
Future Generation Computer Systems 105 (2020) 607–630

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

HAFLoop: An architecture for supporting Highly Adaptive Feedback
Loops in self-adaptive systems
Edith Zavala a,∗, Xavier Franch a, Jordi Marco b, Christian Berger c

a Service and Information System Engineering Department, Polytechnic University of Catalonia, Jordi Girona 1-3, 08030, Barcelona, Spain
b Computer Science Department, Polytechnic University of Catalonia, Jordi Girona 1-3, 08030, Barcelona, Spain
c Department of Computer Science and Engineering, Chalmers and the University of Gothenburg, Hörselgången 5, 41296 Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 13 July 2019
Received in revised form 7 December 2019
Accepted 17 December 2019
Available online 24 December 2019

Keywords:
Self-adaptive system
Smart vehicle
IoT system
Adaptive monitoring
Adaptive feedback loop
Self-improvement

a b s t r a c t

Most of the current self-adaptive systems (SASs) rely on static feedback loops such as the IBM’s MAPE-
K loop for managing their adaptation process. Static loops do not allow SASs to react to runtime
events such as changing adaptation requirements or MAPE-K elements’ faults. In order to address this
issue, some solutions have emerged for manually or automatically perform changes on SASs’ feedback
loops. However, from the software engineering perspective, most of the proposals cannot be reused or
extended by other SASs. In this paper, we present HAFLoop (Highly Adaptive Feedback control Loop),
a generic architectural proposal that aims at easing and fastening the design and implementation
of adaptive feedback loops in modern SASs. Our solution enables both structural and parameter
adaptation of the loop elements. Moreover, it provides a highly modular design that allows SASs’
owners to support a variety of feedback loop settings from centralized to fully decentralized. In this
work, HAFLoop has been implemented as a framework for Java-based systems and evaluated in two
emerging software application domains: self-driving vehicles and IoT networks. Results demonstrate
that our proposal easies and accelerates the development of adaptive feedback loops as well as how it
could help to address some of the most relevant challenges of self-driving vehicles and IoT applications.
Concretely, HAFLoop has demonstrated to improve SASs’ feedback loops’ runtime availability and
operation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Self-adaptive systems (SASs) like smart cities, smart vehicles
and mobile applications, have been subject of considerable re-
search effort in the last years [1–4]. A SAS is a system able
to automatically modify itself in order to respond to changes
in its environment and the system itself [2]. This kind of sys-
tems is composed of an Autonomic Manager (AM) (also referred
to as Adaptation Logic) and the Managed Elements (MEs) (also
referred to as Managed Resources) [1,5]. The MEs are the com-
ponents of the system that provide the main functionality and
can be adapted while the AM corresponds to the control unit
that manages the MEs’ adaptation process [1]. In practice, the
AM is typically implemented through a feedback control loop.
One of the most popular feedback loops is the IBM’s MAPE-K
loop [6,7]. This loop consists of five elements: Monitor, Analyze,
Plan, Execute and a Knowledge base. In addition, it includes
two interface elements for interacting with the MEs: Sensors and
Effectors (see Fig. 1). According to IBM’s proposal [6]:

∗ Corresponding author.
E-mail addresses: zavala@essi.upc.edu (E. Zavala), franch@essi.upc.edu

(X. Franch), jmarco@cs.upc.edu (J. Marco), christian.berger@gu.se (C. Berger).

− The Monitor element is in charge of providing the mecha-
nisms that collect, aggregate, filter and report details (such
as metrics and topologies) collected from MEs using the
Sensors interface.

− The Analyze element provides the mechanisms that cor-
relate and model complex situations (for example, time-
series forecasting and queuing models). These mechanisms
allow the AM to understand about the IT environment and
help to predict future situations.

− The Plan element provides the mechanisms that construct
the actions needed to achieve goals and objectives. It uses
policy information to guide its task.

− The Execute element is in charge of providing the mecha-
nisms that control the execution of a plan with considera-
tions for dynamic updates using the Effectors interface.

− Finally, the Knowledge base element manages knowledge
sources that can contain different types of knowledge (for
example, data resulting from elements’ operation and man-
agement data) for supporting the operation of the loop.

