
SCSSS 2022
Workshop
Managing continuous
assurance of complex
dependable systems

• Adaption to changing customer demands and business needs

• Gradual improvement of functions

• Adaption to changes in operational conditions

• Security fixes / protection against new threats

Motivation
Systems where safety and cybersecurity assurance is vital are increasing in complexity
amid a growing business demand for faster update cycles.

• Months/year

• Months

• Weeks

• Days (hours?)

(than traditional development: years)

• Ability to manage frequent updates in a complex product

• Managing collection of field data for feedback

• “New” technology, e.g., ML components, collaborative functions

• … and still with safety/security assurance in sync with development

Challenges

Topic for today:
Managing continuous assurance of complex dependable systems

• Deliver the right product

– Incremental development

– Customer feedback

– Frequent delivery

• Used since ~2000

• Increasing use in domains with

dependability requirements

– Is it implemented in an

efficient and effective manner

given assurance needs?

Agile Development

Im
a

g
e

 b
y

 m
cm

u
rr

y
ju

li
e

fr
o

m
 P

ix
a

b
a

y

Agile development
Iterative, incremental, evolutionary

Continuous integration
Frequent integration and

automated tests to reduce
integration effort

Continuous deployment
Changes are automatically
deployed into production

DevOps (SafeOps/AIOps)
Integration of development and

operations. Rapid feedback loops.

https://pixabay.com/sv/users/mcmurryjulie-2375405/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2865934
https://pixabay.com/sv/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2865934

• This is not a new topic…

– SafeScrum (2012)

– SafeOps (2020)

– Continuous assurance cases (2019)

– …

Where do we stand today?

Image by Gerd Altmann from Pixabay

2018

• Component-based
• Safety contracts
• Modular assurance cases
• Enable automation
• Continuous assessment

https://pixabay.com/sv/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=796133
https://pixabay.com/sv/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=796133

Questions

https://www.questionpro.io/

1. (Background) Which is your main domain?

2. Do you practice continuous integration

3. Do you practice continuous deployment

4. Do you practice DevOps

5. Do you believe that adopting CI/CD can improve the development of system
safety over traditional development models (less frequent releases)?

6. Do you think applying CI/CD will change safety assurance efforts?

• [9.30] Welcome, agenda, and introduction

• Challenges with CI/CD for safety-critical systems

– World café #1 – Challenges [25 min]

– Key insights from world café #1

• [~ 11.00] Coffee and sandwiches in the networking area [15 min]

• Potential solutions

– World café #2 – Solutions [25 min]

– Key insights from world café #2

• Wrap-up

• [12.30] Lunch @ L’s Resto

Agenda

• World café style discussions

– Form groups around tables

– Questions available at tables

– Select someone to take notes!

• We will collect notes

• Summary report made after workshop

– Will be posted at: http://salience4cav.se/

Discussion format

Leave us your email if you want
notification when report is ready.

Small group discussion for
knowledge-sharing around pre-
defined questions. Insights
shared in large group.

http://salience4cav.se/

• Warg, F., Blom, H., Borg, J., & Johansson, R. (2019, October). Continuous deployment for dependable systems with

continuous assurance cases. In 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW) (pp.

318-325). IEEE.

• Stålhane, T., Myklebust, T., & Hanssen, G. K. (2012, June). The application of Safe Scrum to IEC 61508 certifiable software. In

11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability

Conference (Vol. 8, pp. 6052-6061).

• Fayollas, C., Bonnin, H., & Flebus, O. (2020, September). SafeOps: a concept of continuous safety. In 2020 16th European

Dependable Computing Conference (EDCC) (pp. 65-68). IEEE.

• Johansson, R., & Koopman, P. (2022, September). Continuous Learning Approach to Safety Engineering. In CARS-Critical

Automotive applications: Robustness & Safety.

• Gyllenhammar, Magnus; Rodrigues de Campos, Gabriel; Törngren, Martin (2022): Holistic Perspectives on Safety of

Automated Driving Systems - Methods for Provision of Evidence. TechRxiv. Preprint.

https://doi.org/10.36227/techrxiv.20331243.v1

References

Continuous
Assurance
Challenges

Continuous- Integration & Deployment
for Automotive Safety Systems

Omar Jaradat
SCSSS’22 - workshop

Nov 23, 2022
Lindholmen

CI/CD

• Continuous integration (CI)- short-lived branches that are merged into a shared trunk several times a day

where a series of automated tests give feedback about the changes introduced

– Examples of branching strategies:

• GitFlow

• GitHub Flow

• GitLab Flow

• Trunk-based development (Our work assumes TBD as the used strategy)

• Continuous delivery (CD)- after continuous integration, continuous delivery prepares the software for

delivery and ensures that the software can be reliably released at any time.

