). This is supported by recent 
theories which suggest that a match between internal 
expectations of motor commands and current 
perceptual estimates issued from sensory-feedback 
allows for a better sense of agency (Haggard, 2017) 
and thus could limit the occurrence of MS (Bos et al, 
2010).  

In this way, we hypothesize that the level of 
agency may play a major role in the way driving 
situations may impact perceptually-related states of 
operators differently engaged in driving task. The aim 
of the study is then to evaluate for the first time the 

influence of agency on CS symptoms severity in real 
driving conditions.  

 
2. Materials and Methods 

2.1 Participants  

Sixteen healthy participants with high 
susceptibility to MS (8 women, 8 men, age: 40.4 ± 8 
years) volunteered to take part in this study.  

2.2 Experimental set-up  

Test sessions were conducted in a closed area. 
Experimental road consisted of two straight segments 
with radius turning zones at both ends. Twelve pylons 
were located 20m apart along both straight segments. 
This configuration and car speed (35 km/h) ensured 
lateral movements of 0.2Hz (slaloms), recognized as 
CS-inducing frequency (Henry et al., 2022). Vehicle 
used was a dual control vehicle (C4 Picasso) to enable 
the simulation of autonomous driving functions with a 
professional driver in front passenger seat (hidden by 
a partition). Participants were seated in the driver 
position. Four conditions were developed to modify 
the level of agency: Passengers (P - very low level), 
Augmented Passengers (AP - low level), Disturbed 
Drivers (DD - high level) and Drivers (D - very high 
level). For P and AP conditions, driving task was 
performed by a professional driver and participants 
thought to be in an automated vehicle. Participants had 
their hands on their knees (P) or on the steering wheel 
(AP). In DD and D conditions, participants were 
required to perform themselves the slalom driving 
task. For DD condition, several unexpected 
interventions on the steering wheel mimicking 
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interventions of an advanced driver assistance system 
(ADAS) were produced by the professional driver. All 
participants took part in the four conditions in a 
random order. 

2.3 Procedure and data acquisition  

Test sessions comprised a baseline period in 
static conditions (5min), a slalom period in dynamic 
conditions to induce CS (20 min) and a static recovery 
period (5min). For each slalom, CS ratings (CSR) was 
recorded using a 5 points continuous likert-scale (0: no 
symptoms – 4: moderate nausea) (Griffin and 
Newman, 2004). If participants reached level 4, 
slalom session was stopped. For baseline period, only 
one value was recorded and for recuperation period, 
participants were instructed to indicate their CS level 
every minute (5 values). Before and after each test 
session, participants completed a MS assessment 
questionnaire (MSAQ) used to evaluate four 
dimensions of MS, which were defined as 
gastrointestinal, central, peripheral, and sopite-related 
(Gianaros et al, 2003). Finally, to infer the level of 
perceived agency in the 4 conditions, we asked 
participants after each test session, about their level of 
perceived control (LPC) of vehicle path (0: no control 
- 10: total control) and whether they felt at ease (FE) 
with vehicle path (0: not at all - 10: totally). 

2.4 Statistical Analysis 

Three dependent variables were analyzed: (i) 
level of perceived agency (LPC and FE), (ii) delta 
value (% of variation between pre-post) for MSAQ 
scores (Total, Gastrointestinal, Central, Peripheral, 
and Sopite) and (iii) CSR. First two variables were 
analyzed using a 4-level (conditions: P, AP, DD and 
D) Friedman ANOVA for each element. When 
significant differences were observed (p < 0.05), 

Wilcoxon tests were performed. For CSR, 9 periods 
were selected: 4 for slalom (slalom with the highest 
score (Smax) and first (Sstart), middle (Smid), final slalom 
(Sstop)) and 5 for recuperation periods (1-5min, R1-5). 
CSR were analyzed using a 4-level (conditions: P, AP, 
DD and D) × 9 periods repeated measures ANOVA. 
When significant differences were observed (p < 
0.05), LSD post-hoc analysis was performed. 
Statistical analyses were achieved using Statistica 
software® v.10 (Statsoft Inc, France).  

 
3. Main results  

3.1 Level of perceived agency  

A significant effect of the ‘conditions’ was 
observed on the LPC of vehicle path. Wilcoxon tests 
revealed that LPC was significantly higher for D 
compared to DD, P and AP conditions. In addition, 
LPC was higher in DD than in P condition. Finally, 
LPC in AP was higher than in P condition (Figure 1).  

A significant effect of the ‘conditions’ was 
observed on the FE with the vehicle path (Figure 1). 
Wilcoxon tests revealed that FE was significantly 
higher for D compared to P condition, and for AP 
compared to P condition (trend observed).  

3.2 MSAQ Scores  

For the MSAQ scores, a significant effect of the 
‘conditions’ was observed only in drivers versus 
passengers conditions. Wilcoxon tests revealed that 
Total scores was significantly higher for P and AP 
conditions compared to D and DD conditions (Table 
1). For Gastrointestinal scores, P condition increased 
significantly compared to D and DD conditions. For 
Central scores, P condition showed higher values than 
DD condition. Finally, for Peripheral scores, 
passengers conditions increased significantly 
compared to drivers conditions.  

