

ICAI

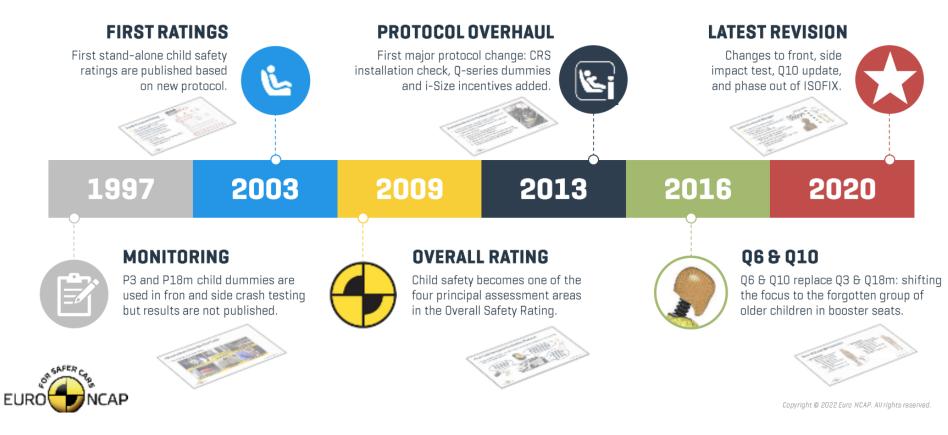
The cervical spine of the PIPER model Child occupant protection: Latest knowledge and future opportunities Göteborg, 31/05/2024 Francisco J. Lopez-Valdes, PhD Manuel Valdano

UNECE R129

E/ECE/324/Rev.2/Add.128/Rev.4 E/ECE/TRANS/505/Rev.2/Add.128/Rev.4

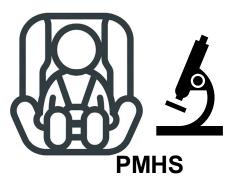
6.6.4.3.1. Injury assessment criteria for frontal and rear impact as in Table 4.

Table 4


Criterion	Abbreviation	Unit	Q0	QI	Q1.5	Q3	Q6	Q10
Head performance criterion (only in case of contact during in-vehicle testing)	HPC* (15)		600	600	600	800	800	800
Head acceleration 3 ms	A head Cum3 ms ***	g	75	75	75	80	80	80
Upper neck tension Force	Fz	N	For monitoring purpose only**					
Upper neck flexion moment	Му	Nm						
Chest acceleration 3 ms	A chest Cum 3 ms ***		55	55	55	55	55	55
Chest deflection	TBC	mm	NA For monitoring purpose only**			e only**		
Abdominal pressure****	Р	Bar	NA	NA	1.2	1.0	1.0	1.2

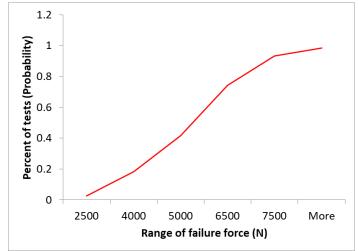
HPC: see Annex 17.

** To be reviewed within 3 years following entry into force of the series 01 of this Regulation.

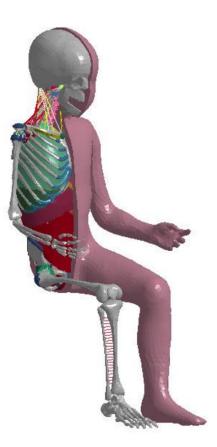


EuroNCAP

EuroNCAP proposes a 1.7-2.6 kN (Q6) for neck tension but... child dummies may have biofidelity issues and a lack of injury criteria and thresholds


How injury criteria are created?

(Post Mortem Human Subjects) experiments


How injury criteria are created?