• Continuous deployment- after CI and CD, changes are automatically deployed into production by a fully

automated process.

https://www.flagship.io/git-branching-strategies/#gitflow
https://www.flagship.io/git-branching-strategies/#github-flow
https://www.flagship.io/git-branching-strategies/#gitlab-flow
https://www.flagship.io/git-branching-strategies/#trunk-based-development

• Unit tests- to verify single parts of the application. This isolated part of the codebase is referred to as a unit.

• Integration tests- unit tests focus on an individual unit and thus may be insufficient by themselves, integration

tests ensure that multiple components work together correctly and test how parts of the application work

together as a whole.

• Functional tests- these tests make sure that the feature is working as it should

• End-to-end tests- these tests simulate a user experience to ensure that real users have a smooth, bug-free

experience.

• Acceptance tests- these verify the behaviour of the software under significant load to ensure its stability and

reliability.

Continuous Testing

• CI/CD pipeline: a series of steps that should be performed to deliver a new version of the software.

• CI/CD pipelines are focused on improving software delivery via automation.

• A typical pipeline builds the code, runs tests, and then deploys the new software into production in a true

replica of the software development lifecycle.

• Building, merging then testing the code-continuous integration

• Preparing the code for delivery- continuous delivery

• Deploying the code automatically- continuous deployment

CI/CD Pipeline

• Source: the CI/CD pipeline is triggered when a new code is committed to the repository.

• Build: this is where developers put their new code changes and compile them so they may pass through the initial
testing phase

• Test: this is when the new code is tested through automated tests (for example, running unit tests through
continuous integration). Depending on the size and complexity of the software, this step could last from seconds
to hours. This stage will provide the feedback necessary for developers to fix any issues.

• Deploy: this is when the code is deployed to a testing or staging environment to prepare it for final release i.e
continuous delivery. Usually, the build will automatically deploy once it passes through a series of automated
tests.

• Deploy to production: here the code is released into a live production environment to reach end-users, either
manually or automatically

Pipeline's Engine and Stages

https://www.flagship.io/ci-cd/

Pipeline Example

Ref. https://katalon.com/resources-center/blog/ci-cd-pipeline

• A feature flag is a software development tool whose purpose is to turn certain functionalities ON or OFF

to safely test in production by decoupling code deployment from feature release.

• With feature flags, developers can push their changes without waiting for other developers by simply

turning OFF the incomplete portions of the code.

• Incomplete changes can be hidden behind a feature flag while the finished changes can be released. Once

the incomplete is complete, they can be turned ON to become visible to end-users.

• This is important as the whole aim of continuous integration is to integrate changes at least once a day,

so feature flags help maintain the momentum of continuous integration.

Feature Flags

• The term “feature” in agile methodologies and CI/CD does not exist in ISO26262

• What should the feature be mapped to (e.g., function, requirement, unit, component, etc.)?

• How to fit the CI/CD into the V-model? For example:

– Shall CI/CD be limited to SW development, or should it cover the entire V-model?

• How to construct and maintain Safety Cases in the CI/CD pipeline?

– Continuous Safety Assurance (CSA). Maintain already existing items of evidence and highlight the missing ones

– Can we automate the evolution and maintenance of the safety case after each deployment?

• How to manage (split, group, categorize, and prioritize) the features in the backlog? Based on:

– their dependencies?

– Deliveries?

– Change containment and susceptibility to change?

– Safety case or evidence modularity

– Limitation by suppliers?

– ASIL?

Challenges & Quick Thoughts

The Feature!

Example Feature

Example Feature

Function Vs. Item Vs. Feature

• Vehicle function (ISO26262): behaviour of the vehicle (intended by the implementation of one or more items)

that is observable by the customer e.g., Autonomous Emergency Brake (AEB)

• Item (ISO26262): System or (combination of systems) that implements a function or part of a function at the

vehicle level e.g., AEB can be an item

• In agile methodology, a feature is a service or function of the product that delivers business value and fulfills

the customer’s need. Each feature is broken down into several user stories, as it is usually too big to be worked

on directly

• Fitting the the agile’s def. of the feature into ISO 26262 context so that it is a building block for a system or

systems that implement item(s)

e.g., the brake pedal position is a feature that contributes to accomplishing vehicle functions such as

braking

• Hint: CI/CD features can be inspired and derived from the HAZOP functions list

Specific proposal

Feature

1..*

1..*

Vehicle function

System

Feature

Component

SW
Unit

or
HW
Part

Thank you!