 

 

Figure 1. Level of perceived agency observed for each condition (mean ± SEM; n = 16) 
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Table 1 Delta value for MSAQ scores observed for each condition (mean % ± SEM; n = 16) 

 

3.3 Car-sickness ratings 

A significant effect of the ‘conditions’ was 
observed on CSR measured by SMax (Figure 2A). 
Post-hoc analyses indicated higher values for P and 
AP than D and DD conditions, P also differed from 
AP. This effect of ‘conditions’ on CSR is observed 
for all periods, except for S1, which is used as a 

reference (Figure 2B). From Sstop, ratings were 
significantly higher for P condition than for AP, D 
and DD conditions. Finally, stopping the slalom 
induced a significant decrease during the recovery 
period for all conditions (R5≠R1). However, ratings 
returned to S1 level (R5=S1) for D and AP conditions 
only. 

  

Figure 2 Level of CSR observed for each condition (A) for Smax (B) for slalom and recuperation periods (mean 
± SEM; n = 16). 

4. Discussion 

Our results show that LPC obtained in the driver 
conditions are higher than in the passenger 
conditions. For the CSR, an opposite effect was 
observed, all ratings obtained in the passenger 
conditions are higher than in the driver conditions. 
This is also supported by our MSAQ scores, in 
particular for the gastrointestinal dimension of CS. 
Our results confirm that drivers are less susceptible 
to CS than passengers (Dam et al., 2021). This 
supports the idea that improving the sense of control 
leads to a decrease in MS (Levine et al., 2014). 
Perceived control has been shown to inform about 
the sense of agency (David, Newen and Vogeley, 
2008). It seems that the greater the sense of agency, 
the lower CSR. 

More precisely, the LPC and the FE was higher 
in AP than in P condition. Placing passively the 
hands on the steering wheel during the driving task 
yielded an improved LPC and FE, and reduced CSR. 
This condition gives additional proprioceptive 

information of the vehicle path compared to a classic 
passenger condition. It seems then that improving 
sensorimotor integration (Dong et al., 2011) could 
allow for a better sense of agency (Myers, Mock and  

Golob, 2020), limit the severity of CSR and 
allow CS recovery.  

In contrast, the LPC and the FE was lower for 
DD compared to D condition. Driving with ADAS 
interventions disrupts the LPC and FE, and limits CS 
recovery. It seems that the sense of agency is optimal 
when voluntary actions match sensory-related 
outcomes. However, when they mismatch, errors in 
predicted states occur (Haggard, 2017). Larger and 
repeated errors of prediction during the slalom 
period could explain why participants do not recover 
entirely at the end of the test session. Alternatively, 
with ADAS interventions, attentional mechanisms 
were mobilized that could prevent the occurrence of 
CS until the stimuli stopped. 
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5. Conclusion 

For the first time, our results show that the use 
of solutions restoring the sense of agency (by a better 
human-vehicle coupling) may help limit the 
occurrence of CS due to driving automation. 
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Abstract: Level 3 semi-autonomous function should allow the driver to become a passenger and engage in 
a secondary task while the function is activated, and then return to the driving task when the system requests 
it. The presence of a non-driving related task, as well as high level of trust in the system, is known to impact 
the supervision of the driving environment by the driver, which is a major safety issue. Thus, while high 
knowledge of the system causes a decrease in eye activity in the driving environment, we know less about 
how this activity evolves as the driver's mental model may evolve. We propose then to investigate how 
driver’s mental model dynamic is influenced by autonomous driving duration through the analysis of gaze 
activity. In a driving simulator, 51 participants went through conditional automated driving scenarios for 
two sequences, lasting either 2x5 minutes, 2x15 minutes, 2x45 minutes or 2x60 minutes (namely conditions 
C05, C15, C45 and C60), with a non-driving related task (watch a movie). Results showed that during a 
drive session, the more time passes, the less drivers monitored the driving environment, and consequently 
drivers who had experienced short durations were more likely to sustain their monitoring activity on the 
driving environment than drivers in the long duration groups. This result also suggests that in the second 
session participants try to anticipate the appearance of takeover request and behave according to what they 
were exposed to in the first sequence. 

 

1. Introduction 
During Level 3 of semi-autonomous function, 

the driver is allowed to be out-of-the-loop (OOTL) as 
he/she can be involved in a non-driving related task 
but must be able to resume control of the vehicle when 
the system requests it (via a takeover request or TOR). 
Thus semi-autonomous driving functions restrict the 
role of the driver to a supervisor and during most of 
the travel time to a passenger. These changes imply 
that the control loops required in manual driving are 
no longer activated with the same dynamic and 
efficiency. Control loops theories come from 
aeronautic research about pilot interaction with 
aircraft and were formalized first by Kaber and 
Endsley (1997), then lately updated by Merat et al. 
(2019). According to this latter, manual driving means 
that the driver is “in the loop” i.e. in the physical loop 
of control of the vehicle (trajectory and speed control) 
while the cognitive loops include the processes related 
to environment supervision and navigation.  

To ensure safety, further studies are needed to 
evaluate how human factors influence the OOTL state, 
the way the driver behaves during the non-driving 
period, and what are the driver-automata interaction 
dynamics. However, these questions are difficult to 
address because this function is not still available and 
mental model assessment methods are indirect. 
According to Carroll & Olson (1988), mental models 
are “elaborate structures reflecting the user’s 
understanding of what the system contains, how it 
works, and why it works that way”. A lot of studies on 
trust and acceptance established that a better 
knowledge of the system, brought by explicit learning, 
increases these two dimensions (Beggiato & Krems, 

2012; Metz et al, 2021) but also that a really accurate 
mental model of the system can lead to fast OOTL 
states due to complacency (Endsley, 1995, 
Parasuraman et al, 2000, Bahner et al, 2008). In level 
3, the non-driving related task implies an OOTL state 
which could be countered by the voluntary decision by 
the driver to monitor the environment (as he/she 
knows that at some time he/she must regain control of 
the car). Link between mental model and ocular 
activity is established from aeronautic studies with 
pilots who showed specifics oculomotor activity as 
they have extremely accurate mental model of their 
operation system (Lounis et al., 2021). 

