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Abstract
Objective: Thoracic trauma is one of the most common and lethal types of 
injury, causing over a quarter of traumatic deaths. Severe thoracic injuries are 
often occult and difficult to diagnose in the field. There is a need for a point-
of-care diagnostic device for severe thoracic injuries in the prehospital setting. 
Electrical bioimpedance (EBI) is non-invasive, portable, rapid and easy to use 
technology that can provide objective and quantitative diagnostic information 
for the prehospital environment. Here, we evaluated the performance of EBI 
to detect thoracic injuries. Approach: In this open study, EBI resistance (R), 
reactance (X) and phase angle (PA) of both sides of the thorax were measured 
at 50 kHz on patients suffering from thoracic injuries (n  =  20). In parallel, 
a control group consisting of healthy subjects (n  =  20) was recruited. A 
diagnostic mathematical algorithm, fed with input parameters derived from 
EBI data, was designed to differentiate patients from healthy controls. Main 
results: Ratios between the X and PA measurements of both sides of the 
thorax were significantly different (p  <  0.05) between healthy volunteers 
and patients with left- and right-sided injuries. The diagnostic algorithm 
achieved a performance evaluated by leave-one-out cross-validation analysis 
and derived area under the receiver operating characteristic curve of 0.88. 
Significance: A diagnostic algorithm that accurately discriminates between 
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patients suffering thoracic injuries and healthy subjects was designed using 
EBI technology. A larger, prospective and blinded study is thus warranted to 
validate the feasibility of EBI technology as a prehospital tool.

Keywords: bioimpedance, thoracic injuries, prehospital care, diagnostics, 
trauma, injury prevention

(Some figures may appear in colour only in the online journal)

1. Introduction

Ten percent of worldwide deaths (approximately five millions per year) are caused by trauma 
(Lozano et al 2012). Injury also accounts for 10% of the global burden of disease as measured 
in disability-adjusted life years (DALY), causing 250 million DALY in 2013 (Haagsma et al 
2016). Death from transport injury is most common (1.48 million per year), followed by 
intentional injury (interpersonal violence and self-harm, 1.25 million) and falls (0.56 mil-
lion) (Haagsma et al 2016). The number of potentially preventable prehospital deaths is high 
(Oliver et al 2017). To mitigate the injury outcome for trauma casualties, it is essential to 
provide adequate medical treatment with minimal delay after incident. A key to achieve this is 
to make an accurate diagnosis at the prehospital stage, typically on-scene or in the ambulance, 
so that patients can have time-critical interventions immediately performed and be transported 
directly to the most suitable medical facility.

For severely injured patients treated at a trauma center the risk of death is reduced by 25% 
as compared to treatment at a non-trauma center (MacKenzie et al 2006). Delayed care at a 
trauma center due to transfer from a non-trauma center is associated with increased mortality 
of 25% (Haas et al 2010). Unfortunately, many patients with severe injuries receive defini-
tive care at non-trauma centers, or reach a trauma center via secondary transfer causing long 
delays of treatment (Leach et al 2007, Xiang et al 2014, Candefjord et al 2016). For example, 
Xiang et al (2014) showed that more than one third of patients with severe injuries (Injury 
Severity Score, ISS  >  15) in the US emergency departments were undertriaged. To decrease 
the rate of undertriage while maintaining overtriage at acceptable levels is a major challenge 
(Leach et al 2007, Haas et al 2010, Nakahara et al 2010, Rehn et al 2012, Xiang et al 2014, 
Candefjord et al 2016).

Thoracic trauma has a high incidence rate and is a common cause of death. It directly 
causes around 25% of traumatic deaths, and contributes to death in additionally 25% of cases 
(Baker 1980, Demetriades et al 2004). Many severely injured patients with severe thoracic 
injuries (Abbreviated Injury Scale, AIS  ⩾  3) are transported to non-trauma centers (Haas et al 
2010, Candefjord et al 2016). For example, Candefjord et al (2016) found that, for trans-
port trauma in Sweden, over 50% of AIS 3+  thorax injuries were transported to non-trauma 
centers. Severe thoracic injuries are often occult and difficult to diagnose in the field (Hunt 
1999). Ultrasound might be a suitable technology for diagnosing thoracic injuries such as 
pneumothorax (PTX); however, it is challenging to quantify and the accuracy depends on 
the experience of the operator. Therefore, a non-operator dependent method would be valu-
able for detection and continuous monitoring of thoracic injuries (Oveland et al 2012, 2015, 
O’Dochartaigh and Doumab 2015).

