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PhD student, Lund University
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Standards and guidelines are high-level...

... must get our hands dirty with ML details

Lack of:
- experience reports
- open demonstrator systems

“How to demonstrate and share a complete ML
safety case for an open ADAS?”
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2. Safety case
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Original software publication

SMIRK: A machine learning-based pedestrian automatic emergency braking R

Check for

system with a complete safety case

Kasper Socha ?, Markus Borg »"*, Jens Henriksson ©

3 RISE Research Institutes of Sweden, Scheelevdgen 17, 223 63 Lund, Sweden
b Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
¢ Semcon AB, Lindholmsallén 2, 417 55 Gothenburg, Sweden

ARTICLE INFO ABSTRACT

Keywords: SMIRK is a pedestrian automatic emergency braking system that facilitates research on safety-critical systems
Automotive demonstrator embedding machine learning components. As a fully transparent driver-assistance system, SMIRK can support
Advanced driver-assistance system future research on trustworthy Al systems, e.g., verification & validation, requirements engineering, and testing.

Pedestrian automatic emergency braking
Machine learning

Computer vision

Safety case

SMIRK is implemented for the simulator ESI Pro-SiVIC with core components including a radar sensor, a mono
camera, a YOLOv5 model, and an anomaly detector. ISO/PAS 21448 SOTIF guided the development, and we
present a complete safety case for a restricted ODD using the AMLAS methodology. Finally, all training data
used to train the perception system is publicly available.
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Ergo, SMIRK is Safe: A Safety Case for a Machine Learning
Component in a Pedestrian Automatic Emergency Brake System

Piotr Tomaszewski, Sankar Raman Sathyamoorthy, Sebastian Brink, Mahshid Helali Moghadam

Integration of Machine Learning (ML) components in critical applications introduces novel challenges for
software certification and verification. New safety standards and technical guidelines are under development to
support the safety of ML-based systems, e.g., ISO 21448 SOTIF for the automotive domain and the Assurance
of Machine Learning for use in Autonomous Systems (AMLAS) framework. SOTIF and AMLAS provide high-
level guidance but the details must be chiseled out for each specific case. We initiated a research project with
the goal to demonstrate a complete safety case for an ML component in an open automotive system. This
paper reports results from an industry-academia collaboration on safety assurance of SMIRK, an ML-based
pedestrian automatic emergency braking demonstrator running in an industry-grade simulator. We
demonstrate an application of AMLAS on SMIRK for a minimalistic operational design domain, i.e., we share a
complete safety case for its integrated ML-based component. Finally, we report lessons learned and provide

both SMIRK and the safety case under an open-source licence for the research community to reuse.

Markus Borg, Jens Henriksson, Kasper Socha, Olof Lennartsson, Elias Sonnsjé Lénegren, Thanh Bui,




CCCCCCCCCCCCC

Develcpment




Reverse engineering from PeVi

codescene.com

RESEARCH-ARTICLE

Testing advanced driver assistance systems using multi-

objective search and neural networks
¥ ing f

Authors: Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter Authors Info & Affiliations

Publication: ASE 2016: Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering « August 2016 e Pages 63—74 * https://doi.org/10.1145/2970276.2970311

®
[
d
o SENSE

5 for
UNIVERSITE DU innovation

LUXEMBOURG




Open Source ADAS MVP

® |n ESI Pro-SiVIC
® Pedestrian emergency braking
® Mono-camera and radar

® ML-based pedestrian recognition
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START

E—— Primary hazard to tackle:

—» Review

SOTIF related Hazard
» Identification and Risk __

System Spflﬁcatlon @ | Evaluation ( ) Yes F a I S e p O St i Ve S

Functional and

Functional Modification
to reduce SOTIF risk - Identification and Evaluation :
A e of Triggering Events END
’ S NG 7 v
Risk
accepted
7 A
Evaluate\
Known </
Hazardous >

Validation Scenarios ;
Area 2 ‘ ’ 3

of S
the > & - :
SOTIF ; 4 A |
‘ ¥ 1
() v () [CFIEY /A

Definition of the
= Verification and b’