A self-initiated strategy to monitor driving 
environment in level 3 autonomous context matches 
with a mental model involving the necessity to 
takeover the system at some point and the need for 
information to ensure a safe takeover. This matches 
with an “On the loop state” as the driver activates one 
particular sub-task of the driving activity such as 
hazard perception and perception of anticipatory cues 
(Stanton et al, 2001). If it is known that factors as 
NDRTs compete with gaze activity on driving 
environment relative to their cognitive demand 
(Feldhütter et al, 2017; Du et al, 2020), less is known 
on how oculomotor activity could be modulated as the 
expectation of the driver evolve through time. 

From a dataset collected in previous 
experiment (Portron et al, submitted), we propose to 
investigate how gaze activity during the autonomous 
period is influenced by experience in a two successive 
exposures design with a passive non-driving related 
task (no performance expected within the NDRT) in 
short and long duration conditions. 
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2. Hypothesis 
We expect that the experience of different 

durations of autonomous conditions may shape the 
gaze activity as the participants build a mental model 
based on near past experience. Furthermore, we expect 
that participants in short duration of autonomous 
conditions tend to monitor the driving environment 
more actively than participants in longer duration 
conditions, and this more especially during the second 
exposure. 
 
 

3. Material and methods 

3.1 Driving procedure  
In a static driving simulator located at the Center 

for Virtual Reality of the Mediterranean facility, 51 
participants went through conditional automated 
driving scenarios for two sequences (sequence A and 
B) of same duration (either 5 minutes, 15 minutes, 45 
minutes or 60 minutes, namely conditions C05 (n= 13), 
C15 (n = 13), C45 (n = 13) and C60 (n = 12)) with a 
10 minutes break between the two sequences. In each 
sequence, participants had to react to a take-over 
request and avoid a simulated road event in front of 

the drive. During the autonomous driving period, 
participants were allowed to watch a movie 
("Aquaman", 2018, WarnerBros ©) on a screen 
located on the right of the steering wheel and they 
were informed that the TOR notification and so the 
road-event could happen at any time. This study was 
performed in accordance with the principles of the 

Declaration of Helsinki and all participants received 
detailed information about the study and gave 
informed consent. The protocol was approved by a 
Bio-ethical committee (CERSTAPS, IRB00012476-
2020-15-07-63). 

3.2 Data acquisition and processing 
Ocular activity was recorded by using a Tobii® 

Pro Glasses 2 system at 50 Hz. We defined specific 
time of interest (see Fig.1, mostly based of the design 
from Gold et al., 2017) and one specific area of 
interest: for the driving environment (AOI_DE, see 
Fig 1A). 

3.3 Dependent variables  
Ocular activity was assessed through the mean 

total duration of visits on the AOI, which corresponds 
to the mean of cumulated fixation times over a 60 
seconds period. This feature was calculated for two 
different times of interest. According to the design of 

 
Figure 1 : A: Example of a heatmap for each time of interest (TOI) during the first sequence for one participant. Heatmap 
illustrates fixation time and distribution of one participant in the first sequence of the visual field with a maximum scale 
value (red area) for a fixation duration of 3 seconds. Green area on each snapshot illustrate the area of interest. B: Schema 
of the times of interest. The first TOI (post_MtoA) of 60 seconds is defined from the 3rd minute after the activation of the 
autonomous function. The second TOI (preTOR) is defined from the last 60 seconds before the takeover request.  

Table 1. Summary of total visit duration (mean (±sd)) 
for groups duration and sequences with p-value from 
ANOVA and effect size (η²). 
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the experiment, the first times of interest (TOI) took 
into account the ocular activity observed during 60 
seconds from the 3rd minute after the activation of the 
autonomous function (Post_MtoA). The second TOI 
refers to the 60 seconds just before the TOR 
notification (Pre_TOR), i.e. after 4 minutes (C05 
group ; ), 14 minutes (C15 group), 44 minutes (C45 
group) and 59 minutes (C60 group), respectively.   

3.4 Statistical analysis 
The mean total duration of visits on driving 

environment was analysed by a one-way ANOVA 
with groups of duration as factor and a paired one-way 
ANOVA for the TOIs as factors for each sequence. If 
significant differences were observed (p < 0.05), a 
post-hoc Tukey HSD analysis was conducted. Effect 
size is expressed with eta squared and its interpretation 
is based on Cohen’s rules (1992). Mean values are 
expressed with their standard deviation as follows 
(Mean (±SD)).  

4. Results  

4.1 Mean total duration spent on driving 
environment. 

4.1.1 Sequence A 
The ANOVA analysis revealed a significant 

difference for the TOIs (F(1,98) = 10.58, p < 0.01, η² 
= 0.10 (small)). We observed a greater time spent on 
the driving environment after the activation of the 
autonomous function (18.64s (±13.25)) than just 
before the TOR (10.70s (±11.6)). No difference was 
measured between duration conditions in each TOIs.  

4.1.2 Sequence B 
As for sequence A, the analysis of TOIs (see 

Fig.2) revealed a difference between the two time 
windows (F(1,98) = 4.92, p < 0.05, η² = 0.06 (small)). 
Indeed, the average duration spent on driving 
environment in the post_MtoA time window is 14.26 
(±11.72) while the average duration is lesser for the 
period just before the TOR notification (9.04 
(±11.83)).  

