

Summary of FFI - Pelvis and spine injury predicting models for women and men in a variety of sitting postures in future autonomous cars (I-HBM step 4)

Autoliv: Bengt Pipkorn

Leila Jaber

VCC: Lotta Jakobsson

Katarina Bohman

Jonas Östh

Chalmers: Johan Davidsson

Johan Iraeus

Erik Brynskog (PhD Student)

Sahlgrenska: Olle Bunketorp

I-HBM Projects Over Time V11 V10 V9 V8 Injury HBM, step 5 Injury HBM, step 1 Injury HBM, step 4 Injury HBM, step 2 Injury HBM, step 3 2010 2012 2014 2016 2022 2018 2020 2024

Introduction to SAFER HBM

"Omnidirectional", tunable and scalable human body model capable of injury risk and biofidelic kinematics prediction in high-g as well as low-g events".

Morphed based on sex, age, height, and weight to represent women and men of various anthropometries

I-HBM step 4

Research questions: How do the belt interact with the pelvis?

How can pelvis and lumbar spine injury risks be predicted for the

population of vehicle occupants?

Objective: Develop and validate pelvis and spine injury prediction

capabilities for the morphable human body model SAFER HBM

Duration: 2019-04-01 to 2023-06-30 (2022-03-31)

Financer: FFI Trafiksäkerhet och automatiserade fordon

Budget: 12.4Mkr

Partner: Autoliv, Volvo Cars, Chalmers, SU

PhDs/ Postdocs: 1 PhD student

I-HBM IV Project Content

Development of Statistical Model

Morphable Finite Element Pelvis Model

Morphable based on population shape variance

50th percentile female

50th percentile male

23 926 hexahedral solids 10 984 quadrilateral shells 318 1-D cable elements

Development of Submarining Prediction Capability

The development version SAFER HBM v10.1.x with the updated pelvis model generally showed agreement with the published experiments, in the validation scenarios

Free-back, mid-abdomen, rigid-bar impact

Pelvis seatbelt loading

Sled test with rigid seat

Sled test with semi-rigid seat

Next step to develop the capability of the model to predict the submarining variability for 50%ile male. The SAFER HBM v10.1.x modifications will be included in SAFER HBM V11

Evaluation of Submarining Prediction Capability SAFER HBM V10.1.x

Submarining

Reference	Case	Submarining outcome	Submarined in simulation?
Luet <i>et al</i> . (2012)	Conf. 1	3 of 3 submarined	Yes
Luet <i>et al</i> . (2012)	Conf. 2	1 of 3 submarined	Yes
Luet <i>et al.</i> (2012)	Conf. 3	3 of 3 submarined	Yes
Uriot <i>et al.</i> (2015b)	Front seat	0 of 4 submarined	No
Uriot <i>et al</i> . (2015b)	Rear seat	4 of 4 submarined	Yes

Not Submarining

Licentiate Thesis Presentation 22-04-29

Lumbar Spine Model Development and Validation

The orange arrows show the directions of the displacements applied.

Left: Yamamoto et al. (1989).

Right: Demetropoulos et al. (1998).

Lateral shear

The kinematic and kinetic whole lumbar spine validation - showed model predictions were reasonably close to the test results Major deviation for the posterior shear,

Reconstructions of FSU Tests to Create Lumbar Spine Vertebra Fracture Risk Functions

Evaluation of Lumbar Spine Vertebra Fracture Risk Function SAFER HBM V10.1.x

Reconstruction of testing with recline subjects
In recline testing 3 out 5 subjects sustained L1 fractures
93% risk of L1 fracture was predicted

Reconstruction of accident, Volvo V40 – Renault Bipper Volvo driver sustained compression fracture at L5 70% risk of L5 fracture was predicted

Next Steps and Future Challenges

Cervical spine injury prediction

Thoracic spine injury prediction

Sternum fracture prediction

Iliac wing fracture prediction

Thank You