Validation strategy
l Evaluate
Validation Unknown
of : Hazardous
the < Scenarios

SOTIF ( ) Area 3

Methodology and
Criteria for SOTIF

Release @

codescene.com



INNOVATIVE ENGINEERING

mvm CAADDNNAAN NMNAavmarmaAanms 'Jlk

Safety cage: an app

machine learning sy

Sankar Raman Sathyamoq

e ESYRRRURUSRCERERRN)

codescene.com




MVP Operational Desigh Domain

Thorn E, Kimmel SC, Chaka M, et al (2018)

Tech. rep., US Department of Transportation
A Eramework for National Highway Traffic Safety Administration



highway, urban, rural, parking, multi-lane, single lane, on/off ramps, intersections, roundabouts, ...

Roadway Types

Physical
Infrastructure

Straight rural road,
good conditions,
single pedestrian

Weather witlid, 1 ditl, 5110vyv, SICCL, LCIIIpPCIdLUIC, ...

asphalt, concrete, mixed, grating, brick, dirt, gravel, ...

line markers, temporary line markers, shoulder, concrete barriers, rails, cones, ...

Operational
Constraints

Objects

Vp)
)
-
Q
-
D
LL]
-
O
@

standing water, icy roads, snow on road, ...

, Roadway Conditions
Environmental

fog, smoke, smog, dust, ...

day, sun front-lighting, dawn, dusk, night, street lights, headlights, oncoming vehicle lights, ...



Logical View of the SMIRK Architecture
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Requirements engineering...

System requirements

3.3 Machine Learning Safety Requirements [H]

This section refines SYS-SAF-REQ into two separate requirements corresponding to false positives and false negatives, respectively.

e SYS-ML-REQ1: The pedestrian recognition component shall detect pedestrians if the radar tracking component returns TTC < 4s for the
corresponding object.

e SYS-ML-REQ2: The pedestrian recognition component shall reject input that does not resemble the training data.

3.3.1 Performance Requirements Data req U i re m e ntS

This section specifies performance requirements corresponding to the ML safety requirements with a focus on quantitative targets for the
pedestrian recognition component. All requirements below are restricted to pedestrians on or close to the road. 2,1 Releva nt

e SYS-PER-REQ1: The pedestrian recognition component shall identify pedestrians with an accuracy of 0.93 when they are within 50
e, This desideratum considers the intersection between the dataset and the supported dynamic driving task in the ODD. The SMIRK training data

SYS-PER-REQ2: The false negative rate of the pedestrian recognition component shall not exceed 7% for pedestrians when they are will not cover operational environments that are outside of the ODD, e.g., images collected in heavy snowfall.

detected by the radar tracking component within 50 meters.

SYS-PER-REQ3: The false positive rate of the pedestrian recognition component shall not exceed 0.01% for objects detected by the DAT-REL-REQ1: All data samples shall represent images of a road from the perspective of a vehicle.

radar tracking component with a TTC < 4s DAT-REL-REQ2: The format of each data sample shall be representative of that which is captured using sensors deployed on the ego

SYS-PER-REQ4: In a sequence of images from a video feed any pedestrian to be detected shall not be missed in more than 1 out of 5 vehicle.

O DAT-REL-REQ3: Each data sample shall assume sensor positioning representative of the positioning used on the ego vehicle.

SYS-PER-REQS5: The pedestrian recognition component shall determine the position of pedestrians within 50 cm of their actual

DAT-REL-REQ4: All data samples shall represent images of a road that corresponds to the ODD.

position.
DAT-REL-REQS5: All data samples containing pedestrians shall include one single pedestrian.

SYS-PER-REQ6: The pedestrian recognition component shall allow an inference speed of at least 10 FPS on the target platform.

DAT-REL-REQ6: Pedestrians included in data samples shall be of a type that may appear in the ODD.