Most of the current approaches supporting SASs focus on the
adaptation of the MEs and consider the elements of the loop static

https://doi.org/10.1016/j.future.2019.12.026
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.12.026
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.12.026&domain=pdf
mailto:zavala@essi.upc.edu
mailto:franch@essi.upc.edu
mailto:jmarco@cs.upc.edu
mailto:christian.berger@gu.se
https://doi.org/10.1016/j.future.2019.12.026

608 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 1. MAPE-K loop.

components, i.e., the MAPE-K elements are not able to change
their structure or behavior at runtime. However, the adaptation
of these elements might be beneficial and even necessary in some
situations, e.g., to respond to changes in the system resources, its
environment or its adaptation goals and requirements, as well as
to deal with unanticipated events such as AM elements’ faults [8–
12]. For instance, consider the case of a self-driving vehicle (SDV)
with adaptation capabilities. In this type of system, the Monitor
element would manage a set of sensors for gathering contextual
data (e.g., from the driver and the environment) which would be
later analyzed for making adaptation decisions (e.g., change the
driving mode or turn on an alarm). In this example, a runtime
faulty sensor may prevent the vehicle to correctly satisfy adapta-
tion requirements, e.g., change to a higher autonomous level on
a highway.

The goals of adapting the elements that compose the AM,
i.e., the MAPE-K elements, can have different purposes. For ex-
ample, to satisfy a certain quality level such as quality of ser-
vice or output quality, or to reduce communication overhead,
i.e., messages sent between MAPE-K elements on the same or
remote machines [13]. Other purposes could be: to increase per-
formance, to respond to components’ faults, or to provide just-
in-time adaptation. These goals can be achieved by structural
adaptation (e.g., replacing one software component by another)
or by parameter adaptation (e.g., changing the frequency of the
loop’s iterations). Moreover, the identification of the need for
adaptation can be proactive (before an event happens, e.g., before
systems’ battery depletes) or reactive (after an event happens,
e.g., once a failure occurs) [1].

From the state-of-the-art studies analyzed in this work, we
have identified some approaches that focus on the adaptation of
SASs’ AM components. However, they present some limitations,
e.g., they are so specific that cannot be reused by other SASs, they
cannot support different types of adaptation. Moreover, guide-
lines for adopting such proposals in decentralized environments,
such as the ones that accommodate modern SASs, are missing
in the majority of the cases. Motivated by these facts, in this
work, we propose HAFLoop (Highly Adaptive Feedback control
Loop), an architectural solution that extends the MAPE-K loop
reference model for enabling the adaptation of its elements, at
runtime. HAFLoop proposes a generic structure for the elements

as well as the mechanisms required for coordinating their oper-
ation with their adaptation process. Our solution can be reused
and extended by other approaches for easing and accelerating the
development of adaptive feedback loops as well as for supporting
a variety of settings, from centralized to fully decentralized loops.

Among the MAPE-K loop elements, the Monitor element plays
a crucial role since the quality of the monitored data (i.e., avail-
ability, timeliness, freshness, accuracy, etc.) impacts directly the
performance of the rest of the elements of the loop, as exempli-
fied before by the SDV scenario. In a systematic study that we
have recently performed on the adaptive monitoring topic [14],
we have found only very few approaches supporting adaptive
monitoring in SASs. Therefore, in this work, we evaluate HAFLoop
focusing on providing adaptation capabilities to the Monitor el-
ement of the loop. The evaluation is conducted on two SASs’
application domains: SDVs and IoT networks. Adaptation of the
Monitor element is enabled in both domains for responding to
monitors’ runtime faults, limited resources and degraded perfor-
mance. In order to conduct the evaluation, we have utilized two
simulation environments: the open-source middleware Open-
DaVINCI [15], for the SDV use case; and, the DeltaIoT [16] artifact
exemplar, for the IoT Network use case.

The remainder of the paper is organized as follows. Section 2
introduces a running example that motivates and later illustrates
the main concepts of our proposal. Section 3 provides the back-
ground of this work. Section 4 presents the work related to our
proposal. Section 5 describes our proposal, HAFLoop, while Sec-
tion 6 presents the settings and results of its evaluation. Finally,
Section 7 draws the conclusions and future work.