Only **15 pediatric PMHS** have been ever performed and most of them in the 1970s, with **restraint systems and instrumentation very different** from what is relevant today

The PIPER pediatric HBM

- Presented in 2015, EU funded project
- <u>Scalable</u> child HBM: 18 months to 6YO and older
- Baseline: 6 YO, anthropometry based on GEBOD regressions, 23 kg, 1146 mm
 - Skin and external shape based on UMTRI models
 - 353 parts, 531,000 elements
- Integrated with the PIPER positioning tool
- Freely available, <u>modifications need to be</u> <u>shared publicly</u> under the current license
- Defined sensors to compare readings with Qdummy outputs

The PIPER pediatric HBM

Set	Published Study	ROI	Dir	Impactor/loading	loading Subjects and ages		Target model and version	
	Loyd (2011)	Head		Drop test (dyn)	PMHS	9	6	0.3
	Loyd (2011)	Head		Compression (dyn)	PMHS	9	6	0.3
	Ouyang et al. (2005)	Neck		Bending+tensile	PMHS	6	6	0.3
	Ouyang et al. (2005)	Neck		Bending+tensile	PMHS	3	3	0.3
	EEVC Q (2008)	Shoulder	Side	Pendulum, free back (dyn) Scaled	PMHS	Adult	6	0.202
	Ouyang et al (2006)	Thorax	Frontal	Pendulum, free back (dyn)	PMHS	6+	6	0.202
	Kent et al (2011)	Thorax	Frontal	Belt distributed, fixed back (dyn)	PMHS	6 & 7	6	0.202
	Kent et al (2011)	Thorax	Frontal	Belt diagonal, fixed back (dyn)	PMHS	6&7	6	0.202
1 -	EEVC Q (2008)	Abdo	Frontal	Belt, fixed back Scaled corr.	Porcine	6	6	0.202
	Kent et al (2011)	Abdo	Frontal	Belt mid abdo, fixed back (dyn)	PMHS	6 & 7	6	0.202
	Kent et al (2011)	Abdo	Frontal	Belt upper abdo, fixed back	PMHS	6&7	6	0.202
	Part 572	Lumbar	Frontal	Torso flexion (static)	HIII	6	6	0.202
	Ouyang et al (2003a)	Pelvis	Side	Pendulum, free back (dyn)	PMHS	various	6	0.202
	Ouyang et al. (2003b)	Femur		Bending test	PMHS			0.301
	Wismans et al (1979)	WB neck	Frontal	Sled test, harness (4 YO anthro)	PMHS	6	6	0.3
-	Kallieris et al (1976)	WB	Frontal	Sled test with shield	PMHS	2.5, 6		*
	Lopez et al (2011)	WB spine	Frontal	Sled test with belt (dyn)	Volunteer		6	*
	Arbogast et al (2009)	WB neck	Frontal	Sled test, 3pt belt	Volunteer	6+	6	*



The PIPER pediatric HBM

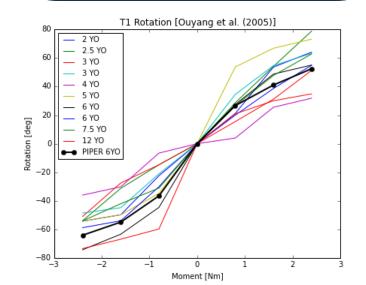
Head impacts (Lloyd, 2011)

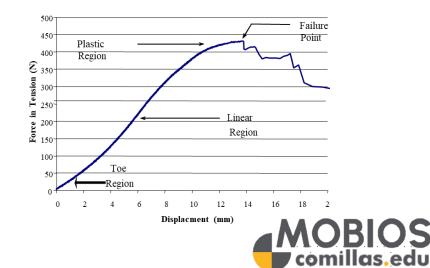
Cervical flexion (Ouyang et al, 2005)

Ouyang et al. 2005

SPINE Volume 30, Number 24, pp E716–E723 ©2005, Lippincott Williams & Wilkins, Inc.