 
Figure 3. Bar plots illustrate mean total duration of visits (seconds) for the AOI driving environment in Sequence B, for 
each group and each temporal window (3A: Post_MtoA, and 3B: pre_TOR). Vertical black lines illustrate standard 
deviation for each mean value. ** for p <0.01. 

 

 
Figure 2. Barplots illustrate mean total duration of 
visits on driving environment for the two times of 
interest in sequence B. Vertical black lines 
illustrate standard deviation for each mean value.  
* for p <0.05. 
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Statistical analysis also revealed a significant 
difference between groups for the TOI pre_TOR (see 
Table 1). Tukey post-hoc analysis indicated that in the 
TOI pre_TOR, a longer total duration of visits was 
observed in the shorter duration group (C05), than in 
the two longer duration groups (C45 and C60) (see 
Fig.3B). 

5. Conclusion 
Results showed that during the same drive, the 

more time passes, the more participants relinquished 
visual control on the driving environment, as shown 
by the differences for the two times of interest. Further, 
we showed a specific effect of autonomous driving 
time conditions in the second exposure, where 
subjects who were exposed to short durations 
remained more attentive to the driving environment 
than participants who were exposed to long durations. 
These differences in driving environment monitoring 
underlined a change in the strategy of the participants, 
potentially reflecting an increased trust in the system. 
We suggest that participants try to anticipate the 
occurrence of the TOR in sequence B, acting as if the 
TOR would appear within the same timing as in 
sequence A (albeit the uncertainty providing by the 
experimentalist, no information of the duration 
condition). Nevertheless, these modulations, 
especially for long durations groups could also be due 
to a potential effect of the secondary task which could 
increase the workload and then redirect attentional 
load of participant as time goes by. Further analysis of 
ocular activity on the area of interest relative to the 
non-driving secondary task could provide more 
information to this interpretation. 
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There are several standardized test methods to assess the distraction potential of secondary task engagement while driving. 
One relatively new method is the Box Task combined with a Detection Response Task (BT + DRT). This method has the 
potential to distinguish between different dimensions of driver distraction. While the DRT is being implemented as an 
ISO standard, the BT is not yet standardized. There are open questions that have to be clarified in preparation for a 
standardization. One important issue is potential unwanted variation in BT performance due to the age distribution within 
a sample. Therefore, the present analysis investigates if age has an effect on BT performance. Fifty-two participants 
completed an easy and difficult version of a cognitive as well as visual-manual secondary task while simultaneously 
performing the BT + DRT. Age differences could be shown for BT performance: Compared to younger participants, older 
participants produced significantly higher variabilities in box position and box size across all secondary task conditions. 
The results should be considered in future studies.  
 

1. Introduction 
The Box Task combined with a Detection Response 

Task (BT + DRT, see Hsieh & Seaman, n. d.) is an easy-to-
use test method to assess potential distraction effects caused 
by secondary task engagement while driving (e.g., using in-
vehicle infotainment systems). The method is based on the 
Dimensional Model of Driver Demand (Young, Seaman, & 
Hsieh, 2016). Thus, lateral and longitudinal vehicle control is 
related to visual-manual demand, while event detection is 
associated with cognitive demand. In the BT + DRT method, 
the BT is intended to capture visual-manual and the DRT 
cognitive demand. This allows a distinguishability in terms of 
different distraction dimensions (Morgenstern et al., 2020a, 
Morgenstern et al., 2020b). 

While the DRT has been standardized by the ISO (ISO 
17477, 2016), a standardization of the BT in combination 
with the DRT is still pending. There are open questions that 
need to be addressed to ensure comparability of results across 
studies. For example, sample selection, such as the age 
distribution, might have an effect on performance parameters, 
and thus, leading to unwanted biases.  

Previous research indicated age effects on driving 
performance during secondary task engagement. For example, 
Merat, Anttila, and Luoma (2005) found that older drivers 
tend to have a closer car following, higher speed variations 
and lower lane keeping performance while performing 
secondary tasks compared to drivers of average age. Bunce, 
Young, Blane, and Khugputh (2012) reported in their study 
that older drivers show a higher variance in headway and 
lateral lane position, resulting in greater inconsistencies in 
driving performance, than younger drivers. Moreover, they 
found that the driving tasks are mentally more demanding for 
older drivers compared to younger drivers. 

The objective of the present paper was to examine if 
there are differences in BT performance between younger and 
older participants. This might have implications for sample 
characteristic requirements. 

2. Method 

2.1 Participants  
Overall, 52 participants (26 females, 26 males) with a 

mean age of 44 years (SD = 20.19) participated in the study. 
Twenty-five participants were younger than or equal to 35 
years, 26 participants were older than or equal to 55 years. 
One participant with an age of 39 years was excluded for age 
analyses. Hence, 51 participants were included in the 
analyses. 

2.2 Material 

2.2.1 BT + DRT 
For the present study, we used a PC-based version of 

the BT. The BT is a continuous tracking task in which 
participants have to keep a dynamic box within two 
boundaries using a steering wheel for lateral and a gas pedal 
for longitudinal box control (see Trommler et al., 2021). In 
parallel, participants need to respond to vibration stimuli 
presented in random intervals by pressing a button on the 
steering wheel (see ISO 17488, 2016).   

