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Executive summary 

The SALI project aimed at investigating how challenging runtime factors such as 

unpredictability, faults and limited resources affect and could be managed in self-driving 

vehicles (SDVs). In order to achieve that, a series of experiments have been conducted on the 

AstaZero test track where three main use cases were tested: a road accident, a sensor fault and 

critical battery level. Experiments were conducted in the city area as well as on the rural road. 

Three vehicles were utilized during the experiments; one of them running the SALI software 

solution. In the three use cases, the SALI vehicle had the objective of supporting the driver on 

his/her daily journey from work (i.e., an origin point) to home (i.e., a destination point). Machine 

learning techniques were applied to find patterns on driver’s behavior (e.g., preferred routes). 

Different scenarios have been tested for each use case, for instance, with and without traffic. 

Thanks to the learning-based adaptive behavior enabled by our software solution, the SALI 

vehicle was able to timely react to the different runtime events, ensuring the self-driving 

functionality availability, adequacy and resilience. The results demonstrate the importance of 

correctly managing runtime factors that could affect SDVs, and the validity of our solution for 

correctly supporting this task.  

I. Background 

Smart (or intelligent) vehicles are systems capable of sensing contextual data (e.g., from the 

driver, the environment, the vehicle itself) and making decisions based on this data (e.g., turn on 

an alarm, activate self-driving functionality). These systems have become increasingly popular in 

the automotive industry. Smart vehicles have brought several societal benefits, for instance, 
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improving drivers’ safety, experience and comfort (Zavala, Franch, Marco, Knauss, & Damian, 

2018). At the same time, their control systems need to face challenging factors such as 

unpredictability, runtime faults and limited resources. Many researchers have focused on 

studying the self-driving functionality of modern vehicles in order to support driving challenging 

situations allowing the drivers to focus in other tasks, from working to relaxing (Berger, 2014). 

However, less effort has been done on studying how the challenging factors mentioned above 

affect to, and could be addressed in, SDVs.  

In the SALI project, we propose to enable self-adaptation capabilities to SDVs, i.e., make them 

smart, for correctly managing challenging runtime factors affecting their performance. Self-

adaptation capabilities such as self-healing or self-optimization could enable SDVs to recover 

from faults or lengthen the self-driving functionality operation when limited resources are 

available. In the self-adaptive systems field, these capabilities are typically implemented through 

feedback loops. Several models have been proposed in the literature for implementing such 

feedback loops. Among them, the most prominent is the MAPE-K reference model (IBM-

Corporation, 2006; Kephart & Chess, 2003). In MAPE-K, self-adaptation is achieved applying 

four steps: Monitor, Analyze, Plan, and Execute. SALI adopts the MAPE-K loop for providing 

the self-adaptation capabilities to SDVs. 

In short, the MAPE-K loop works as follows. The monitoring step collects data from the system 

to adapt (also known as target system), the environment and the users through sensors or other 

types of monitoring data sources such as cloud services. The collected data is then analyzed for 

understanding the current context. The analysis results are then passed to the Plan step for 

determining whether an adaptation is required or convenient. If an adaptation is planned, the 

Execute step is triggered and the adaptation is enacted on the target system. In order to operate 

properly, these four steps share a Knowledge base which stores design and runtime data such as 

metrics, logs, adaptation policies, etc. In the SALI project, adaptations consist of: activating 

alternative sources of monitoring data (monitors for short), when one fails or provides inaccurate 

data; performing a trade-off between available monitors, when the SDV is running out of battery; 

and, changing monitors’ frequency, when data freshness is compromised. Our solution utilizes 

machine learning techniques which have been incorporated in the SALI’s MAPE-K feedback 

loop for analyzing and determining whether an adaptation should be performed or not based on 

patterns learnt. 

The SALI project proposal has been developed as an open software engineering solution 

consisting of a set of microservices available at the GitHub platform
1
. The solution can be reused 
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in other contexts as well as be extended for adding more intelligence to already smart vehicles. 

In the rest of this document, we describe how the SALI solution has been tested at AstaZero 

(Section II), what are the preliminary results (Section III) and the conclusions of our work 

(Section IV) as well as which are the lessons learned and how was our experience at the test 

track (Section V). Planned publications and disseminations activities are included at the end of 

the document (Section VI) as well as more details about the project partners (Section VII). 