DAT-REL-REQ7: All data samples representing non-pedestrian OOD objects shall be of a type that may appear in the ODD.

codescene.com



Generate Training Data in ESI Pro-SiVIC

Synthetic data that cover the Operational Design Domain
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https://github.com/RI-SE/smirk/tree/main/pedestrian-generator

The SMIRK MVP
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Follow the AMLAS process
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1. Safety Assurance Scoping

codescene.com

Title
System Safety Requirements
Description of Operating Environment of System
System Description
ML Component Description
Safety Requirements Allocated to ML Component
ML Assurance Scoping Argument Pattern
ML Safety Assurance Scoping Argument
ML Safety Requirements
ML Safety Requirements Argument Pattern
ML Safety Requirements Validation Results
ML Safety Requirements Argument
Data Requirements
Data Requirements Justification Report
Development Data
Internal Test Data
Verification Data
Data Generation Log
ML Data Argument Pattern

ML Data Validation Results

ML Data Argument

Model Development Log

ML Model

ML Learning Argument Pattern
Internal Test Results

ML Learning Argument

ML Verification Results
Verification Log

ML Verification Argument Pattern
ML Verification Argument
Erroneous Behaviour Log
Operational scenarios
Integration Testing Results

ML Deployment Argument Pattern

ML Deployment Argument

Input to

U

1

)

, 6

6

Output from

Where?

Done

Done

Done

(J) Outlier detection missing
Done

Done

Done

Done

Done

Done

Done

Done

Done

(M) Hosting needed

(M) Hosting needed

(M) Hosting needed

Links to code needed
Done

(K} Validation scripts needed
Done

(K) Add links to code

(K) Need to upload model
Done

(K) Create test report
Done

(J) Measure slices

(M) Need to describe metrics
Done

Done

(M) Need to report lessons
Done

(K?) Not started

Done

Done

Bl ¢1.1

Description of the
ODD.

[Cl ¢12

G1.1

~
Syster_n <4
description

O] ¢13

ML Component
Description

The object recognition
component satisfies its
allocated system safety
requirements in the ODD

$1.1
Argument over the
development and
deployment of the ML
component

n W V¥ (GG

ML Safety Requirements ML Deployment
Argument Pattern Argument Pattern

[E] c14

System safety
T requirements

~V allocated to ML

component

A1.1
The system safety
process has identified
the system
requirements allocated
to the ML component
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2. Requirements Assurance

H  c24
ML Performance
Safety Requirements
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Hl a1
ML Safety
requirements

G2.1
ML safety requirements
SYS-ML-REQ1 and SYS-
ML-REQ2 are satisfied in
the development of the
ML Model

l

S2.1
Argument over the

G2.2
ML model satisfies
the ML safety
requirement

[R]
ML Data Argument Pattern

SYS-ML-REQ1

ML Learning Argument Pattern
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ML Model

7
Argument over
satisfaction of

different types of ML
safety requirements

:\__
—\\‘N—_A

G2.5 G2.6
ML performance
safety requirements
are satisfied

ML robustness
safety requirements
are satisfied

6 performance
safety requirements
[BB]

ML Verification
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4 robustness

specified ML safety
requirements

El 14

\

~ [R] .

ML Data Argument Pattern

The system safety
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safety requirements to

the ML component

G2.3 G2.4
ML model satisfies ML safety
the ML safety requirements are a
requirement valid development of
SYS-ML-REQ2 the allocated system

< IR

ML Learning Argument Pattern

[H] [
ML Performance
Safety Requirements

safety requirements

[BB]

ML Verification
Argument Pattern

safety requirements
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J
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3. Data Management Assurance

[l C3.2

Internal test data
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is sufficient [P]
C3.2
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Y
S2.1
Argument over IL]
requirements for C3.4
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Requirements different types of data
q requirements

Justification
Report
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Log
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4. Model Learning Assurance

G4.2
The selected model satisfies the
ML safety requirements SYS-
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when using internal test data
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Internal
Test
Results
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5. Model Verification Assurance
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6. Model Deployment Assurance

C6.1 [EE]

Operational
Scenarios

J6.1
Diverse scenarios
identified through analysis
of the SMIRK ODD
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Lessons Learne
and Wrap-up




Lessons Learned

SOTIF and AMLAS compatible

Simulated data threatens validity

of negative samples

Evaluation of object detection models is hard
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