2.2.2 Secondary tasks 
Two secondary tasks were used in an easy and difficult 

version – a counting task (see e.g., Petzoldt & Krems, 2014) 
and the Surrogate Reference Task (SuRT; Mattes & Hallén, 
2009). During the counting task, participants had to count 
forwards in steps of two (easy version) versus backwards in 
steps of seven (difficult version) starting from a specified 
number (e.g., 212). During the SuRT, participants had to 
identify a larger white circle (target) within a number of 
smaller white circles (distractors). The easy and difficult 
versions of the SuRT differed in the size of targets and 
distractors.  
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2.3 Procedure 
The experimental session consisted of a practice trial 

(i.e., practicing the BT + DRT), a baseline condition (i.e., 
performing the BT + DRT without secondary task 
engagement) and four dual-task conditions (i.e., performing 
the BT + DRT with secondary task engagement). The dual-
task conditions were balanced. Participants were instructed to 
perform the BT + DRT as safely as possible while 
simultaneously engaging in the secondary tasks. Each trial 
lasted three minutes. 

3. Results 
Mixed ANOVAs regarding the mean standard 

deviation of box position (SDLatP) and box size (SDLongP) 
were conducted. The between-subjects factor was age group 
(i.e., ≤ 35 years (N = 25) and ≥ 55 years (N = 25)); one 
participant had to be excluded after visual analysis of the 
boxplots (> three interquartile ranges regarding the number 
of lateral and longitudinal errors during the baseline 
condition). The within-subjects factor was secondary task 
condition. Mauchly’s tests indicated violations for the 
assumption of sphericity for the factor secondary task. 
Therefore, Greenhouse-Geisser corrected degrees of freedom 
are reported. 

3.1 Mean standard deviation of box position 
Generally, both younger and older participants 

showed the highest variability of box position during the 
difficult SuRT condition, the lowest during the baseline 
condition (see Fig. 1). Box position variability differed 
significantly across secondary task conditions in both age 
groups (F≤35years(2.215, 53.159) = 20.110, p < .001, ηp

2 = .456; 
F≥55years(2.641, 63.372) = 13.824, p < .001, ηp

2 = .365). The 
mixed ANOVA revealed no significant interaction between 
age group and secondary task conditions (F(2.730, 131,058) 
= 1.169, p = .322, ηp

2 = .024), indicating that participants of 
the age group ≤ 35 years produced less variability in box 
position across all secondary task conditions compared to 
participants of the age group ≥ 55 years. There were 
significant differences between younger and older 
participants across all secondary task conditions (see Fig. 1).  

 

 
Fig. 1. Mean standard deviation of box position (SDLatP) 
across secondary task conditions depending on age group. 

3.2 Mean standard deviation of box size 
Similar results were found for box size variability. 

Both younger and older participants produced the highest 
variability of box size during the difficult SuRT condition, the 
lowest during the baseline condition (see Fig. 2). There were 
significant differences in box size variability between 

secondary task conditions in both age groups (F≤35years (3.741, 
89.795) = 12.723, p < .001, ηp

2 = .346); F≥55years (2.833, 
67.980) = 17.146, p < .001, ηp

2 = .417).  The mixed ANOVA 
revealed no significant interaction between age group and 
secondary task condition (F(3.173, 167.730) = 1.814, p = .137, 
ηp

2 = .036). Hence, less box size variabilities were observed 
for younger compared to older participants. Except for the 
baseline condition, there were significant differences between 
the age groups across the secondary task conditions (see Fig. 
2). 

 

 
Fig. 2. Mean standard deviation of box size (SDLongP) 
across secondary task conditions depending on age group. 
 

4. Conclusion 
The analyses revealed a clear age effect on the BT 

performance. This is consistent with research findings of 
previous studies investigating differences in driving 
performance depending on drivers’ age (Bunce et al., 2012; 
Merat et al., 2005). For example, in the study of Merat et al. 
(2005), older drivers showed a lower lane keeping 
performance and higher speed variations during dual-task 
trials compared to drivers of average age. In the present study, 
the older age group was associated with a significantly higher 
variability in box position (representing lane keeping 
performance) as well as box size (representing headway to 
the lead vehicle) compared to the younger age group. This 
was observed for almost all task conditions. However, there 
were no interactions between participants’ age and secondary 
task condition, indicating that differences between secondary 
task conditions within an age group were comparable 
between the age groups. The results might have implications 
for sample selection in future studies: When investigating the 
absolute distraction potential of a secondary task (e.g., using 
a new in-vehicle technology), an age-balanced sample should 
be used. However, when assessing the relative distraction 
potential (e.g., the distraction potential of a secondary task 
compared to others), age seems not to play a major role. 
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Abstract: The remote operation of automated vehicles (‘teleoperation’) has been posited as a potential solution for 
situations in which human intervention is required, but creates new challenges for ‘driver’ distraction and inattention. 
Guided by the critical decision method, we conducted an interview study involving 12 experts and practitioners in this 
nascent field and present a brief overview of emerging areas that require further research attention, in particular 
regarding workstation design requirements for remote operators to avoid or minimise distraction. 
 