II. Purpose, research questions and method 

The purpose of the SALI project was to investigating how challenging runtime factors such as 

unpredictability, faults and limited resources affect to and could be managed in SDVs. For 

conducting our work we have proposed the following research questions: 

RQ1.How do runtime factors such as unpredictability, faults and limited resources affect the 

performance of current self-driving vehicles?  

RQ2.How can the impact of those runtime factors be managed in current self-driving 

vehicles? 

RQ3. Is the SALI project solution valid for supporting current self-driving vehicles affected 

by those runtime factors?  

RQ4.What are the benefits and drawbacks of using the SALI project solution for supporting 

current self-driving vehicles affected by runtime factors? 

In order to address the research questions we have conducted a series of experiments on the 

AstaZero test track. Three main use cases were tested: a road accident, a sensor fault and critical 

battery level. Experiments were conducted in the city area as well as on the rural. Three Volvo 

vehicles were utilized during the experiments: two XC90 (Snowfox and Greyfox hereafter) and 

one V40. The Snowfox XC90 was selected for testing the SALI project solution. This vehicle is 

equipped with a LIDAR sensor, a GPS and a camera. Moreover, a cloud service gathering traffic 

data and another one gathering weather data were incorporated. Before running the actual 

experiments, the Snowfox was trained for the sensor fault and the critical battery level use cases 

which were tested on the rural road. A test driver and a software component have simulated the 

self-driving functionality. The driving scenario exemplifies a driver that goes from work to home 

in a daily basis and utilizes the self-driving functionality in specific segments of that journey. 

From this training phase, patterns on self-driving functionality usage and typical route were 

inferred using different data mining algorithms. The resulting learnt behaviors are illustrated in 

Fig. 1.  
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Figure 1. SALI learning phase patterns 

After the learning phase, the following use cases were tested: 

 UC1. Road accident. The Snowfox and the V40 go on an urban road at an average speed 

of 20 km/h. In the AstaZero city area, the Snowfox departed from the point marked as 

Work and drove to the point marked as Home (see Fig. 2). Suddenly, the V40 witnesses a 

road accident and uses V2V communication for alerting the vehicles around (see Fig. 2). 

V40 is not able to timely recalculate its route and stops. On the other hand, the Snowfox 

successfully recalculates its route and reaches its destination. In order to recalculate the 

route, the Snowfox relies on traffic data gathered through a cloud service. Each execution 

of this use cases lasted around 1 minute. For this use case, we have designed two 

scenarios: 

 Scenario 1. Parameter adaptation. In order to correctly recalculate the route, the 

SALI vehicle adapts the traffic monitoring service frequency in order to gather the 

freshest data since the road accident just happened. As a result, the Snowfox 

changes its route. 

 Scenario 2. Structure adaptation. Since the road accident just happened, the 

SALI vehicle receives inaccurate traffic data from the cloud service. In order to 

improve the quality of the traffic data, the SALI vehicle substitutes the traffic 

monitoring service by V2V communication (i.e., it actively asks other vehicles 

around about the traffic conditions) (adaptation a). As a result, the Snowfox 

changes its route. In the new route, V2V communication is not useful anymore; 
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thus, the SALI vehicle adapts its monitors again, deactivating V2V 

communication and re-activating the traffic monitoring service (adaptation b). 

 

Figure 2. Road accident use case 

 UC2. Sensor fault. The Snowfox goes on a rural road at an average speed of 40 km/h. As 

in the training phase, the Snowfox departs from the point marked as Work and intends to 

arrive to the point marked as Home (see Fig. 3). Suddenly, one of its sensors fails (see 

Fig. 3).  The Snowfox analyses whether an adaptation is required or not, and in case of 

yes, adapts itself activating alternative monitors (i.e., sensors, services or V2V 

communication) for gathering same or similar data. Each execution of this use case lasted 

around 4,5 minutes. For this use case, we have designed three scenarios: 

 Scenario 1. Structure adaptation on a road with no other vehicles. In this 

scenario alternative sensors are activated. 