Electrical bioimpedance (EBI) is a non-invasive, portable, rapid and easy to use technol-
ogy suitable for the prehospital environment, with potential for accurate detection of thoracic 
injuries (Costa et al 2008). EBI measures the opposition of biological tissue to the flow of 
a low-amplitude alternating electrical current and thus it is sensitive to morphological and 
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physiological changes occurring in the tissues, e.g. due to edema, inflammation or injury. EBI 
data are determined by two components, resistance (R) and reactance (X). From R and X the 
phase angle (PA) can be derived as θ = tan−1

(X
R

)
, see figure 1. EBI is typically measured at 

50 kHz because it is close to the characteristic frequency, i.e. frequency at which the reactance 
is maximum.

EBI is sensitive to changes of the permeability of cell membranes, which reflect membrane 
integrity and can be changed due to disease or injury (Lukaski 2013). A decrease in PA reflects 
impaired membrane function (Lukaski 2013). Both X and PA decrease with tissue damage and 
cell loss (Lukaski 2013, Nescolarde et al 2013, 2015). Further, a decrease of R is associated 
with interstitial edema and loss of muscle function in injured muscle tissue (Nescolarde et al 
2013, 2015, Sanchez et al 2017a). Localized EBI have also been proven valuable in prognosis 
of diseases affecting skeletal muscle (Sanchez et al 2017b).

The aim of this study is to evaluate the potential of using EBI measurements in conjunc-
tion with a diagnostic mathematical algorithm for detection of thoracic injuries. To do so, we 
developed a support vector machine (SVM) algorithm using EBI data and evaluated its per-
formance in terms of sensitivity and specificity. The thoracic injuries were confirmed by the 
gold standard computed tomography (CT) scan.

2. Materials and methods

2.1. Study subjects

This was an open and non-blinded study, approved by the Regional Ethical Review Board 
at the University of Gothenburg, Sweden. Twenty patients and 20 healthy volunteers were 
recruited. All participants were measured between October 2015 and October 2016. All sub-
jects provided written informed consent prior to the measurements. Patients were recruited 
after admission to the trauma unit at Sahlgrenska University Hospital, Gothenburg, Sweden. 
Table 1 shows the inclusion and exclusion criteria.

Figure 1. Schematic representation of EBI data in the complex plane at a single 
frequency. The standard notation for EBI is Z, and is determined by the resistance (R) 
and reactance (X) components. The phase angle PA (ϴ) and the magnitude |Z| can be 
calculated from X and R by applying trigonometry.
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Mean and standard deviation of age, height, weight and body mass index (BMI) for 
patients and healthy controls are shown in table 2. There were statistically significant differ-
ences between patients and healthy controls for age and weight, whereas proportion of males 
versus females and BMI were not significant, as tested by unpaired Student’s t-test.

Patient injury characteristics are shown in table 3. The majority of patients had multiple 
injuries from blunt trauma. All patients but one had ISS  ⩾  9 and thoracic AIS  ⩾  3. Further, 14 
patients had predominant injury on the left side, five on the right side, and one had bilateral 
injuries.

2.2. EBI device and measurements

The measurement device used was the BIA 101 Anniversary (Akern SRL, Pontassieve, Italy), 
see figure 2. The device measures EBI at 50 kHz and the data is then visualized in the display. 
A calibration test was performed prior to each measuring session using the supplied test cir-
cuit, which ensures data accuracy within the tolerance range by compensating for the effect 
from cables and connections. In order to ensure the correct operation of the device within 
the measurement range and accuracy, we performed 40 measurements on the test circuit. For 
each test all four connections were disconnected and connected again, with the device turned 
off and on. The connections were interchanged for the five tests performed, i.e. current and 
voltage crocodile clips were connected to a different current and voltage input of the circuit 
each five tests. The results were R  =  384.4  ±  0.1 Ohms and X  =  47.0  ±  0.2 Ohms, whereas 
the test circuit nominal values are R  =  383  ±  10 Ohms and X  =  45  ±  5 Ohms. The device 
was considered to operate correctly, i.e. within the range of specifications determined by the 
manufacturer. For the measurements on human subjects, we used gel adhesive electrodes sup-
plied together with the device (Biatrodes, AKERN SRL, Pontassieve, Italy).