2. Running example

Aligned with the evaluation that we will present later in this
work, we use as a running example an SDV with adaptation capa-
bilities, i.e., a smart SDV (see Fig. 2). Smart (or intelligent) vehicles
are systems capable of sensing data (e.g., from the driver, the
environment, the vehicle itself) and making decisions based on
these data (e.g., turn on an alarm, change driving route, activate
self-driving functionality) [17], i.e., self-adapt. These systems have
become increasingly popular in the automotive industry. Smart
vehicles are bringing several societal benefits, for instance, im-
proving drivers’ safety, optimizing fuel consumption and improv-
ing driver’s experience and comfort. In consequence, the interest
of the research community in this domain has increased steadily.
At the same time, their control systems need to face challeng-
ing runtime factors such as limited resources and unpredictable
events what make this domain still subject of research.

Many researchers have focused on studying the self-driving
functionality of smart vehicles and allowing drivers to concen-
trate on other tasks, from working to relaxing [15]. However, less
effort has been done on studying how runtime factors affect to,
and could be addressed in, this kind of system. In our example,
we consider a hybrid SDV driving a user from work to home
in a daily basis. In this daily journey, several runtime events
could affect the performance of the self-driving functionality,
for instance, running out of battery or a sensor fault. We take
these two factors as example scenarios that our SDV is able to
cope through the adaptation of the Monitor element of the AM
(i.e., the Monitoring strategy in Fig. 2). In the first case, battery
issues, our solution prolongs the availability of the self-driving
functionality by performing a trade-off between sensors’ utility
and their energy consumption as well as the frequency at which
they gather data. In the second case, a sensor fault, the adaptation
of the Monitor element consists of the activation of alternative
sensors, maintaining in this way the required confidence level.

In order to correctly support the scenarios mentioned above,
we have to ensure that: (1) the Monitor element of the loop

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 609

Fig. 2. Self-driving vehicle with adaptation capabilities.

(operating at the Adaptation logic, see Fig. 2) correctly enacts
the adaptation required; (2) the adaptation is enacted timely.
For satisfying the first requirement, our solution must correctly
identify the need for the adaptation, analyze the context, and
decide the changes to be enacted on the vehicle’s monitoring.
For satisfying the second requirement, the process of identifying,
analyzing and executing the adaptation, should be performed in a
period of time that enables the SDV to correctly support the self-
driving functionality, i.e., ensure its availability. In the evaluation
of our proposal, we demonstrate how these scenarios can be
addressed adopting HAFLoop.

3. Background

Before describing HAFLoop in detail, we introduce in this
section the background knowledge necessary to understand our
proposal. It is divided into two main parts: a software engineering
pattern that guides the structural aspects of HAFLoop; and, a
generic template for MAPE-K elements that serves as a basis for
the behavioral aspects of HAFLoop. In the rest of this section, we
provide the details of both concepts.

3.1. The hierarchical inter–intra collaborative architectural pattern
(HIIC)

The hierarchical inter–intra collaborative architectural pattern,
HIIC [17], has emerged by the need of a solution for supporting
feedback loops with a varying degree of decentralization as well
as loops able to interact with other loops. HIIC extends the no-
tation described by Weyns et al. [5] for decentralized control in
SASs, and combines and extends the hierarchical and collabora-
tive patterns proposed by the same authors. HIIC consists of: a
bottom layer, corresponding to the domain specific ME’s logic; a
middle layer, in charge of the adaptation of the domain specific
MEs, placed on the bottom layer; and a top layer, for assessing
middle layer loop operation (see Fig. 3). Moreover, in HIIC, MAPE-
K elements can communicate with other MAPE-K elements of the
same nature (e.g., a Monitor with other Monitors), and with one
or more MAPE-K elements of other type (e.g., a Monitor with
two Analyze elements). In order to do that, cardinalities have
been introduced to the Inter-components and Intra-components
interactions (see Fig. 3).