 Scenario 2. Structure adaptation on a road with other vehicles. In this 

scenario, the Greyfox XC90 is placed in front of the Snowfox doing a similar 

journey. Given the increased driving risk, apart from the sensors activated in 

Scenario 1, V2V communication is activated and Greyfox position data is 

gathered by the Snowfox.  

 Scenario 3. No adaptation on a road with no other vehicles. This scenario is 

similar to Scenario 1. The main difference is the time at which the sensor fault is 

experienced. In this case, based on the patterns learnt, the self-driving 

functionality will not be used by the driver in the rest of the journey. As a 

consequence, the SALI vehicle determines that an adaptation is not worth it. 
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Figure 3. Sensor fault use case 

 UC3. Critical battery level. Very similar to previous use case, in this use case, the 

Snowfox goes on a rural road at an average speed of 40 km/h. The Snowfox departs from 

the point marked as Work and intends to arrive to the point marked as Home (see Fig. 4). 

At some point, the Snowfox detects critical battery level (see Fig. 4). We have indicated a 

specific threshold for this purpose. The Snowfox analyses then whether an adaptation is 

required (and possible) or not. In case of yes, it performs a trade-off between available 

monitors and deactivates unnecessary ones, ensuring that the self-driving functionality 

can be supported till it is required. Each execution of this use case lasted around 4,5 

minutes. For this use case we have designed three scenarios: 

 Scenario 1. Structure adaptation on a road with no other vehicles. In this 

scenario unnecessary sensors are deactivated. 

 Scenario 2. No adaptation on a road with other vehicles. In this scenario, the 

Greyfox vehicle is placed in front of the Snowfox doing a similar journey. Given 

the increased driving risk the SALI vehicle is not able to deactivate any monitor. 
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No adaptation is performed and a take-over request is sent to the driver (in this 

case, after the notification, we have manually stopped the module that was 

simulating the self-driving behavior). 

 Scenario 3. No adaptation on a road with no other vehicles. This scenario is 

similar to Scenario 1. The main difference, as in Scenario 3 of UC2, is the time at 

which the critical battery level is experienced. In this case, based on the patterns 

learnt, the self-driving functionality will be disabled by the driver shortly. As a 

consequence, the SALI vehicle determines that an adaptation is not worth it. 

 

Figure 4. Critical battery level use case 

III. Results 

Each use case scenario that we have described in previous section has been executed several 

times during our testing days at AstaZero (6 days in total, 1,5 at the city area, 3 at the rural road 

and 1,5 at the garage area). In this report, we provide preliminary results of those experiments. 

That is, we will present the results of one execution of each use case scenario. The complete 
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analysis of the results will be provided in the works listed in Section VI. All scenarios have been 

successfully executed, in terms of both functionality and timeliness. That is, when applied, 

required adaptations have been enacted on the SALI vehicle. Moreover, from the driver’s point 

of view (person in charge of the experiment in this case), adaptations were executed at the right 

time, e.g., in UC1 the adaptation of the traffic data sources and the route recalculation was done 

before the SALI vehicle arrived to the intersection where route changes. Graphs shown in Fig. 5 

summarize the results of the scenarios’ execution in terms of response time.  

 
Figure 5. SALI project preliminary adaptation results 
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Graph (a) of Fig. 5 shows the time spent by the SALI solution feedback loop for identifying and 

analyzing the runtime challenging event (i.e., road accident, sensor fault or critical battery level), 

determining vehicle’s position in the near future and self-driving functionality usage in that 

position (for use cases UC2 and UC3, based on patterns), deciding the required adaptation and 

sending the adaptation request to the corresponding SALI vehicle components (i.e., sensors, 

could services monitors or both). When adaptations involved different components, requests 

were sequentially sent, first cloud services, second sensors. As it can be seen, for UC1 the 

feedback loop’s response time is much smaller than for UC2 and UC3. This is due to the analysis 

complexity in the last two use cases. Predictions took around 3 seconds to be done. 

Optimizations in this step may reduce the whole feedback loop response time, e.g., decreasing 

the number of position points to be predicted. Even though, current response time worked well 

for the scenarios we have proposed. 