1. Introduction 
Fully automated vehicles (AVs) are expected to 

ameliorate issues of driver distraction and inattention. Indeed, 
if the vehicle occupant is no longer able to drive (i.e., there 
are no primary vehicle controls), then, by definition, the 
vehicle occupant cannot be distracted from the task of driving. 
However, it is perfectly feasible that AVs may reach the limit 
of their operational design domain (ODD), be presented with 
an unexpected, emergency situation outside the scope of the 
control algorithms, or encounter an unexpected technical 
malfunction (Kalaiyarasan et al., 2021). In these situations, 
teleoperation has been proposed as a viable mechanism to 
provide remote control of the vehicle, for example, to 
manoeuvre it at low speed to a safe location. In effect, this 
reassigns the mantle of ‘driver’ to a remote operator (RO), 
who has hitherto not been actively involved in the control of 
the vehicle or even present therein. Understanding the issues 
this presents to the RO, and how to deal with potential 
distraction and inattention that may ensue, is therefore 
important.  

2. Background 

2.1 Future, Mobility-as-a-Service (MaaS) AVs 
Future MaaS-AVs are expected to operate as part of 

an integrated transport system, whereby passengers will be 
able to book or hail a vehicle, but there will be no driver 
present (so-called, “robotaxis”). Kalaiyarasan et al. (2021) 
predict that even for a fully operable service, unforeseen 
edge-cases and emergency situations may still occur that fall 
outside the normal mode of operation. In such situations, 
teleoperation has been proposed as a means to remotely 
control these vehicles; this could extend from limited path 
guidance (e.g., manoeuvring around roadworks) to full 
remote driving at low speed or even high speed (Economic 
Commission for Europe (ECE), 2020). In addition, the ECE 
(2020) identify two further potential categories of remote 
support and control, namely, remote assistance, whereby the 
service provider offers support and breakdown assistance, 
and remote management, analogous to air traffic control, in 
which the remote operator assists when the vehicle requires 
authority to move or deviate from a prescribed path. 

Notwithstanding the technical challenges these 
present, remote control, in particular, also creates a new form 

of driver distraction and inattention – notably for a driver who 
is not even located within the vehicle, thus creating a new 
research agenda. Further consideration must also be given to 
the safety and wellbeing of any incumbent passengers, who 
may inadvertently create additional situations requiring 
remote intervention, such as the need to travel beyond the 
ODD in a medical emergency. With these factors in mind, the 
current interview study sought to uncover the needs of ROs 
who will be tasked with monitoring AVs and may be required 
to intervene in vehicle control, management or guidance. In 
particular, we sought to explore issues pertaining to RO 
workstation design and its impact on distraction and 
inattention.  

2.2 Remote Operation of AVs 
In their vision of robotaxi teleoperation, Zhang (2020) 

suggests that a teleoperation workstation might mimic the in-
car driver experience, enabling the RO to “see, hear and feel” 
the car and its surroundings. With the additional sensors 
present on AVs (e.g., LIDAR etc.), combined with artificial 
intelligence (AI) systems, ROs could subsequently be 
presented with much more information than the standard 
driver. Delivering such information succinctly to a human 
operator is likely to be difficult: cognitive overload may 
subsequently ensue (Mutzenich, Durant, Helman, & Dalton, 
2021). Mutzenich et al. (2021) also argue that the 
teleoperation of AVs presents challenges relating to out-of-
the-loop (OOTL) syndrome, latency, embodiment and 
workload. They note that ROs will encounter a potentially 
hazardous delay whilst attaining adequate situational 
awareness when they have been given a vehicle to control.  

There are already some general user-requirements 
outlined in the literature regarding teleoperation (Georg & 
Diermeyer, 2019; Graf & Hussmann, 2020; Kettwich, 
Schrank, & Oehl, 2021). However, at the time of writing, 
there is limited knowledge surrounding the AV-robotaxi 
teleoperator role specifically, in which the operator must 
consider the needs of the driving task as well as that of the 
human passenger in the vehicle, who may be showing varying 
levels of unease depending on the circumstances, or may 
require other assistance or support.  

3. Method 
Guided by the Critical Decision Method (Klein et al., 

1989), we conducted an interview study involving 12 experts. 
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Participants either held direct responsibility for the 
teleoperation of AVs or similar vehicles/equipment, were 
working in companies that are developing teleoperation 
technologies/services, and/or working on relevant research 
projects. Participants comprised existing contacts of the 
ServCity team (https://www.servcity.co.uk/) and Centre for 
Connected and Autonomous Vehicles (CCAV). Interviews 
aimed to uncover potential issues associated with the remote 
operation of robotaxis (with a focus on workstation design 
and vehicle control), whilst maintaining the wellbeing and a 
positive user experience for the vehicle occupant. 

4. Results 
Interviewees highlighted many new issues associated 

with the role of RO in the context of MaaS-AVs, and 
workstation design, which are thematically grouped and 
summarised below. The findings represent the experiences 
and opinions of the 12 experts (identified as P1 to P12, to 
whom specific comments are attributed) and are intended to 
provide an outline and inspiration for future research studies. 

4.1 Accessibility 
Accessibility of remote operation has not received 

much research attention, although there are international 
standards for workplace accessibility. The potential for 
multimodal feedback of increased sources of data (e.g., 
LIDAR sensor data) could potentially open up the RO role to 
people previously excluded from driving tasks (P5, P6).  

4.2 Working patterns and demands  
Human capabilities and limitations must be 

considered within the creation of the RO role, in particular 
the ability to maintain vigilance over long periods. Shifts 
should be carefully arranged to protect employee health 
whilst making the most of their abilities (P4, P5, P7).  

4.3 Human Machine Interfaces  
Visual display screens are expected as a minimum (P1, 

P7). There was also some suggestion that augmented and 
virtual reality equipment might be beneficial in certain 
situations (P5), in which case, the visual quality should be as 
high as possible. Icons and auditory alerts could replace text 
for some operations (P4).  

