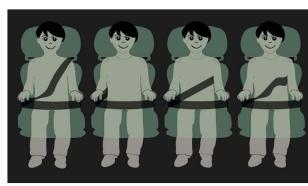
A NOVEL METHOD FOR QUANITIFYING COMFORT IN CHILD PASSENGERS

Julie Brown



INJURY PREVENTION

Types of errors

- Errors in way restraint installed in car
- Errors in way child secured within restraint
 - When parent/adults secure child within the restraint
 - When child interacts with the restraint during journey
 - May be related to comfort¹⁻³
 - Poor restraint fit may cause discomfort → errors in use⁴

Examples of errors in use of a booster seat introduced by a child during a journey

¹Klinich KD et al. 38th STAPP Car Crash Conference, 1994:245–258

²Simpson EM, et al. *Pediatrics*. 2002;110(4):729–736

³Osvalder A-L, et al. IRCOBI 2013.

⁴Bohman K, et al *Proceedings of the 20th International Technical Conference of the Enhanced Safety of Vehicles, Paris.*; 2007

 To date no quantitative study of relationship between comfort and errors in use

But how do we study comfort of children in cars?

Comfort

- Often considered in design of adult car systems
- Many studies in the literature related to;
 - Vehicle seats e.g¹⁻⁴
 - Seat belts e.g⁵⁻⁶
- Methods used include surveys, questionnaires and pressures measurements
 - validated methods for studying adult comfort?

¹Gyi DE & Porter JM Applied Ergonomics 1999;30(2):99-107

²Kolich M & Tabourn SM Journal of Occupational Safety and Ergonomics 2002;8(4):483-496

³Kolich M & Tabourn SM *Applied Ergonomics 2004;47(8):841-863*.

⁴Chae S et al International Conference of Design, User Experience and Usability 2011:368-375

⁵ Balci R et al *Human factors in Automotive Design 201:53-59*

⁶ Chen L et al Human factors in driving, seating and vision 2003;(SP-1772):131-182

Methods used measure comfort of adults in cars

- Surveys/Questionnaires
 - Automotive Seating Discomfort
 Questionnaire (ASDQ)¹
 - Automotive Seating Comfort Survey²
 - Body Part Discomfort Chart³

Pressure mapping

Mixed reports in the literature about how well these measures correlate.

¹Smith et al , *International Journal of Industrial Ergonomics* 2006;36(2):141–149..

²Kolich, *SAE Technical Paper*. 1999.

³Gyi and Porter Applied Ergonomics. 1999;30(2):99–107.

Methods used measure comfort of adults in cars

Surveys/Questionnaires

 \longleftrightarrow

Actual comfort?

- Automotive Seating Discomfort
 Questionnaire (ASDQ)¹
- Automotive Seating Comfort Survey²
- Body Part Discomfort Chart³

Pressure mapping

Actual comfort?

¹Smith et al , *International Journal of Industrial Ergonomics* 2006;36(2):141–149...

²Kolich, *SAE Technical Paper*. 1999.

³Gyi and Porter Applied Ergonomics. 1999;30(2):99–107.

Methods used measure comfort of adults in cars Sensitive to cha

Surveys/Questionnaires

- Automotive Seating Discomfort Questionnaire (ASDQ)¹
- Automotive Seating Comfort Survey²
- Body Part Discomfort Chart³

Pressure mapping

Sensitive to changes in seating condition?

Actual comfort?

Sensitive to changes in seating condition?

Actual comfort?

¹Smith et al, International Journal of Industrial Ergonomics 2006;36(2):141–149..

²Kolich, *SAE Technical Paper*. 1999.

³Gyi and Porter Applied Ergonomics. 1999;30(2):99–107.