Table 1. Inclusion and exclusion criteria for patients and healthy volunteers.

Patients Healthy volunteers

Inclusion Exclusion Inclusion Exclusion

⩾18 years of age Pregnant women ⩾18 years of age Pregnant women
Admitted to trauma 
unit

Patient has pacemaker or 
other device generating 
electric current implanted

Healthy, i.e. 
no significant 
medical history

Subject has pacemaker or 
other device generating 
electric current implantedThorax injury 

confirmed on CT Signed a written 
informed consentSigned a written 

informed consent

Table 2. Subject characteristics.

Healthy subjects Patients suffering thoracic injuries

Male Female All Male Female All

No. of subjects 11 9 20 15 5 20
Age (years) 44.2  ±  16.4 33.1  ±  9.2 38.2  ±  14.2 59.5  ±  17.5 46.4  ±  15.0 56.2  ±  17.8
Height (cm) 181.1  ±  5.9 163.3  ±  6.1 175.2  ±  9.0 180.8  ±  5.5  168.2  ±  6.2 177.7  ±  7.9
Weight (kg) 77.7  ±  5.7 61.2  ±  5.9 70.3  ±  10.0 86.0  ±  14.9  72.6  ±  10.9  82.6  ±  15.1
BMI (kg m−2) 23.7  ±  1.8 21.8  ±  1.7 22.9  ±  2.0 26.3  ±  4.2  25.7  ±  4.0  26.1  ±  4.1
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Table 3. Patient injury characteristics. Abbreviations: MOI  =  mechanism of injury; 
MC  =  motorcycle, PTX  =  pneumothorax, HTX  =  hemothorax. L  =  left, R  =  right.

Patient MOI ISS
Thorax 
AIS PTX HTX Rib fractures

1 Fall 9 3 — L L 6–10
2 Go-kart 4 2 — — R 7–8
3 Fall 9 3 L — L 8–11
4 Fall 9 3 — R R 9–12
5 Fall 10 3 — — R 3–9
6 Bike 10 3 L L —
7 Fall 9 3 — L L 6–12
8 Horse 17 3 L L L 4–8
9 Horse 16 4 R, major R R 6
10 MC 13 3 L L  +  R L 1–8, R 1–2
11 Bike 11 3 L L L 5–9
12 Moped 13 3 L L L 5
13 Stab 16 4 R R, major —
14 MC 14 3 — — L 10
15 MC 41 4 R L, major  +  R L 6–12, R 3–9
16 Fall 27 3 — — L 8, 10, 11
17 Violence 17 3 L L L 2–4
18 MC 27 3 L L L 4–6
19 MC 9 3 — L L 4–8
20 Fall 25 5 L, major L L 5, 8

Figure 2. The measurement device BIA 101 Anniversary (AKERN SRL, Pontassieve, 
Italy). The red and black cables lead to the current injecting and voltage measuring 
electrodes, respectively.

R Buendia et alPhysiol. Meas. 38 (2017) 2000
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To avoid electrode polarization effects (Schwann and Ferris 1968), tetrapolar measure-
ments were performed for all subjects using new electrodes each time. All measurements were 
performed by the same operator (author RB). Measurements on patients were performed at the 
trauma unit of Sahlgrenska University Hospital, under the supervision of a trauma physician 
and/or a nurse. Repeated measurements were performed to test repeatability. In some patients, 
however, that was not possible because it would have interfered with the clinical standard of 
care. For this reason, only the first measurement on each subject was used for the data analysis 
(except for repeatability assessment). Subjects were measured in supine position when pos-
sible. Eight of the patients could not be examined in complete horizontal position due to pain 
or discomfort. They needed an inclination angle of between 30 and 45 degrees, elevating their 
upper body including the thorax. No statistically significant differences for patients that were 
measured in a reclined position were identified for any of the EBI parameters as assessed by 
unpaired Student’s t-test.