Biomechanical Assessment of the Pediatric Cervical Spine Under Bending and Tensile Loading


Test	Subject	Age (yr)	Sex	Weight (kg)	Stature (cm)	Cause of Death	
ECad1	Child0	~5	М	13	91.3	Unknown	
CCad1	Child1	12	F	29	142.5	Leukemia	
CCad2	Child3	3	F	10.5	85.0	Heart disease	
CCad3	Child11	6	М	20	109.0	Mediterranean edema	
CCad4	Child4	2	F	13	97.0	Fluoracetamide poisoning	
CCad5	Child5	2.5	М	10.5	87.5	Cerebral edema	
Ccad6	Child6	3	М	13.5	93.0	Brain tumor	
Ccad7	Child2	7.5	F	17	117.0	Acute urinaemia	
Ccad8	Child10	6	М	16.5	108.0	Leukemia	
Ccad9	Child9	5	М	13	101.0	Cerebritis	
Ccad10	Child7	3	М	10	91.0	Congenital heart disease	
Ccad11	Child8	4	М	14	109.0	Congenital heart disease	
Ccad12	Child12	12	F	20	140.0	Congenital heart disease	


Jun Ouyang, PhD,* Qingan Zhu, PhD,* Weidong Zhao, BS,* Yongqing Xu, PhD,† Weisheng Chen, MS, \ddagger and Shizhen Zhong, MD*

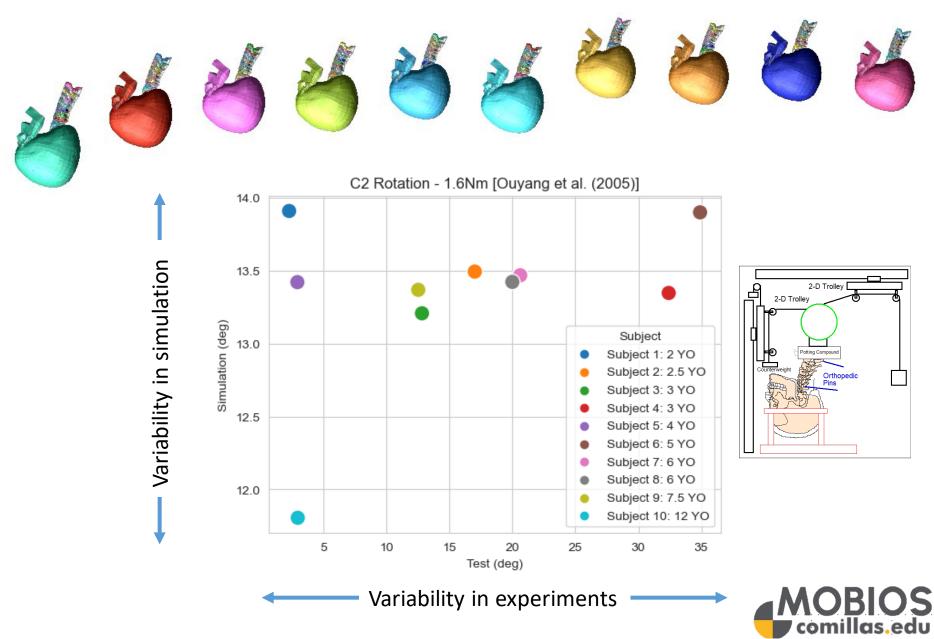
Ouyang et al. 2005: 2 types of tests

Bending tests (non-injurious): Moment (Nm) vs. Rotation (deg) Tensile tests (injurious): Force (N) vs. Displacement (mm)

Can the PIPER model be updated so that its mechanical response reflects more accurately the response of each of the pediatric PMHS?

Method

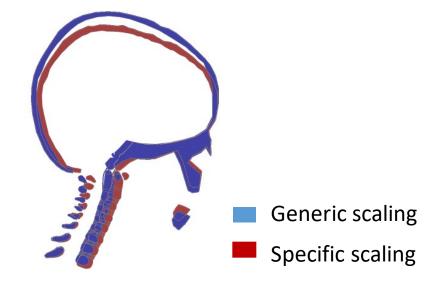
Use the PIPER scaling tool to scale the PIPER model to the anthropometry of the pediatric PMHS

