Characterizing and Monitoring Children in Vehicles

> Matthew P. Reed B-K Daniel Park

UNIVERSITY OF MICHIGAN

"Normally Positioned" Children?

- Most restraint system testing assumes normally positioned children:
 - Symmetrical posture
 - Torso against seat back
 - Belt well positioned
- Field and experimental data show other postures are common:
 - Normally riding postures vary widely
 - Crash-avoidance maneuvers affect postures

Stockman 2016

Long-Term Objectives

- 1. Develop research tools for quantifying occupant behaviors in vehicles
 - \rightarrow extended duration, automated data collection and reduction
 - \rightarrow "good" accuracy and precision
- 2. Develop and deploy production systems to characterize and monitor occupants
 - \rightarrow adapt restraint systems for occupant characteristics and posture
 - \rightarrow intervene to improve occupant pre-crash posture
 - → Modulate automated vehicle performance based on occupant factors, including during pre-crash manevers

Body Shape Measurement and Modeling

http://humanshape.org/

Laser Scanner

Sample Scans

Body Shape Models

Park, B-K and Reed, M.P. (2015). Parametric body shape model of standing children ages 3 to 11 years. *Ergonomics*, 58(10):1714-1725. 10.1080/00140139.2015.1033480

Seated Child Body Shape Model

Based on laser scans from 140 children ages 3 to 11 years

Park, B-K D., Ebert, S., and Reed, M.P. (2017). A parametric model of child body shape in seated postures. Traffic Injury Prevention. 18(5):533-536

Child Scanning With Microsoft Kinect Sensor (Xbox)

Park, B-K, Lumeng, J.C., Lumeng, C.N., Ebert, S.M., and Reed, M.P. (2014). Child body shape measurement using depth cameras and a statistical body shape model. *Ergonomics*, 58(2):301-309. 10.1080/00140139.2014.965754

Scanning Subject: Kinect V2

- Simple hardware configuration for scanning: 1 sensor + 1 laptop
- Takes 3 scans of individual from 3 views (front, side and back)

Inscribed Fitting Methods

Fit body shape model inside scan data to estimate body size and shape under clothing

Gender: 0.48 AgeAfTesting: 8.39 Weightkg: 30.22 Stature: 1307.86 ErectSittingHeight: 690.42 SHS: 0.53 BMI: 17.23 EyeHeight: 609.64 AcromialHeight: 430.25 KneeHeight: 407.78 TragionToTopOfHead: 124.50 HeadLength: 180.96 HeadBreadth: 145.96 Shoulder-ElbowLength: 270.69 Elbow-HandLength: 347.79 MaxHipBreadth: 253.15 Buttock-KneeLength: 441.18 Buttock-PoplitealLength: 370.20 BiacromialBreadth: 271.22 ShoulderBreadth: 326.03 ChestDepth(Scapula): 166.28 ChestDepth(Spine): 146.71 BIASISBreadth: 170.96 ChestCircumference: 670.44 WalstCircumference: 617.58 HipCircumference: 733.50 UpperThighCircumference: 414.99

Seated Posture Fitting with Kinect v2

- Only frontal torso part of the model is fitted to target Kinect depth data
- Corresponding vertex pairs are found using an iterative closest point (ICP) technique

Fitting Procedure Schematic

Seated Posture Fitting with Kinect v2 (Pilot)

- Fitted manikins were compared to the measured actual anthropometric data and laser scans
- Stature estimated from the Kinect-fitted models was the most accurately predicted variable (Pearson correlation coefficient of 0.89 and RSME of 57.6 mm).
- The BMI and weight were estimated somewhat higher than the true values.
- RMSE for six participants was 23.6 mm, and the Pearson correlation coefficient was 0.964.

Park, B-K.D. and Reed, M.P. (2017). Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model. SAE Technical Paper 2017-01-0497. SAE International, Warrendale, PA

Tracking Motions in Dynamic Events

Head Tracking

- Accurately track head orientation and location by fitting a head model to depth data
- The fitting method can be further improved by detecting facial features, i.e., nose tip
- Speed will be enhanced by analyzing frames in sequence and through kinematic prediction

Subject-specific head model fitting

Sensor View

64k RGB-D data (3d with color)

Child Postures

Child Postures

Frames from 30 Hz capture of RGB-D data (3d with color) Background removed

What Can We Do?

How can we use this information?

- occupant characterization for restraint system optimization
- dynamic pre-crash restraint adjustment
- Provide feedback to occupants on posture and belt fit
- Modify vehicle dynamics

Acknowledgments

CChIPS | Center for Child Injury Prevention Studies

Sheila Ebert, Laura Malik, Monica Jones, K. Han Kim, Brian Eby, Kyle Boyle, Carl Miller

Child Postures

Kinect v2

- Specification of Kinect v2 sensor (vs. v1)
- Depth data resolution: 512 x 424 pixels (vs. 320 x 240)
- FOV: 70 x 60 degrees (vs. 58 x 46 deg.)
- Nominal tracking rate: 30 Hz (vs. 30 Hz)

HumanShape.org

Portable Body Scanner using Kinect v2

Four steps to generate a subject-specific avatar

Scanning Subject: Kinect V2

- Simple hardware configuration for scanning: 1 sensor + 1 laptop
- Takes 3 scans of individual from 3 views (front, side and back)

Hardware configuration for scanning

DEMO

Application: Rapid Body Dimension Measurement

The model can be fitted to:

- 3D depth image
- 2D image
- Scan with clothing

Gender: 0.48 AgeAtTesting: 8.39 Weightkg: 30.22 Stature: 1307.86 ErectSittingHeight: 690.42 SHS: 0.53 BMI: 17.23 EyeHeight: 609.64 AcromialHeight: 430.25 KneeHeight: 407.78 TragionToTopOfHead: 124.50 HeadLength: 180.96 HeadBreadth: 145.96 Shoulder-ElbowLength: 270.69 Elbow-HandLength: 347.79 MaxHipBreadth: 253.15 Buttock-KneeLength: 441.18 Buttock-PoplitealLength: 370.20 BlacromialBreadth: 271.22 ShoulderBreadth: 326.03 ChestDepth(Scapula): 166.28 ChestDepth(Spine): 146.71 BIASISBreadth: 170.96 ChestCircumference: 670.44 WalstCircumference: 617.58 HipCircumference: 733.50 UpperThighCircumference: 414.99

Body Dimension Estimates (minimally clad)

M UMTRI

Park, B-K and Reed, M.P. (2015). Parametric body shape model of standing children ages 3 to 11 years. *Ergonomics*, 58(10):1714-1725. 10.1080/00140139.2015.1033480

Fitting Demo

Adults

ENC level: mean 11.6 mm, 95th %tile 16.5 mm, RMSE 12.0 mm

Markerless-motion capture

Strategy for obtaining quality motion data

Background Subtraction

- Subtract background depth data to obtain depth related to the subject only
- Use multiple background images to reduce noise

Kinect Joint Data

Reconstructed Kinect skeleton data are applied to the model

BioHuman Articulated Model and Kinect Joint Data

Model Fitting using Articulated ICP: Correspondences

K-d tree algorithm was used to rapidly find the correspondences of the depth points for each body segment

Model Fitting using Articulated ICP: ICP

Iterative closest point (ICP) algorithm finds the best transformation to align each segment to the corresponding depth point group

Model Fitting using Articulated ICP: Fine Adjustment

Apply fitted transformation matrices to all the body segments

Results