For each measurement, four electrodes were first placed on the right side of the thorax and 
then the left side (see schematic in figure 3). For each side, one pair of electrodes was located 
on the upper thorax and one pair on the lower thorax. Upper and lower current electrodes were 
positioned on the mid-supraclavicular area and the mid-axillar line just over the umbilicus 
level, respectively; upper voltage sensing electrodes were positioned at the mid-infraclavicular 
area, while the lower voltage sensing electrodes were positioned at distance center-to-center 
between electrodes of 5 cm above the lower current electrodes. This electrode configuration 
is similar to the one used with the EBI device NICOM (Cheetah Inc., Tel Aviv, Israel) (Keren 
et al 2017). Right and left thoracic measurements were performed on all subjects.

This measurement configuration was designed to obtain contralateral measurements in 
order to reduce inter-individual variability of baseline (healthy state) using EBI ratios (right 
side/left side). Then, the quotients between the R, X and PA of the right and the left sides were 
computed. The hypothesis is that quotients of EBI data will change when either side of the 
thorax is injured. For bilateral injuries, there is usually a difference in the type or extent of 

Figure 3. Schematic representing the electrode locations. For each side of the thorax, 
an electrical current at 50 kHz is passed between the two outer current electrodes 
(shown in red), and the resulting voltages are recorded using the two inner electrodes 
(shown in black).

R Buendia et alPhysiol. Meas. 38 (2017) 2000
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injuries on each side, which is expected to produce a change in the quotient as compared to 
the uninjured state. Hereafter, the R, X and PA quotients between the right and left sides of the 
thorax are labelled R_Ratio, X_Ratio and PA_Ratio.

2.3. Data analysis

Data were analysed using MATLAB (versions 2013b and R2016b, The Mathworks, Natick, 
MA, USA). The LIBSVM package (version 3.21) implemented for MATLAB was used for 
SVM classification (Chang and Lin 2011). Algorithms included in MATLAB/LIBSVM were 
used when possible, and other algorithms were programmed ad hoc.

Investigators conducting the data analysis (authors RB and SC) were not blinded to sub-
ject diagnosis. A diagnostic mathematical algorithm for differentiating patients from healthy 
controls was developed by using principal component analysis (PCA) and an SVM classifier. 
In SVM a so-called kernel function needs to be chosen and appropriate values of the penalty 
parameter C and kernel parameters need to be selected. For this study the recommendations by 
Hsu et al (2003) were followed. Thus, the radial basis function (RBF) kernel, and a two-step 
process were used. Firstly, the best values for the kernel parameters penalty C and width γ 
were found by means of grid search and cross-validation (CV). Thereafter, the best parameter 
values were used to train the whole training dataset. Grid search was performed in the inter-
vals C  =  2−5–215 and γ  =  2−15–23 using five-fold CV. Training data was scaled to the interval 
(0, 1) for each variable, and test data was scaled using training data scaling values (Hsu et al 
2003). Performance of the model was calculated as area under the receiving operative charac-
teristic (ROC) curve (AUC) using leave one out cross-validation (LOO-CV), with fixed values 
of the kernel parameters identified from the preceding grid search.

Because the EBI data was distributed differently for patients with thoracic injury as com-
pared to healthy controls depending on the side of the injury, i.e. towards lower and higher 
values, respectively, the EBI data was preprocessed by subtracting the mean of healthy vol-
unteers from the training set from all subjects, and subsequently deriving the absolute value.

First, the algorithm was fed with all possible combinations of EBI parameters, i.e. the 
seven possible combinations of R_Ratio, X_Ratio and PA_Ratio. Additionally, because right 
and left measurements might contain valuable information despite different individuals pre-
senting different baseline EBI values, right and left EBI parameters were used as input to the 
algorithm. However, not all predictors could be used simultaneously to avoid over-fitting (nine 
predictors, i.e. three each from R, X and PA for both sides plus the three ratios, versus a sample 
size of 40 subjects). We then used PCA to reduce the number of predictors. PCA is a suitable 
method to extract the maximum independent information in a reduced set of parameters.