1. How to manage and reconcile the impacts of product-line variability, necessary changes and
unexpected side effects?

2. What parts of the development life cycle needs to be considered in a CI/CD pipeline to
support safety assurance?

3. How would consistency between changes in safety requirements, architecture,
implementation and different variants be assured in a CI/CD tool chain?

4. How to continuously maintain the safety case evidence after a system change or increment?

5. How can the safety case be projected to highlight its updated parts after a system change
efficiently?

6. How the safety claims can be validated against the new safety boundaries or thresholds?

7. How do you think CI/CD works with current safety standards and regulations?

Questions for world café discussions

Questions

https://www.questionpro.io/
1. Do you think that CI/CD is more capable of reproducing the

deliverables and all safety-related verification and validation
work products than the traditional WoW? [yes, no, can’t say]

2. Do you think it is feasible to identify and analyse potential
failure modes (that system changes might frequently
introduce) by following CI/CD WoW?

3. Do you believe that CI/CD shall consider system boundaries
and requirements freeze at some point during the
development lifecycle?

Continuous
Assurance and
Contract-Based
Design

Safety assurance &
Safety contracts

in Continuous Deployment

Date: 2022-11-23

Anders Cassel

Trends for autonomous systems – A challenge

How to master a complex world of

• Agile development methods &
simultaneous engineering

• Central compute architectures

• Frequent system release cycles

• Conform to safety & security standards

Continuous deployment of ADS in agile development – A complex reality

Sub-
func.

Service

Complex device(s)

Execution
Platform layer

HW layer

ECU hierarchical architecture

Application
layer

Sub-
func.

Sub-
func.

Service
ServiceService

Complete CAV
functionality

Functional
increments

FunctionFunctionFunctionFunctionFunction

SG1 SG2

FunctionFunctionFunction Function

ECU

Many-to-many relationchip

Many-to-many relationchip Many-to-many relationchip

ECU ECU

FSC

TSC

System dev. TSC

HW/SW arch.

HW/SW dev.

HW/SW integr.

System verif.

System dev. FSC System validation

V-dev. cycle

Assure each
increment according
to safety standards

Functional
increment
including
properties
and
changes
at all
levels

Many-to-many relationchip

Safety Goal

Legend

Safety functionality and property in a
safety function

Relationship to a dependent functionality
and property at the same abstraction level

Relationship to a dependent functionality
and property at a lower abstraction level

Function Function

Sub-
func

Sub-
func

Sub-
func

Derived

SW
component

SW
component

SW
component

Deriving safety
properties from SG

Error propagation
path affecting SG

Change/addition of functionality at
• Any level of abstraction
• Any architectural layer of the

system or sub-system

HW
component

Mastering complexity

How to master the complexity

Mastering complexity – Introduction of Contract-based design

Sub-
func.

Service

Complex device(s)

Execution
Platform layer

HW layer

ECU hierarchical architecture

Application
layer

Sub-
func.

Sub-
func.

Service
ServiceService

FunctionFunctionFunctionFunctionFunction

SG1 SG2

ECU ECU ECU

FSC

TSC

Component

Contract Contract Contract Contract Contract

Component

Component Component ComponentItem

Contract

Contract

Contract Contract

• Separation of safety concerns and modularization
• Component-based design

• Hierarchy of components → highest Item level to atomic level

• Safety properties and functionality assured by Safety contracts
• Component safety property and functional response guaranteed by Safety

contract

• Contracts specified for each component at all abstraction levels

• Higher level contract assured by fulfillment of lower-level contracts

• Safety contracts
• Methodology focusing on separation of concerns

• Assuring safety properties and behavior of each component

• Expressed by formal requirement syntax

• Enables automatic contract checking

• Safety contracts part of architecture model at all design levels by e.g. SysML/UML, EAST-ADL,..

• Safety case compilation based on safety contracts by SW tool support integrated in CI/CD build
chain

Introduction of safety contract-based design

• Component Assume-Guarantee (A/G) Contracts
• Contracts are defined as Assume‐Guarantee assertion pairs
• Guarantee are the guaranteed functionality that the specific component is able to fulfill.

• Assume are interpreted as a set of assumptions on the signals provided at their input-ports and
the operational environment required for the component functionality.