Variations in seating condition

- Seating rig to control 'comfortable' and 'uncomfortable' seating positions
- A well-fitting chair requires both a seat height between 88% and 95% of a student's popliteal height and a depth of between 80% and 95% of the students' buttock-popliteal length¹ → COMFORTABLE

¹ Parcells C, et al Journal of Adolescent Health 1999;24(4):265-273

Methods used measure comfort of children in cars

- Surveys/Questionnaires used previously for comfort¹⁻² (& pain³⁻⁶)
 - But difficulties obtaining useful self report responses from children from some researchers¹, ³⁻⁶
- Pressure mapping not previously used
 - But pressure variations an issue in anthropometric mismatch between children & seating conditions⁷
- Video not previously used for comfort
 - But used to study other child behaviour in cars e.g. posture^{1-2, 8}

Video observation methods

- Observation of behaviour & facial expression used in pain measurement
 - Particularly when children too young to provide/understand self report measures¹
- Video method used previously to study comfort in high chairs
 - A count of 'fidgeting and stabilisation' used to measure comfort with and without a footrest²

¹von Bayer CL et al, *Pain 2007;127(1-2):140-150*

²Harper et al Ergonomic evaluation of the KinderZeat Child seat in a preschool setting. Class Project Report 2002:1-18 available at

- Discomfort Avoidance Behaviour (DAB) Score
 - Inspired by previous work counting fidgeting and stabilisation movements to measure comfort in high chairs¹
 - Discomfort avoidance behaviours e.g.
 - stretching of neck
 - stretching of back
 - shifting weight
 - leaning forward/backwards or to either side
 - interacting with the sash belt
 - kicking or moving of the legs.

¹ Harper K, et al. Ergonomic Evaluation of the KinderZeat Child Seat in a Preschool Setting. *Class Project Report*. 2002:1–18.

Aims and Objectives

- 1. To examine reliability & sensitivity of potential measures of comfort in children aged 4-8 years
 - Survey/questionnaires
 - Pressure mapping
 - DAB method
- 2. To examine relationship between comfort measured using DAB method and errors in use of booster seats.

Methods

Part 1: Examined reliability and sensitivity of comfort measures (14 children)

 age mean=5.4 years, height mean=116.1cm, weight mean =20.4kg,

Part 2: Examined the association between DAB and observed errors (Jan 2015-Oct 2016, 15 children)

 age mean=5.6 years, height mean=119cm, weight mean =21.9kg,

Participants

 Parents/guardians & their children aged 4-8 years

Parents were >18,
 Australian residents,
 routinely transported
 their child in a car

Comfort measures compared across 4 seating conditions;

- 1. Fit comfortable baseline
- 2. Fit +footrest comfortable enhanced
- 3. Seatbelt high uncomfortable
- 4. Long cushion uncomfortable

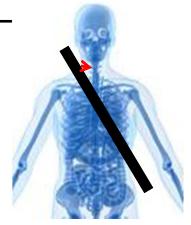
Seating conditions

- Fit comfortable baseline
- 2. Fit +footrest comfortable enhanced

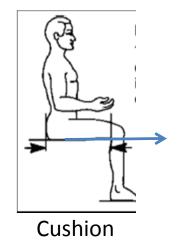


Seating conditions

- Fit comfortable baseline
- 2. Fit +footrest comfortable enhanced


3. Seatbelt high – uncomfortable

Seating conditions

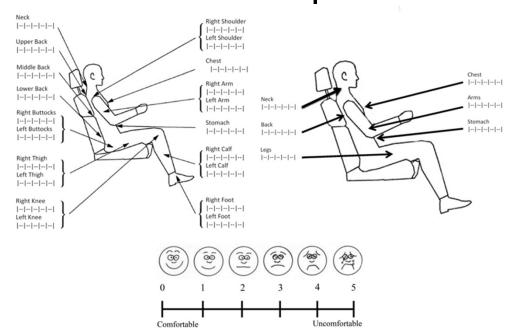

- 1. Fit comfortable baseline
- 2. Fit +footrest comfortable enhanced

3. Seatbelt high – uncomfortable

10cm > BPL

4. Long cushion - uncomfortable

Procedure


- Measured stature, weight & buttock-topopliteal length
- Children correctly restrained in each seating position (10mins)
- Survey administered by research at end of 10mins while child still seated