One-way ANOVA was used to assess the relation between injury status and the differ-
ent parameters considered (significance p  <  0.05), i.e. EBI parameters and principal comp-
onents (PC), as recommended in Tronstad and Pripp (2014). Patients were categorized into 
two groups: (1) patients with predominant right side injury; and (2) patients with predominant 
left side injury. The side of injury has a profound influence on the EBI parameter. Thus, EBI 
parameters of injured patients cannot be expected to follow a normal distribution, rather two 
normal distributions, i.e. one for each side of predominant injury. The patient with bilateral 
injuries was considered to have right side predominant injury because it exhibited a PTX only 
in the right side.

Patients were, on average, significantly older and heavier than healthy subjects, (p  <  0.05, 
unpaired Student’s t-test). For this reason, in order to control for confounders, the correlation 
coefficients between the input predictors, i.e. parameters used for classification, and healthy 
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controls’ age and weight were calculated. This method can be used to determine whether dif-
ferences in subjects’ characteristics may affect the performance of the model, i.e. if any pre-
dictor would correlate with age and weight the algorithm could use the influence of these two 
factors on the predictors to distinguish patients and healthy controls, because the patient group 
included heavier and older subjects. Additionally, repeatability of measurements was tested by 
calculating the correlation coefficients of repeated measurements, and within-subject standard 
deviations Sw, and repeatability coefficients (Bland and Altman 1999), i.e. 2.77 × Sw as rec-
ommended in Tronstad and Pripp (2014).

3. Results

3.1. Thoracic EBI

EBI data of both sides of the thorax are shown in figure 4.

3.2. Discrimination between patients and controls using EBI parameters as input predictors

Box plots and outcome of one-way ANOVA tests of R_Ratio, X_ Ratio, and PA_ Ratio for 
healthy controls and patients with predominant right and left side injuries are shown in figure 5.

Classification performance measured as AUC estimated on LOO-CV was tested for all 
possible combinations of R_Ratio, X_ Ratio, and PA_ Ratio (see table 4). Using the PA_Ratio 
alone resulted in the highest performance, i.e. AUC  =  0.87. The best kernel parameter values 
ranged from C  =  0.25–32 768 and γ  =  3.1  ×  10−5–3.5.

3.3. Discrimination between patients and controls using PCs as input predictors

The PCA produced nine components, whereof the first five containing  >  99.6% of the vari-
ability of the dataset, were retained (figure 6). In order to compare the values of PC for the 
three groups, i.e. healthy controls, patients with predominant right and left side injuries, box 
plots and results for one-way ANOVA tests are shown in figure 7.

The best performance was obtained using PCs 3 and 4 as predictors, with kernel parameter 
values C  =  294 and γ  =  8. The ROC can be observed in figure 8. The AUC was 0.88.

Figure 4. Resistance and reactance data measured, (a) on left side and (b) right side 
of the thorax. Circles represent healthy controls, crosses predominant left side injury, 
asterisks predominant right side injury, and a black diamond represents the only 
bilaterally injured subject.
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3.4. Controlling for confounders

Correlation coefficients between the subjects’ characteristics that presented a significant 
difference between healthy and injured subjects, i.e. age and weight, and utilized param-
eters, i.e. PA_Ratio and PCs 3 and 4, are shown in table 5. None of the correlation coef-
ficients were statistically significant. Furthermore, the PA_Ratio for healthy women was 
1.034  ±  0.05 (mean  ±  std) and for healthy men was 1.037  ±  0.04; the PCs 3 and 4 for 
healthy women were respectively 1.96  ±  3.41 and 0.13  ±  0.32 and for healthy men were 
respectively  −0.07  ±  2.30, and 0.23  ±  0.36. None of the differences were statistically sig-
nificant. Additional classification tests removing the two participants on the extremes of age 
and weight were performed, i.e. two subjects exhibiting highest age and weight for patients 
and opposite for controls. The AUC using only the PA_Ratio was 0.86 for the age case and 
0.85 for the weight case.

0.7

0.8

0.9

1

1.1

1.2

1.3

R_Ratio
HC LS RS
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1

1.2

1.4

1.6

X_Ratio*
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0.9
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1.1

1.2

1.3

PA_Ratio*
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Figure 5. Box plots of R_Ratio, X_ Ratio and PA_Ratio for healthy controls (HC) and 
patients with predominant right (RS) and left side (LS) injuries. Differences between 
X_Ratio and PA_Ratio were statistically significant (marked with asterisk), p  <  0.005 
and p  <  0.0001, respectively.