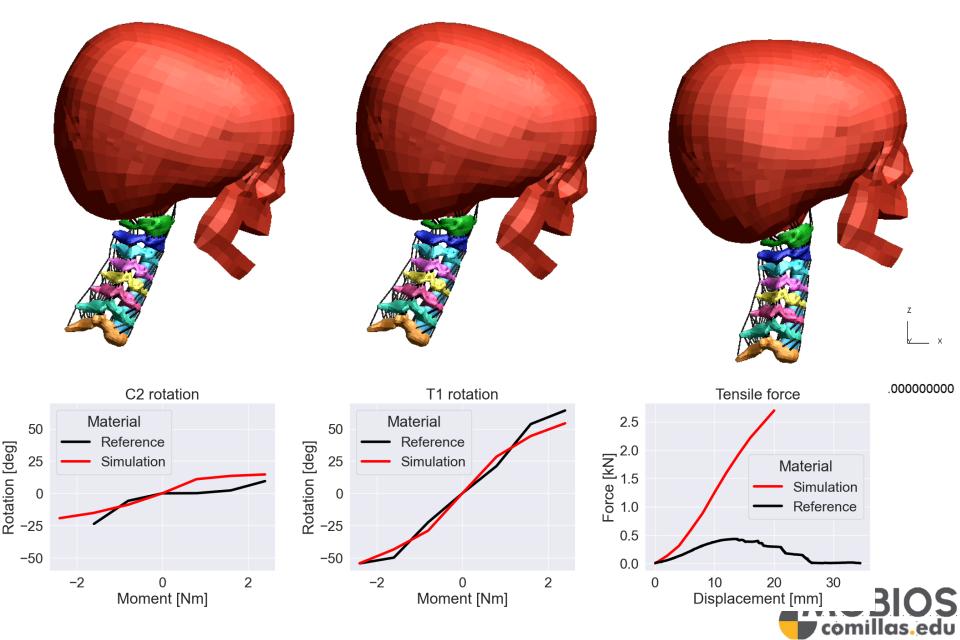

T1 Rotation [Ouyang et al. (2005)] 2 YO 2.5 YO 60 3 YO 3 YO 4 YO 5 YO 6 YO 20 6 YO Rotation [deg] 7.5 YO 12 YO PIPER 6YO -20 -40 -60 -80 L -3 -2 $^{-1}$ 0 1 2 Moment [Nm]

З

Compare response of scaled PIPER to original pediatric PMHS

las.edu


Results


Can the PIPER model be updated so that its mechanical response reflects more accurately the response of each of the pediatric PMHS?

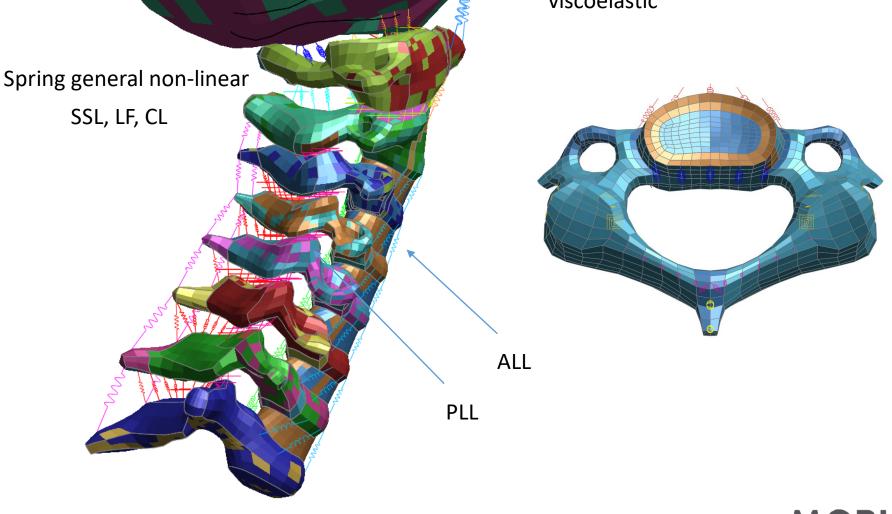
Perhaps, a more detailed scaling of the anthropometry of the pediatric PMHS can improve the result?

Results

Can the PIPER model be updated so that its mechanical response reflects more accurately the response of each of the pediatric PMHS?

Perhaps, a more detailed scaling of the anthropometry of the pediatric PMHS can improve the result?

Perhaps, we can find a better description of the mechanical properties of the tissues of the cervical spine that improve the response of the model?