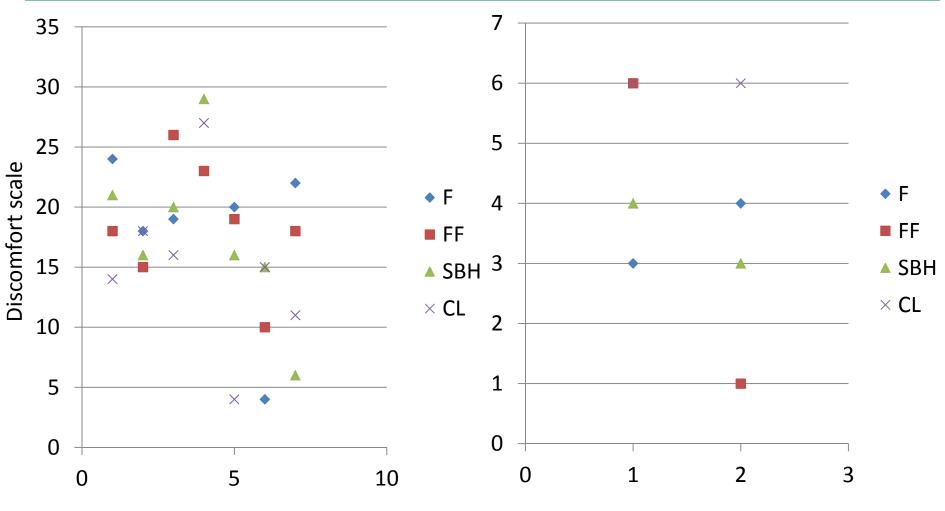
- 10 min break between trials
- Seating positions randomly ordered
- Child watch TV program of their choice
- Watched 15 inch screen just below eye height, an arms length in front of child

Methods –Part 1: Reliability & Sensitivity - Surveys

- 2 different tools
 - 20 point comfort/discomfort scale^{1 (}10 children)
 - 6 point comfort/discomfort scale (4 children)
- Both used a modified FACES pain scale²⁻³

¹Gyi and Porter 1999

²Wong and Baker 1988


³Borgers et al, 2000, 2004

Subje	ct	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	F	24	18	19	23	0	0	20	4	22	0	-	-	-	-
	FF	18	15	26	23	1	0	19	10	18	2	-	-	-	-
20- point	SB H	21	16	20	29	0	0	16	15	6	2	-	-	-	-
score	CL	14	18	16	27	8	0	4	15	11	4	-	-	-	-
	NS F	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6-point score	F	-	-	-	-	-	-	-	-	-	-	3	0	0	4
	FF	-	-	-	-	-	-	-	-	-	-	6	0	0	1
	SB H	-	-	-	-	-	-	-	-	-	-	4	0	0	3
	CL	-	-	-	-	-	-	-	-	-	-	6	0	0	6
	NS F	-	-	-	-	-	-	-	-	-	-	0	0	0	2

Results –Part 1: Reliability & Sensitivity - Surveys

Participant number, 20 point scale

Participant number, 6 point scale

Results –Part 1: Reliability & Sensitivity - Surveys

- Neither sensitive to changes in seating condition
- Mean differences between conditions very small
- No statistically significant difference

Methods –Part 1: Reliability & Sensitivity – Pressure mapping

- Tekscan system (5330 CONFORMat)
- Measured for full 10 min duration
- One mat on seat back & one mat on seat cushion
- Measured
 - Change in centre of force (ΔCOF)
 - Peak pressure (PP)
 - Average contact area (μCA)

Results –Part 1: Reliability & Sensitivity – Pressure mapping

- Some measures were sensitive to some changes in seating condition
- A number of technical difficulties using mats
 - Consistent mat placement for changing cushion length
 - Difficult optimising sensitivity

Condition	ΔCOF	μCΑ	PP
Fit + Footrest	0.03	0.01	0.77
Fit - Seatbelt High	0.28	0.10	0.67
Fit - Cushion Long	0.66	0.00	0.81