Table 4. Classification performance measured as AUC estimated using LOO-CV for 
all possible combinations of resistance ratio (R_Ratio), reactance ratio (X_ Ratio), and 
phase angle ratio (PA_Ratio).

Predictors AUC

R_Ratio 0.49
X_Ratio 0.54
PA_Ratio 0.87
R_Ratio  +  X_Ratio 0.73

R_Ratio  +  PA_Ratio 0.85

X_Ratio  +  PA_Ratio 0.85

R_Ratio  +  X_Ratio  +  PA_Ratio 0.84
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Figure 6. Total variance percentage explained for each PC. The values of total variance 
for each PC were: PC1  =  90.36, PC2  =  6.70, PC3  =  2.66, PC4  =  0.14, PC5  =  0.13, 
PC6–PC9  <  0.01.

HC LS RS
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PC 1*
HC LS RS

PC 2
HC LS RS

PC 3
HC LS RS

PC 4*
HC LS RS

PC 5

Figure 7. Box plots of the five first PCs for healthy controls (HC) and patients with 
predominant right (RS) and left side (LS) injuries. Statistical significance was set as 
p  <  0.05 (marked with *) and calculated using one-way ANOVA test.
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3.5. Repeatability of measurements

Correlation coefficients of repeated measurements, within-subject standard deviations (Sw), 
and repeatability coefficients, i.e. 2.77 * Sw, reported in table 6 indicate high repeatability.

4. Discussion

This study represents an initial effort towards validating a prehospital tool for early detection 
of thoracic injury based on EBI. This tool is much needed because the undertriage of patients 
suffering thoracic injuries is high (Haas et al 2010). A tool based on EBI measurements that 
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Figure 8. Receiver operating characteristic (ROC) curve of an SVM using the third and 
fourth PC as input predictors (see figure 6). The area under the curve (AUC) is 0.88.

Table 5. Correlation between utilized parameters, i.e. PA_Ratio and PCs 3 and 4, and 
age and weight of healthy controls; none was statistically significant.

PA_Ratio PC3 PC4

Age 0.29 −0.32 −0.05
Weight 0.40 0.08 −0.38

Table 6. Repeatability of EBI measurements.

R_RS X_RS PA_RS R_LS X_LS PA_LS

r 0.97 0.83 0.96 0.97 0.93 0.98
Sw 2.79 1.06 0.66 2.50 0.47 0.44
Repeatability  
coefficient (Ω)

7.72 2.93 1.82 6.92 1.30 1.21

Abbreviations: r  =  correlation coefficient; Sw  =  within-subject standard deviation.
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has already proven valuable and suitable in the prehospital environment is the device NICOM 
(Cheetah Inc., Tel Aviv, Israel) (Squara et al 2007, Dubost et al 2013, Dunham et al 2013). 
NICOM is a commercial system that estimates cardiac output using EBI technology with the 
same measurement setup as the one presented here. Therefore, we foresee in the future NICOM 
could also incorporate the capability of detecting patients that might suffer thoracic injuries.

A diagnostic algorithm was designed using SVM to discriminate between patients suffering 
thoracic injuries and healthy controls using parameters derived from EBI thoracic measure-
ments. Two approaches for deriving EBI parameters were considered. First, we considered only 
contralateral ratios, i.e. R_Ratio, X_Ratio and PA_Ratio. Best performance was given when 
using just the PA_Ratio (see table 4). That performance evaluated as AUC estimated using 
LOO-CV was 0.87, which represents high classification accuracy. This result is consistent with 
X and PA changes reported by others in injured muscle (Nescolarde et al 2013, 2015, Sanchez 
et al 2017a). Importantly, an advantage of the PA_Ratio being the most sensitive parameter is 
that the PA is a robust indicator against the placement of the electrodes (Sanchez et al 2016). 
This may become important in a demanding environment such as prehospital settings. The 
second approach consisted of deriving PCs, which is an approach to reduce sets of parameters 
that are highly interrelated as in this study. Considering a space of as many dimensions as pre-
dictors, the PCs have the advantage of being in orthogonal planes; which means that each PC 
has information that is independent of the others (not interrelated like EBI parameters). Best 
performance resulted when using the third and fourth PCs together. The AUC estimated using 
LOO-CV was 0.88, representing high classification performance.