• Component response and properties are guaranteed under a set of assumptions on the
environment, e.g. inputs and dependencies

• Top-down & bottom-up
o Global properties of systems are composed based on local properties of the components

o Local properties of components are decomposed based on properties at a higher abstraction level

Component

Component Contract
Assume Guarantee

Introduction of safety contract-based design

Types of Contracts

Sub-Component 1 Sub-Component 3

Sub-Component 2

A1.1 G1.3

Higher-level
Component 1

A1 G1

Decomposed

Horizontal Contracts
• Component Contracts and Component Interface Contracts defined at

the same abstraction level.

A1 G1

A1.2

A1.3

G1.1

G1.2

Component
Contract CC1

CC1.1 CC1.3

CIC1.1CC1.2

Higher-level
Component 2

A2 G2

Component
Contract CC2

Horizontal
contracts

Vertical
contracts

Vertical Contract
CC1.1 & CC1.2 & CC1.3 & CIC1.1 satisfies CC1

Component
Interface

Contract CIC1-2

Component Contract
• Pair of assertions of assumptions and guarantees of a specific

component

Component-Component Interface Contract
• Relationship between assumptions of a specific component and

guarantees of the interfacing components.
• The guarantees of a component output-port must satisfy the

assumptions of the signal input-port of the receiving component(s).

Sub-Component 1 Sub-Component 3

Sub-Component 2

A1.1 G1.3

A1 G1

A1.2

A1.3

G1.1

G1.2

CC1.1 CC1.3

CIC1.1CC1.2

Vertical Contract
CC1.1 & CC1.2 & CC1.3 & CIC1.1 satisfies CC1

Vertical Contracts
• Decomposition of a higher-level component contract to a set of sub-

component contracts and component interface contracts
• Sub-component contracts satisfies the higher-level component.

G1 A2

Formal checking of contracts

Sub-Component 1 Sub-Component 3

Sub-Component 2

A1.1 G1.3

Higher-level
Component 1

A1 G1

Decomposed

A1 G1

A1.2

A1.3

G1.1

G1.2

CC1

CC1.1 CC1.3

CIC1.1CC1.2

Higher-level
Component 2

A2 G2

CC2

Vertical Contract

CIC1-2

• Contracts are specified by a defined
requirement syntax implementing a set of logic
expressions

Verifying the
Guarantee as
part of V & V

Specify the Assume and
Guarantee as part of
functional architecture
design

Formal Contract verification
of Assume & Guarantee

Formal verification of the
Vertical Contract
• Derived components

fulfilling the Guarantee
• Satisfy the global

properties of the higher-
level component

• Component contracts are verified that the
guarantee is realized and satisfies the
assumption

• Result of verification activities feedback into the
contract model

• Formal verification:

• Checking the formal assertions and verification
result of assume and guarantee

• Pass: Behavior and properties of assume and
guarantee meets the criteria

• Fail: Behavior and properties of assume and
guarantee don’t meet the criteria

• Supports impact and variability analysis

Modelling

Fitting components & contracts
together

• Meta-models

Technical
Component

Function
(Function Block)

Failure mode

Safety
mechanism

Process
measure

• Functional
behavior

• Functional
property

Safety contract model - Simplified

OutP
ort

In
Port

Function
response

Provides

Type of

Type of

Safety measure

Allocate

Function

Function

Function

Realizes

Decomposed
Mitigation

Violates

Technical
solution

Input
stimuli

Receives

Requeste
d stimuli

Type of

Type of

Horizontal Safety contract

Assume Guarantee

Dev. process Verification &
Validation

Design pattern

Vertical Contract
Expression of
• Safety properties
• Fault & Error propagation

affecting safety properties
• Safety mechanisms
• The Guarantee

• Decomposed properties
corresponds with
higher-level contract

• Detection & Prevention
of error propagation

• The Assume
• Decomposed input

signals corresponds with
higher-level contract

• Process measures
• Validation &

Verification, e.g. test
cases

• Evidence of Validation &
Verification result

Horizontal Contract
Expression of
• Safety properties
• Functional behaviour
• Function response
• Safety relevant failure mode
• The Guarantee

• Function response is
within safety limits

• Response if error is
present

• Probability of failure mode
• The assume

• Input signals
• Operational environment

• Process measures
• Validation & Verification,

e.g. test cases
• Evidence of Validation &

Verification result

Specifies Specifies

Part of

Fault
stimuli

Vertical Safety contract

Safety case model

Change in a system component corresponds with a safety case increment

Safety case model

SaCa
Module B

SaCa
Module D

SaCa
Module C

SaCa
Module E

SaCa
Module A

SaCa
Module G

SaCa
Module F

SaCa
Module B

SaCa
Module C

SaCa
Module A

SaCa
Module D

SaCa
Module B

SaCa
Module C

SaCa
Module A

Safety case domain

SC
Contrac

t

SC
Contrac

t

SC
Contrac

t

SC
Contrac

t

SC
Contrac

t

SC
Contrac

t

System domain

Sub-
system A

Sub-
system C

Sub-
system B

Sub-
system D

Sub-
system E

Sys
contrac

t

Sys
contrac

t

Sys
contrac

t

Sys
contrac

t

• Safety cases are modular

• Each component has a set of safety
contracts

• Safety verification can be limited to
the incremental change and its impact
on the complete system