Significance (paired sample t-test) Seat cushion

Condition	ΔCOF	μCΑ	PP
Fit + Footrest	0.28	0.97	0.92
Fit - Seatbelt High	0.74	0.78	0.56
Fit - Cushion Long	0.50	0.02	0.40

Significance (paired sample t-test) Seat back

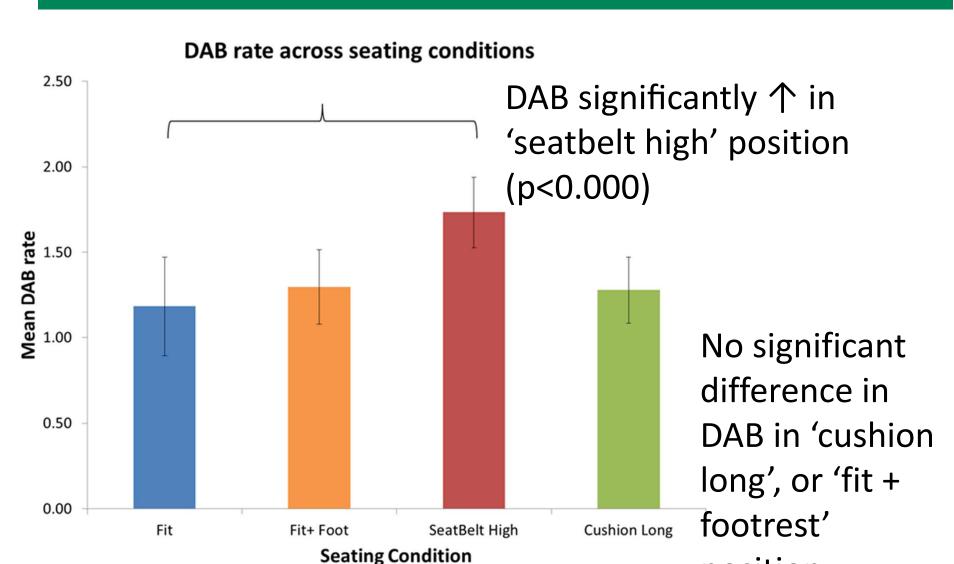
- Children filmed in each seating position (10mins)
- 10 min break between trials
- Seating positions randomly ordered

- Video viewed and DAB scored
- 9/14 were scored by two people

Total Discomfort

Avoidance Behaviour

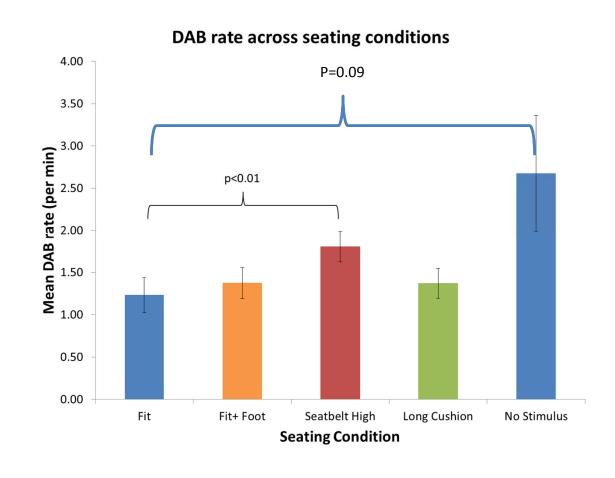
Instances


DAB = Video Longth

Video Length (Minutes)