All three EBI parameters analysed here, i.e. R, X and PA, have been shown to decrease in injured 
muscle. Unlike here where the PA was the most sensitive parameter, Nescolarde et al (2013, 2015) 
found that X at 50 kHz was the most sensitive parameter to detect muscle injury in professional 
football players. This difference can be explained by Nescolarde et al performing localized meas-
urements on injured leg muscles, whereas in this work we measured thoracic injuries. We hypothe-
size that while X could be more sensitive to muscle changes in morphology, PA could be decreased 
by deteriorated health in addition to morphological and physiological changes in muscle tissue. 
Supporting this hypothesis is that PA, as measured in conventional whole-body bioimpedance at 
50 kHz, has been proven an excellent indicator of disease onset in many types of diseases (Lukaski 
2013). PA is also a valuable vitality index in health and disease (Lukaski 2013). Importantly, PA 
is calculated using a non-linear operation of R and X (see figure 1), and therefore it is related to R 
and X. Thus, in some conditions, changes in R and X can be magnified when calculating the PA.

As 25% (Baker 1980) of fatalities after trauma are due to chest trauma it is important to 
diagnose life-threatening injuries early in order to avoid preventable deaths. Although only 
15% of chest trauma require surgery and the remaining can often be treated conservatively, 
there are patients who require prompt treatment with chest drains. A rapid diagnosis of pneu-
mothorax and/or hemothorax is therefore beneficial to the patient.

Among the limitations of this study, the data was recorded prospectively but analysed ret-
rospectively. Moreover, the study was not blinded. Further, the fact that the best performance 
using EBI parameters was achieved with the PA_Ratio alone, indicates that EBI-based predic-
tors were highly interrelated and that the model may be overfitted with more than one predic-
tor. This is likely due to the relatively small size of the dataset, which may also have limited 
the usefulness of the PCA approach. Larger datasets evaluated in blinded studies are necessary 
in future studies, to verify the current findings and develop the methodology further. Indeed, 
having a larger sample size will allow to utilize all EBI parameters, potentially enhancing the 
performance and confidence of the model developed here.

Further, limitations from the physiological perspective were that patients were significantly 
older and heavier than the healthy subjects. However, non-significant correlation coefficients of 
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age and weight against the utilized parameters suggest that the bias of the model, if any, would 
not be substantial. Additional tests were performed where the two youngest participants in the 
control group and the two oldest patients in the injured group were excluded. Analogously, we 
performed another test where the two lightest healthy controls and the two heaviest patients 
were excluded. The AUC using only the PA_Ratio (highest performance), decreased from 0.87 
to 0.86 in the age case and to 0.85 in the weight case. This slight decrement in performance 
might be explained by a smaller training set. These tests were not performed on PCs because 
removing subjects would mean recalculating and changing PCs. Moreover, patients measured 
in reclined position did not show significant differences from patients measured in supine. On 
further complicating matters, other physiological factors could have impacted EBI parameters 
evaluated here. For example, changes occurring in the skin blood flow due to increased heat 
exposure are known to alter body composition outcomes (Caton et al 1988, Gudivaka et al 
1996, Buono et al 2004). Further work is required to determine whether additional physiologi-
cal factors such as skin temperature, sweat accumulation or hyperpnea influence the ability to 
detect thoracic injury. From the instrumentation perspective, low values of impedance as in 
this study might be less accurate. Fortunately, the frequency of 50 kHz is in the most robust 
part of the bioimpedance spectra (Buendia et al 2014).

We plan to address these limitations in the future conducting a larger study measuring EBI 
at multiple frequencies and not just 50 kHz. We believe that multi-frequency EBI data could 
potentially lead to a model with better performance. Finally, we also plan to target the injuries 
PTX and HTX specifically, the main concern in thoracic injury, extending the pilot results in 
a porcine model reported in Buendia et al (2016).

5. Conclusions

The results in this study indicate the possibility of accurately discriminating between healthy 
controls and patients suffering thoracic injuries using EBI. Future work is necessary includ-
ing a larger blinded study in patients with PTX and HTX. Ultimately, EBI technology may be 
used as a prehospital tool for early detection of thoracic injuries.
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