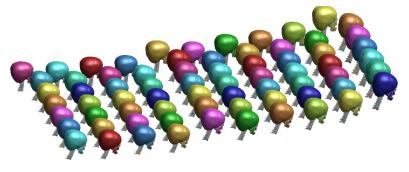

Methods

Intervertebral disc:

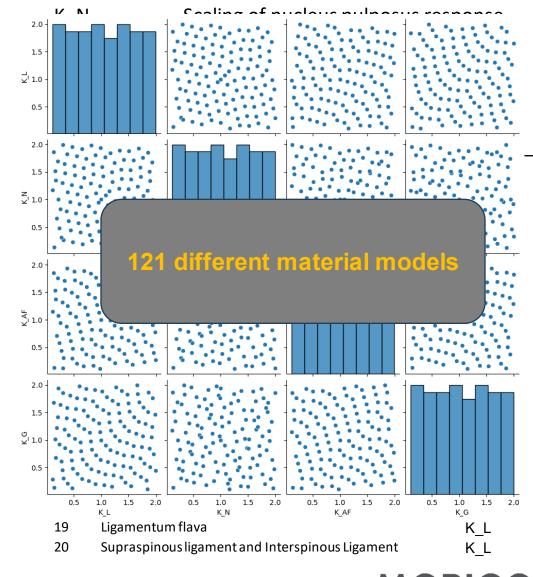
• Nucleos pulposus (3D), Mooney-Rivlin

comillas.edu

- Annulus fibrosus (2D), Fabric
- Ground substance (3D), General viscoelastic

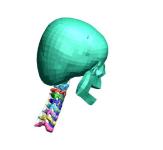

Methods

13	
200 - C	


Not optimizing the material properties for one subject...

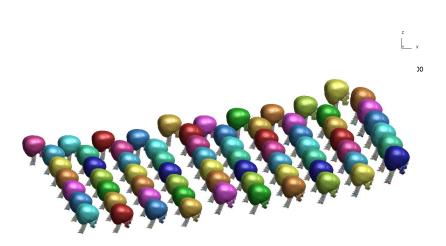
But finding a relationship that could account for how these material properties evolve with age...

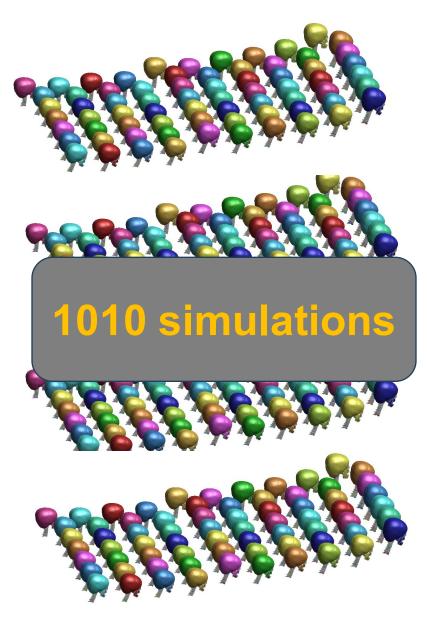
For both the bending and tensile experiments at the same time


Parameter	Description	
K_L	Scaling of ligament response	

DRI

llas.edu


Methods



Ĺ.x

D3PLOT:

♀ ♀ ♀ ? ? ? ?

Goal

Can the PIPER model be updated so that its mechanical response reflects more accurately the response of each of the pediatric PMHS?

Perhaps, a more detailed scaling of the anthropometry of the pediatric PMHS can improve the result?

Perhaps, we can find a better description of the mechanical properties of the tissues of the cervical spine that improve the response of the model?

Shall we try other material models for the components of the cervical spine?

Summary

- The current PIPER neck model is optimized to represent rotation within the physiological range, but it is too stiff to represent correctly tensile forces (Fz).
- The material models used to described the behavior of the cervical structures can be modified to improve its response under tensile forces.
- This work is still ongoing, but preliminary results are encouraging.

Acknowledgment

This work has been funded by Inglesina S.p.A. The opinions expressed here are exclusively those of the authors and do not necessarily represent the position of the funding institution.

Ministero dello sviluppo economico