• Component-based design to enable separation of concerns, re-use of components
and usage of safety contracts

• Safety contracts to assure safety functionality and properties of safety relevant
components

• Verification measures and results are part of safety contracts

• Formal methods for automatic consistency check of safety contracts

• Defined safety case argumentation structure and verification criteria for safety case
compilation

• Automated analysis integrated in the CI/CD tool chain
• Variability analysis
• Error propagation analysis
• Impact and deviation analysis

Enablers for Continuous Integration & Continuous Deployment of safety cases

• Contracts for system design (A Benveniste, INRIA 2012)

• Assurance aware contract-based design for safety-critical systems (I Sljivo, 2018)

• AMASS research project - Baseline and requirements for architecture-driven
assurance (AMASS_D3.1_WP3_FBK_V1. 1, 2018)

• AMASS research project - Design of the AMASS tools and methods for architecture
driven assurance (AMASS_D3.3_WP3_INT_V1.0, 2018)

• Continuous Deployment for Dependable Systems with Continuous Assurance Cases
(F. Warg, et al., 2019)

References

End
Thank you Anders Cassel

Anders.cassel@qamcom.se

Qamcom Research & Technology

mailto:Anders.cassel@qamcom.se

1. What things in safety-contract methodology are preventing this methodology to be used in practice?

2. If suitable tools would exists, how would then safety-contracts benefit different development organisations at

different abstraction levels?

3. What in the current development methods are most difficult to master when practicing agile development and

simultaneous engineering at several abstraction levels?

4. How would safety assurance measures (e.g. audits, assessments etc) benefit from safety-contract based design?

5. What challenges are there to apply component-based design for ADS at all abstraction levels, i.e. from Item level

to atomic SW- and HW-component level?

6. How to derive safety contracts systematically (e.g. driven by safety analysis outcomes)?

7. How to measure and ensure the completeness, correctness, and consistency of safety contracts?

8. How to continuously check that the safety contracts capture the guarantees of the desired safe performance?

Questions for world café discussions

Questions

https://www.questionpro.io/
1. (Background) What is your primary role in your organisation?

2. (Background) What is your organisation primary business?

3. Did you ever hear of safety contracts and their usage in safety-critical

system engineering before today?

4. Would safety-contract based design benefit your organisation (e.g.

negotiating requirements and changes between organizations)?

5. Would you consider using contract-based design if suitable tools exists?

• Project Manager - Dr. Fredrik Warg, RISE Research Institutes of Sweden, email: fredrik.warg@ri.se

• Researcher - Anders Cassel, Qamcom Research &Technology, email: anders.cassel@qamcom.se

• Researcher - Dr. Anders Thorsén, RISE Research Institutes of Sweden, email: anders.thorsen@ri.se

• Researcher - Dr. Omar Jaradat, Qamcom Research &Technology, email: omar.jaradat@qamcom.se

• Researcher - Dr. Negin Nejad, Qamcom Research &Technology, email: negin.nejad@qamcom.se

• Researcher - Prof. Dejiu Chen, KTH, email: chendj@kth.se

• Researcher - Stig Ursing, Semcon, email: Stig.Ursing@semcon.com

• Researcher - Victoria Vu, Semcon, email: victoria.vu@semcon.com

Contact the workshop organizers

mailto:fredrik.warg@ri.se
mailto:anders.cassel@qamcom.se
mailto:anders.thorsen@ri.se
mailto:omar.jaradat@qamcom.se
mailto:negin.nejad@qamcom.se
mailto:chendj@kth.se
mailto:Stig.Ursing@semcon.com
mailto:victoria.vu@semcon.com

Dr. Fredrik Warg

fredrik.warg@ri.se

RISE Research Institutes of Sweden

More information

Image by Arek Socha from Pixabay

http://salience4cav.se/

mailto:fredrik.warg@ri.se
https://pixabay.com/sv/users/qimono-1962238/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1715890
https://pixabay.com/sv/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1715890
http://salience4cav.se/