The decentralization degree of the elements of the loop can
be freely changed thanks to the MAPE-K component configurations
(MC, AC, PC, EC and KC in Fig. 3) and the Configuration-component
interactions. The component configurations contain all the knowl-
edge that a MAPE-K element needs to perform its functionali-
ties (e.g., in the case of the Monitor, the monitoring frequency,

the variables to monitor, etc.). Apart from enabling the decen-
tralization of the loop, the explicit representation of elements’
knowledge as a separate entity allows their later reconfiguration
without affecting the operation of the rest of the elements of the
loop. In this work, we apply the HIIC pattern to the HAFLoop
architecture and propose the mechanisms required for enabling
such reconfiguration at runtime (missing in the definition of the
HIIC pattern). Moreover, in HAFLoop, the HIIC pattern is used for
modeling the decentralized interaction of the elements as well as
their communication with elements of other loops.

3.2. The FESAS component template

The FESAS component template [18] is part of the FESAS
project framework [19], and has emerged as a solution for simpli-
fying and fastening the development of MAPE elements through
the reusability of components. The template describes an
implementation-independent reusable MAPE element (see Fig. 4).
A FESAS MAPE element is composed of an exchangeable logic
(e.g., for the Analyze element, this would be an algorithm for
analyzing monitoring data) and logics for communication and
data handling. Moreover, it provides interfaces for receiving and
sending data to other elements as well as requesting data from
other elements. The division of communication and data han-
dling functionalities in subcomponents, as well as customized
functional logic, enables the reuse of subcomponents among the
different MAPE elements as well as different MAPE-K loops.

In this work, we extend the FESAS component template with
adaptation capabilities for facilitating the design and develop-
ment of adaptive MAPE-K elements. Moreover, we define and
provide detailed descriptions of element’s components and sub-
components as well as the mechanisms required for coordinating
their operation with their adaptation process. Finally, in our pro-
posal, the Knowledge base element is modeled using the same
extended template. These design decisions make our proposal a
complete and reusable solution for developing adaptive MAPE-K
loops.

4. Related work

One of the most common approaches for supporting adaptive
AMs is to separate the logic in charge of MEs’ adaptation from
the logic in charge of the adaptation of the AM. That is, to
adopt an external approach. Typically, three layers, as in the HIIC
pattern [17], are considered: one for the ME, a second one for the
AM and a third one for the logic in charge of AM’s adaptation.
Examples of solutions that adopt this approach are the 3LA ap-
proach [20], ActivFORMS [9,21,22], PLASMA [23,24], ALM [10,13],
Service ensembles [25], recent extensions of MORPH [26,27],

610 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 3. Hierarchical inter–intra collaborative pattern (HIIC) [17].

Fig. 4. FESAS component template [18].

among others. In order to support the third layer, most of these
approaches consider the implementation of a second feedback
loop that monitors the performance of the SAS AM and adjusts it,
if necessary, at runtime. Although the idea of considering three
layers is quite generic, current proposals for realizing it present
limitations.

For instance, the approaches proposed by Gerostathopoulos
et al. [28,29] as well as some of the approaches mentioned before
such as 3LA [20] and PLASMA [23,24], focus on the adapta-
tion of the adaptation rules/capabilities, managed by the AM for
guiding the ME’s adaptation process. Therefore, other types of
adaptation are not supported, e.g., the structural adaptation of
the MAPE-K elements of the AM which, as mentioned before, is
necessary in a variety of situations. The three-layer solution called

DAS [30] tries to address this issue by allowing different types of
adaptation which include changes on ME’s variability model, the
techniques utilized for reasoning about ME’s adaptation, as well
as changes on a context model that contains the environmental
variables considered during the ME’s adaptation process. How-
ever, DAS [30] does not provide details for engineering of such
vision.

