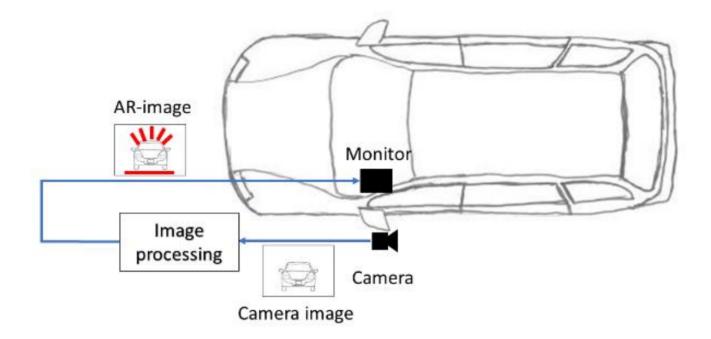


SCREENS


Safe Car Driving with Head Up Displays and Camera Monitor Systems

Augmented Reality Head-Up Display (AR-HUD)

Camera Monitor System (CMS)

Project organization and budget

- Volvo Cars
- RISE Research Institutes of Sweden AB
- Budget: 6 722 067 SEK (från Vinnova 3 329 566 SEK).
- Duration: Start 1st April 2021 and end 31st March 2023

Project goals

Five goals have guided the work:

Objective 1: Methods for performing camera-based measurements on in-car HUDs and CMSs

Objective 2: A practical and verified end-to-end latency measurement method for CMS.

Objective 3: Recommendations on placing extra information in AR-HUD compared to the currently used conventional HUDs.

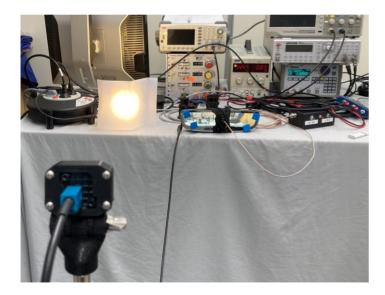
Objective 4: Recommendations with potential use of extended information on how to minimize distance judgment and decision-making error in CMS compared to a traditional analog mirror

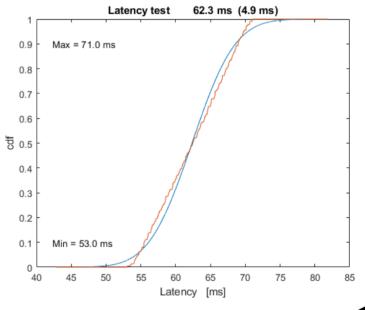
Objective 5: Find a perceptual range for the impact on the visibility of moving objects caused by low temperatures in a CMS, compared to a screen at 20 degrees Celsius.

Project results: Camera-based measurements

High-quality standard digital cameras can replace more expensive and heavier measuring instruments for measurements in vehicles in the field. Here, however, more work is needed to develop a practical calibration method for the digital cameras.

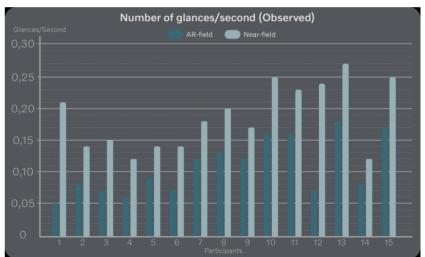
	104.008.038	BM (1973AP)	887 (86 967	100 100 100	1000
14.122 (94)					1.1
				10-10-004	229 (43 844
	644 (ME 664	201 944 844	210 254 468		ANA 252 201
NA 144 146	284 284 284	183 193 193	142 142 142	471 071 0FL	





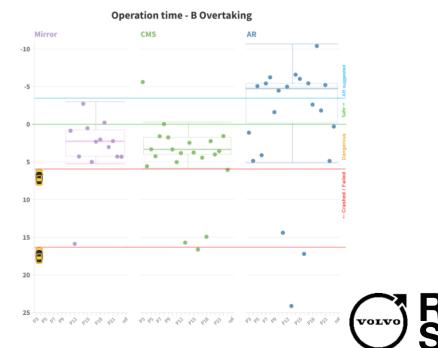
Project results: Latency

Method to measure glass-to-glass latency developed in the project works and gives stable results.



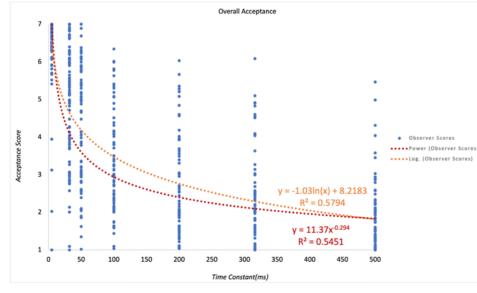
Project results: AR-HUD

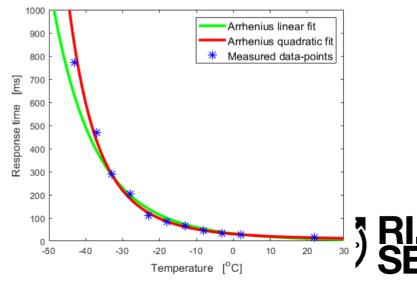
AR-HUD provides positive effects on safety as the drivers keeps their eyes on the road more frequently with AR-HUD compared to conventional HUD.



Project results: CMS

CMS with AR increased driver performances and experiences compared to traditional analogue mirrors and CMS without AR. In contrast, a CMS without AR degraded driving performance compared to traditional analogue mirrors.





Project results: Cold screens

A relationship between behavioural results and simulated temperature-induced image degradation exists. On the basis of this, recommendations for handling screens in cold temperatures in vehicles have been developed.

SCREENS conclusions

- High-quality digital cameras can substitute pricier, bulkier measuring devices for vehicle field measurements.
- Project-developed glass-to-glass latency measurement method yields stable results.
- AR-HUD enhances safety by promoting increased driver focus on the road compared to conventional HUDs.
- AR-enhanced CMS improves driver performance and experience over traditional analogue mirrors and non-AR CMS, whereas non-AR CMS reduces driving performance compared to traditional mirrors.
- A correlation exists between behavioral outcomes and simulated temperatureinduced image degradation. Understanding of critical temperatures obtained.

SCREEN II: Overview

- Safe ChauffeuRs in safe and hEalthy multimodal drivEr information eNvironmentS (SCREENS II)
- Successor of SCREENS which finished March 2023 (RISE and Volvo Cars)
- Overall goal: To develop methods, tools and guidelines as well as knowledge and understanding in creating road-safe and healthy digital information environments for the drivers.
- Three-year project, from 1 Sept. 2023 to 31 Aug. 2026
- Coordinator: RISE
- Partners: Volvo Cars, AB Volvo, Scania, Smart Eye och Optea
- Budget in total 32.6 MSEK and 16.3 MSEK from Vinnova FFI Traffic-safe automation FFI spring 2023

VOLVO

Thank you

