没
Autoliv

Summary of FFI - Pelvis and spine injury predicting models for women and men in a variety of sitting postures in future autonomous cars (I-HBM step 4)

Autoliv:	Bengt Pipkorn Leila Jaber VCC:
Lotta Jakobsson Katarina Bohman Jonas Östh	

Chalmers: Johan Davidsson Johan Iraeus
Erik Brynskog (PhD Student)
Sahlgrenska: Olle Bunketord
Cin =

I-HBM Projects Over Time

V10

Injury HBM, step 5
Injury HBM, step 4
Injury HBM, step 2 Injury HBM, step 3

1	l						
2010	2012	2014	2016	2018	2020	2022	2024

Introduction to SAFER HBM

$+\frac{2}{4}$

Morphed based on sex, age, height, and weight to represent women and men of various anthropometries
"Omnidirectional", tunable and scalable human body model capable of injury risk and biofidelic kinematics prediction in high-g as well as low-g events".

I-HBM step 4

Research questions: How do the belt interact with the pelvis? How can pelvis and lumbar spine injury risks be predicted for the population of vehicle occupants?

Objective:
Develop and validate pelvis and spine injury prediction capabilities for the morphable human body model SAFER HBM

Duration:
Financer:
Budget:
Partner:
PhDs/ Postdocs:
2019-04-01 to 2023-06-30 (2022-03-31)
FFI Trafiksäkerhet och automatiserade fordon
12.4 Mkr

Autoliv, Volvo Cars, Chalmers, SU
1 PhD student

I-HBM IV Project Content

Development of Statistical Model

Morphable Finite Element Pelvis Model

Morphable based on population shape variance

50th percentile female

50th percentile male

23926 hexahedral solids
10984 quadrilateral shells
318 1-D cable elements

Development of Submarining Prediction Capability

The development version SAFER HBM v10.1.x with the updated pelvis model generally showed agreement with the published experiments, in the validation scenarios

Free-back, mid-abdomen, rigid-bar impact

Pelvis seatbelt loading

Sled test with rigid seat

Sled test with semi-rigid seat

Next step to develop the capability of the model to predict the submarining variability for 50% ile male The SAFER HBM v10.1.x modifications will be included in SAFER HBM V11

Evaluation of Submarining Prediction Capability

SAFER HBM V10.1.x

| Reference | Case | Submarining
 outcome | Submarined in
 simulation? |
| :--- | :--- | :--- | :--- | :--- |
| Luet et al. (2012) | Conf. 1 | 3 of 3 submarined | Yes |
| Luet et al. (2012) | Conf. 2 | 1 of 3 submarined | Yes |
| Luet et al. (2012) | Conf. 3 | 3 of 3 submarined | Yes |
| Uriot et al. (2015b) | Front seat | 0 of 4 submarined | No |

Not Submarining

Licentiate Thesis Presentation 22-04-29

Lumbar Spine Model Development and Validation

The orange arrows show the directions of the displacements applied.

Left: Yamamoto et al. (1989).

Right: Demetropoulos et al. (1998).

The kinematic and kinetic whole lumbar spine validation - showed model predictions were reasonably close to the test results Major deviation for the posterior shear,

Reconstructions of FSU Tests to Create Lumbar Spine Vertebra Fracture Risk Functions

Brinkman et al. (1989), Duma et al. (2006), Granhed et al. (1989), Hutton and Adams (1982), Tushak et al. (2022).

Evaluation of Lumbar Spine Vertebra Fracture Risk Function

 SAFER HBM V10.1.x

Reconstruction of testing with recline subjects
In recline testing 3 out 5 subjects sustained L1 fractures 93\% risk of L1 fracture was predicted

Reconstruction of accident, Volvo V40 - Renault Bipper Volvo driver sustained compression fracture at L5 70\% risk of L5 fracture was predicted

Next Steps and Future Challenges

Cervical spine injury prediction

Sternum fracture prediction

Iliac wing fracture prediction

Thoracic spine injury prediction

织

Autoliv

Thank You