4.4 Physical setup of workstations  
International standards already mandate some aspects 

of workstation design (e.g., desk height). However, there is 
no consensus on the number of screens and whether the RO 
needs access to a full 360⁰ view (P1, P9). It may be necessary 
to have multiple communication channels available (P1, P2, 
P3). ROs might need to be able to see and collaborate with 
colleagues/supervisors in the room with them (P3). 

4.5 Handover  
There must be a clear, unambiguous process of 

handover (P1, P9). The system could check that the RO is 
ready using driver monitoring systems. There were mixed 
views about whether passengers always needed to be 
informed that the vehicle is being operated remotely, but it 
was felt that it would be useful for passengers to be aware in 
certain situations, such as in an emergency (P1, P9). 

4.6 Latency 
Network latency is already recognised as a potential 

problem, and the network infrastructure must be designed to 
ensure that this is kept to a minimum. It was suggested that a 
latency of 100 milliseconds or more can impair performance 
at higher road speeds (P5). Minimal risk manoeuvres could 
be utilised where there is a risk of high latency (P1, P9, P10). 

4.7 Role of the teleoperator 
The exact job description of a RO is still a topic for 

discussion, with some suggesting it may comprise a low-
skilled role simply monitoring vehicles and selecting 
intervention options from a pre-determined list (P7), whereas 
others suggested that it should be a high-skilled role in which 
the operator can take over control of the vehicle even whilst 
it is moving (P1, P4 P12).  

4.8 Workload 
Workload for a RO is likely to be variable, with long 

periods spent monitoring and shorter periods of high 
cognitive/physical activity. Moreover, ROs may be 
responsible for supervising multiple vehicles (P10) or acting 
as a guide vehicle for a convoy (P12). They will therefore 
need to be able to cope with demanding and stressful 
situations as well as overcoming boredom (P1). The road 
situation (e.g., other vehicles/pedestrians, traffic signals) will 
also contribute the level of workload experienced (P8).  

4.9 Situation awareness 
ROs will need support to establish situation awareness, 

potentially requiring guidance from the automated system 
(P9). Providing information before handover, along with 
suggested courses of action might alleviate the impacts of 
reduced or absent situation awareness (P7, P10).  

4.10 Information needs (including training) 
New and specific training will be needed (P01, P09, 

P10). ROs may not be required to hold an existing driving 
licence, particularly given the different roles they may fulfil 
(remote control, assistance and/or management) (P10, P12), 
but those who are in control of a vehicle on a road must have 
a licence to drive in the country in which they are “driving” 
(P09, P12). . Visual information will be most important, but 
can be supported by audio, LIDAR sensor data, haptic 
feedback and route-related information (P1, P2).  

4.11 Supporting passengers 
ROs will need audio communications with passengers, 

but it is unclear whether ROs or customer service agents will 
be responsible. Passengers will likely need support and 
reassurance from the RO (comments from all participants). 

4.12 Other communication 
The RO is likely to need a means to contact emergency 

service operators as well as their colleagues/supervisors, and 
other road users in the vicinity of the ego vehicle (e.g., other 
drivers//vehicles involved in an incident) (P6, P8, P10, P12). 
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4.13 Distraction and inattention of RO 
There is arguably a higher risk of distraction for ROs 

than conventional in-vehicle drivers, as the workstation will 
enable and sometimes demand the use of multiple interfaces 
when in charge of a vehicle (or multiple vehicles), for 
example, to access a team chat to escalate issues or contact 
emergency services (P9, P10, P11). Moreover, there is the 
possibility of ROs becoming bored or distracted by mobile 
phones or other tasks whilst waiting for takeover requests, or 
whilst supervising a vehicle which, in theory, should be able 
to drive itself (P06, P10). Driver monitoring systems could be 
used to assess whether the RO is attending to the situation, or 
if they are ready to respond to a new task (P04).   

5. Discussion and Conclusion 
The interviews revealed several key areas relating to 

the teleoperation of MaaS-AVs, and associated workstation 
design, that require further research attention. Although 
interviews were framed within the context of a future, 
robotaxi service, many of the findings are also applicable to 
other situations in which the teleoperation of an AV presents 
as a viable solution.  

While the experts interviewed during the study were 
naturally strong advocates of teleoperation, the concept 
appears to divide opinion amongst the wider population. 
Indeed, one could reasonably opine that if an AV was to 
encounter an unknown situation within its ODD (that 
subsequently required remote, human intervention), then it is 
not truly automated (i.e., may require further technical 
development) and/or the ODD should be redefined. Moreover, 
the interviews revealed numerous, complex technical issues 
(network latency, aggregation and visualisation of sensor data, 
control actuator design etc.) as well as multiple human factors 
(distraction, workload, situation awareness etc.) that must all 
be satisfactorily resolved. Consequently, teleoperation may 
not be the optimal solution in all situations.  

Regardless, it remains a popular option in the 
anticipated, near-future transportation landscape, not least 
because it encompasses a range of paradigms (remote control, 
remote assistance, remote management) (ECE, 2020). As 
such, teleoperation–in the sense of remote control of the 
vehicle–may be most appropriately applied to support the 
successful implementation and real-world integration of AVs 
(or applied as ‘last resort’ when all else fails). As the need for 
remote control of an AV reduces (i.e. the on-board AI systems 
become more attuned to ‘edge-cases’), teleoperation could 
provide important, ongoing benefits, such as support and 
breakdown assistance and/or as a mechanism to provide the 
necessary authorisation to move or redirect the vehicle from 
its current path. Within service-led applications, such as 
robotaxis, ROs could act as the point-of-contact and even as 
a substitute for an on-board authority figure (see: Dolins, 
Strömberg, Wong, and Karlsson, 2021), particularly relevant 
to situations of shared occupancy. The issues highlighted 
herein are relevant to all these scenarios. 