Graph (b) in Fig. 5 shows the elapsed time since the adaptation request is sent from the SALI 

feedback loop to the vehicle components till the corresponding changes are actually executed on 

the components. In the case of sensors, the de/activation has been simulated by software 

components; thus, the enactment response time in real cases may differ from what it is presented 

in this report. On the other hand, the cloud services’ response time does actually reflect real 

services changes. In this regard, it is worth to mention that we have noticed that most of the 

cloud services’ enactment time was spent in communication. Particularly, for the first message 

exchanged between the feedback loop and the services’ interface (we use a single entry point for 

both cloud services’ adaptation). This can be clearly seen comparing first and second adaptations 

of UC1_SC2 (a and b), corresponding to traffic service deactivation and activation, respectively. 

However, we have to further look into the rest of experiments for providing a comprehensive 

conclusion. Finally, graph (c) in Fig. 5 shows the time spent by the SALI feedback loop for 

determining that an adaptation is not required. Similarly to the insights obtained from graph (a), 

in this case most of the time corresponds to the prediction task. Even though, the decision of do 

not enacting an adaptation was accurate for all the scenarios. 

IV. Conclusions and outlook 

In conclusion, the preliminary answers to our research questions are: 

RQ1. How do runtime factors such as unpredictability, faults and limited resources affect the 

performance of current self-driving vehicles?  

If they are not managed correctly, runtime factors such as the ones listed in RQ1 could critically 

affect SDVs at runtime. For instance, the self-driving functionality could become completely 

unavailable if runtime data is incomplete (e.g., due to a sensor fault). From the driver’s 

perspective this situation does not only affect his/her safety but also his/her comfort and trust on 

SDVs. 
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RQ2. How can the impact of those runtime factors be managed in current self-driving 

vehicles? 

In this work, we have briefly presented the SALI project solution. Our solution relies on runtime 

adaptation and machine learning techniques for reducing the impact of challenging runtime 

factors in self-driving vehicles. 

RQ3.  Is the SALI project solution valid for supporting current self-driving vehicles affected 

by those runtime factors?  

From the preliminary results analyzed in this work, and our experience at AstaZero, we can say 

that the SALI project solution is a promising proposal for supporting SDVs in the presence of 

challenging runtime events such as road accidents, sensor faults and critical battery levels. 

However, more iterations of improvement and experimentation would be required for testing 

our solution in a greater variety of scenarios in which modern SDVs may be involved. 

RQ4. What are the benefits and drawbacks of using the SALI project solution for supporting 

current self-driving vehicles affected by runtime factors? 

Among the benefits of using our solution are: the ability of SDVs to be adapted at runtime and 

deal with challenging factors that otherwise would be not possible; and, the ease of adopting, 

reusing and extending the SALI software solution for supporting other types of adaptations and 

addressing other runtime factors that may affect SDVs. Among the drawbacks we can mention: 

the extra computation load that the SALI components may cause and the incompleteness of the 

solution since it has been developed specifically for addressing the runtime challenging factors 

described in our use cases.  

 

V. Lessons learned, experience from testing at AstaZero 

In the past, we have experimented with runtime adaptation and machine learning techniques in 

simulated self-driving vehicles (Zavala, Franch, Marco, Knauss, & Damian, 2015; Zavala et al., 

2018). Although results were promising, we could not ensure that the approach may produce a 

similar behavior in a real vehicle. The opportunity of experimenting at AstaZero has allowed us 

to improve and demonstrate the validity of our approach. Moreover, it has allowed us to gather 

other kind of metrics, for instance, the adaptation timeliness from the driver’s point of view. The 

support offered by the AstaZero staff was effective and efficient. We were allowed to test in 

different environments, use a variety of resources such as an extra vehicle and a soft car, and 

record our experiments in different formats, which is very useful for the future project’s 

dissemination activities. 

VI. Publication and dissemination 

Zavala, E., Franch, X., Marco, J., Berger, C.  HAFLoop: An Architecture for Supporting 

Adaptive Feedback Loops in Self-Adaptive Systems, to be submitted. 

Zavala, E., Franch, X., Marco, J., Berger, C.  Adaptive Monitoring for Self-Adaptive Systems, to 

be submitted. 
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