position

Results- Part 1: Reliability & Sensitivity



Methods –Part 1: Reliability & Sensitivity - stimulus

- 4 trials

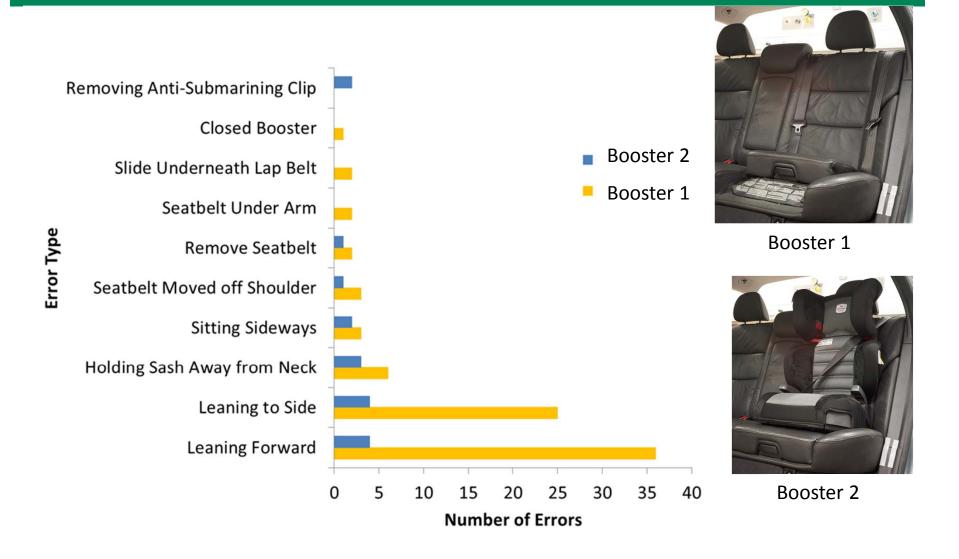
 undertaken
 with video
 stimulus
 removed
- Fit condition minus the video

Methods –Part 2: DAB & Errors in use

Booster 1: Low back integrated booster

Volvo V50 test buck

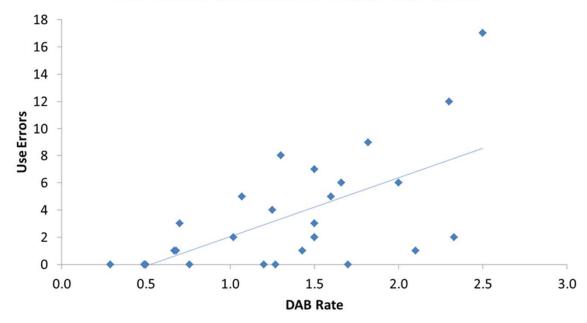
Booster 2: High back add-on booster



Methods –Part 2: DAB & Errors in use

- Child restrained in each booster for 10 mins with 10 min break between
- Child video recorded
- Video viewed and DAB scored
- 5/15 scored by 2nd rater

Results- Part 2:DAB & Errors in use



Results- Part 2:DAB & Errors in use

- General estimating equations to conduct linear regression
- Increases in DAB were correlated with increases in childinduced errors
- Significant even when controlling for restraint type, age & height
- ICC remained high

Correlation between DAB and Use Errors

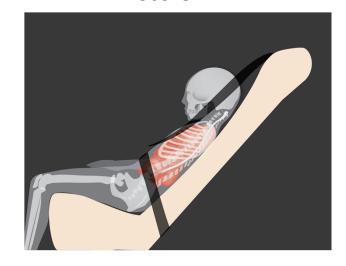
Errors in use =3.89*DAB -2.18, p<0.0001

Also significant relationships between errors and;

- Restraint type, p=0.002
- Height, p= 0.045

Main findings

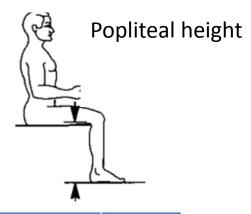
- DAB score was sensitive to discomfort induced by changes in shoulder belt position
- DAB score appears reliable between different raters
- As discomfort 个 (as measured by DAB), number of child-induced errors 个
- Comfort experienced by children is important for correct use of restraints



Discussion – DAB Score

- Sensitivity trials assumed comfort is maximised by a good ergonomic match based on work by Parcels et al¹
- Limitation of DAB
- Maybe improved by including time out of position and/or some posture score