Future human factors research in this area should be 
directed towards the features of the remote workstation that 
will help ROs avoid and/or overcome potential distractions, 
manage their workload and maintain their attention on the 
task at hand, for example, by providing a sense of realism and 
embodiment to the (remote) driving task. In ongoing work, 
these challenges have been aligned with a goal-directed task 

analysis, and emerging teleoperator ‘workstation guidelines’ 
are forthcoming. 
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1. Introduction 
The factors leading to the crash has been widely 

studied. Inattention has been described as a major problem in 
road safety and one of the most often factors which contribute 
to the crash [5], [6]. The presented paper is based on the 
previous work of Van Elslande [1], [2], who defined the main 
categories of human failure leading to crashes with a 
sequential chain of human failure. Regan [3] described that 
the first defined category – failure in information acquisition 
– has been perceptual failures (not attentional). In the 
presented paper, the taxonomy developed by Van Elslande 
has been adapted and applied to the Czech in-depth database.. 

2. Data and methods 

2.1 Czech in-depth study 
Data collection was performed within the research 

project CzIDAS: Czech In-depth Accident Study [4]. Only 
crashes with injuries in a defined region of South Moravia in 
the Czech Republic are investigated. The investigation team 
realized the analysis immediately after the crash occurred at 
the crash scene. In-depth investigation includes participant 
interviews, detailed vehicle and infrastructure documentation 
and subsequent analysis of the crash. The psychologist 
focused in the interview on all relevant information related to 
the causes of the crash and the actual mental and physical 
condition of the participant.  

The presented analysis focused on the information 
about human failure leading to the crash. The cases were 
retrospectively qualitatively analyzed. Two researchers 
independently reviewed cases to determine the type of human 
failure in each of the crashes. In all used cases were possible 
to determine human failure at least at one of the crash 
participants, in some two-participants cases both crash 
participants failed. The dataset used for analysis contains 
determined human functional failure of about 1447 personal 
vehicle drivers, 119 truck drivers, 201 motorcyclists, 88 
cyclists and 218 pedestrians.. 

2.2 Crash causation  
The human factor includes all the aspects involved in 

any activity, either positively or negatively. The human factor 
failure has been the most common factor which contributes to 
the crash [7]. To understand the causes of the crash in terms 
of the human factor, the Van Eslande classification model has 
been used to describe human failure at various levels. The 
model described human failure as a sequential, epigenetically 
evolving process. The classification was used to find and 
identify the level at which the human decision leading to the 
crash was made and to better understand the nature of the 
driver's erroneous actions and how to prevent them. The 

global stages of the human malfunction chain potentially 
involved in crashes are:  

- Failure in information acquisition 
- Failure in the diagnosis of the situation 
- Failure in predicting the situation 

- Failure when deciding to undertake the 
specific manoeuvre 

- Psychomotor failure when performing the action 
- Overall failure.  
Each of the defined main categories has been 

subdivided into detailed stages.  
. 

3. Results 
As evidenced by the results of Czech In-depth Crash 

Study (CzIDAS) from the number of analysed traffic crashes, 
the most frequent human failure has been a failure in 
information acquisition (40 %), where the participants fail in 
the detection of a potentially critical situation. The road user's 
attention is improperly aimed, cursory or absent. In the whole 
crash database can be further identified: the failure in 
diagnosis (27 %), failure in prediction (9 %), failure in the 
decision (7 %), psychomotor failure (5 %) and the overall 
failure (12 %). The frequency representation of human failure 
has been in ascending order as the information should be 
processed by road users on a cognitive and somatic level.   

As evidenced by statistical testing, the type of failure 
varied depending on the type of road user. The drivers of 
personal vehicles and trucks as well as pedestrian more are 
more likely to have detection failure, the motorcycle drivers 
or cyclists more frequently fail at diagnosis of the situation. 
The problems with the diagnosis are based mostly on 
problems of evaluating physical parameters. The drivers have 
often problems evaluating infrastructure related difficulties 
(e.g. curves characteristics and reduced adhesion).  

For pedestrians, cursory or hurried information 
acquisition has been most typical. Drivers of personal 
vehicles mostly fail due to the information acquisition 
focused on a partial component of the situation. The detection 
problems refer to the information acquisition strategy. Also 
the truck drivers fail most frequently at this level. In 
comparison to the other drivers, for the truck drivers, the non-
detection in visibility constraints conditions has been more 
frequent. This could be influenced also by vehicle 
characteristics which could make difficult to detect an 
important element in a potentially critical situation. The 
differences in human failure were identified also depending 
on the age of the road user, the crash type or driver 
experience..   
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4. Conclusions 
Data from In-depth Crash Analysis provide a 

comprehensive view of all the factors related to a particular 
crash and serve to identify the characteristics leading to the 
crash occurrence. The primary tasks of in-depth study have 
been to identify how and why the crash occurred and how to 
prevent a similar situation. The unique findings provided by 
the in-depth crash analysis are utilized for the definition of 
priorities and methodological management in the field of road 
safety, standards and legislative framework modifications 
and development. Identifying factors leading to human 
failure can contribute to the targeted direction of preventive 
activities in the field of road safety and road safety campaigns.  
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