DAB Score=1

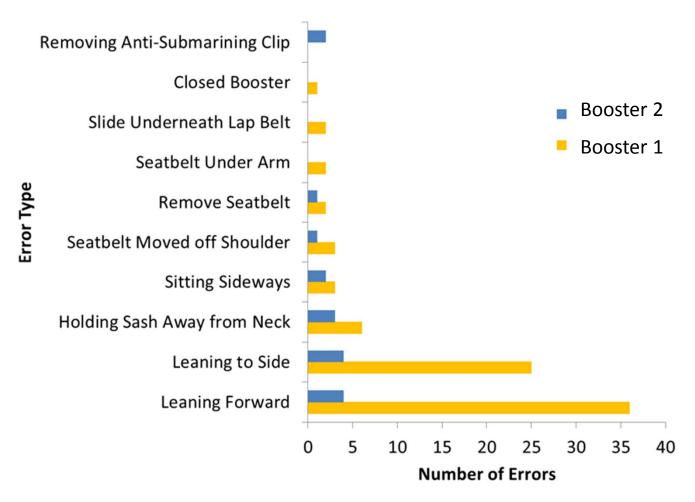


¹ Parcells C, et al Journal of Adolescent Health. 1999;24(4):265–273

Discussion – DAB Score

- Expected DAB ↓ with 'footrest'
- "a seat height between 88% and 95% of a student's popliteal height"¹
- We allowed child to choose
- Didn't control well
- But did see a difference in ΔCOF

Condition	ΔCOF			
Fit + Footrest	0.03			



¹ Parcells C, et al Journal of Adolescent Health. 1999;24(4):265–273

Discussion – DAB & Errors in Use

Order was not randomised, all sat for 10mins in Booster 2, then 10 mins in Booster 1

Caution against drawing conclusions about higher propensity for errors in Booster 1

Limitations

- Some extreme motions counted in DAB & as error
- May have artificially strengthened association between DAB & errors

Limitations

- Some extreme motions counted in DAB & as error
- May have artificially strengthened association between DAB & errors

- Work conducted in laboratory environments
- Needs to be repeated in naturalistic study

Limitations

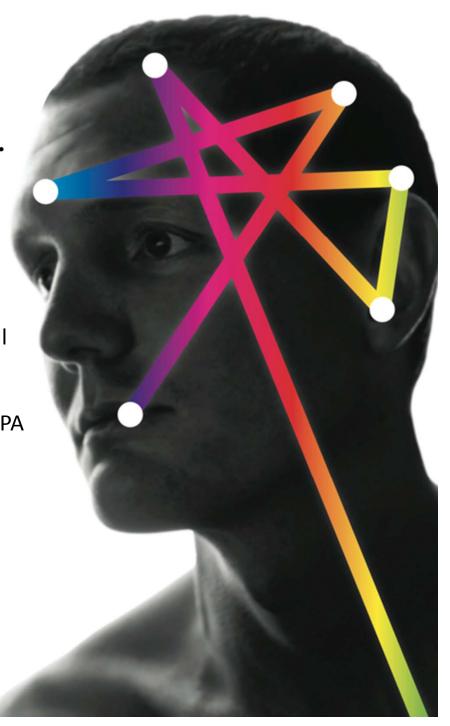
- Some extreme motions counted in DAB & as error
- May have artificially strengthened association between DAB & errors

- Did not account for individual behaviour differences in children
- No problem with repeated measures design
- Using DAB in other study designs may need to account for differences

- Work conducted in laboratory environments
- Needs to be repeated in naturalistic study

Summary

- DAB score is sensitive to changes in comfort
- Further refinement of DAB may be required
- DAB easier to use than other methods
- Comfort appears likely to be important for minimising child induced errors in use
- Further work being conducted to confirm observations in a naturalistic environment



INJURY PREVENTION

Acknowledgements

- Co-authors
 - Cameron Fong, Lynne Bilston, Gunther Paul
- Funding
 - NSW Centre for Road Safety
 - CF supported by Australian Government APA Scholarship & NeuRA top-up scholarships
 - JB & LB supported by National Health & Medical Research Council Fellowships

neura.edu.au