In previous works, we have also proposed a three-layer ap-
proach. The former proposal, ACon [31], and its extension, SACRE
[17,32], describe an approach for adjusting SASs’ adaptation rules,
the so called contextual requirements, through learning tech-
niques (see Table 1). Learning-based solutions have also been pro-
posed by other approaches such as OTC [33–37], NoMPRoL [38–
40], KAMI [41], FUSION [42,43], DSPL [44–47], Adaptive KBs [48],
and the approaches proposed by Zhao et al. [12], based on re-
inforcement learning, Rodrigues et al. [49], using data mining
techniques, and the solution for mobile systems proposed by
Pascual et al. [50]. The majority of these approaches focus on
the ability of the learning techniques for discovering new adap-
tation rules or correcting and discarding existing ones. Therefore,
other types of adaptation are not considered, and the engineering
support for reusing such solutions is missing in most of them.

Moreover, learning-based approaches tend to see the adaptive
behavior of AMs as an enhanced operation and not as a com-
pletely independent process. Therefore, some of the proposals
rely on internal solutions, i.e., the MAPE-K elements are in charge
of their own adaptation or the MAPE-K loop is extended by one or
two extra elements. The adoption of internal solutions constrains
the scalability of the proposals and may affect the performance
of the AM regarding its main task, i.e., adapt the MEs [1]. This
is also the case of the Auto-adjust [51] and the ESOs [8,52–
54] approaches. For example in ESOs, the Monitor and Execute
elements’ implementations are selected by the MAPE-K loop itself
at runtime.

There are also approaches that support the addition and re-
moval of the complete AM at runtime. Examples of these ap-
proaches are DCL [57] and the approach proposed by Ali & So-
lis [61] for the self-adaptation of mobile resources. In these ap-
proaches, the AM is substituted by a new one when it is not
suitable for the ME anymore, e.g., when its knowledge becomes
obsolete. Finally, there are other approaches that even they are
useful for solving relevant problems; their adoption for address-
ing other SASs’ issues is limited. This is the case of Reqs@RT [58–

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 611

Table 1
Overview of works related to HAFLoop.
Approach Trigger time Type of change Approach (De)Centralization System type

DYNAMICO [11,55] Reactive Structure Rules Centralized Objective-driven
ESOs [8,52–54] Reactive Structure Rules Centralized Component-based
RINGA [56] Reactive Parameter Model checking Centralized Model-based
Gen. & evol. of adaptation rules [12] Both Parameter Learning Centralized Goal-oriented
ACon & SACRE [17,31,32] Both Parameter Learning Both Context-aware requirements
3LA [20] Reactive Undeclared Generic architecture Centralized Goal-oriented and component-based
ActivFORMS [9,21,22] Reactive Parameter Rules Centralized Goal-oriented
NoMPRoL [38–40] Reactive Parameter Learning Centralized Component-based
DCL [57] Undeclared Structure Replacement Centralized Goal-oriented and component-based
PLASMA [23,24] Reactive Parameter Human-assisted Centralized Goal-oriented and model-based
FUSION [42,43] Reactive Parameter Learning Centralized Feature-oriented and model based
KAMI [41] Both Parameter Learning Centralized Model-based
OTC [33–37] Both Both Learning Both Application-specific
ALM [10,13] Both Both Generic architecture Centralized (Any)
DSPLs [44–47] Both Parameter Learning Centralized Feature-oriented and model based
Reqs@RT [58–60] Reactive Parameter Human-assisted Centralized Goal-oriented
Adaptive KBs [48] Reactive Parameter Learning Centralized Goal-oriented and model-based
Service ensembles [25] Reactive Parameter Rules Centralized Component-based
Auto-adjustment [51] Reactive Parameter Rules Centralized (Any)
DAS [30] Reactive Both Rules Centralized Model-based
MORPH [26,27] Both Both Generic architecture Centralized Goal-oriented and model-based
Meta-adaptation [28] Reactive Parameter Rule-based Centralized Model-based
Mobile resources [61] Reactive Structure Replacement Decentralized Service-oriented
Self-adapt CVL [50] Reactive Structure Learning Centralized Model-based
Assurances enhancement [49] Reactive Parameter Learning Centralized Goal-oriented
Architectural homeostasis [29] Reactive Structure Homeostasis Both Component-based
HAFLoop Both Both Generic architecture Both (Any)

60], RINGA [56] and DYNAMICO [11,55]. For instance, DYNAM-
ICO [11,55] proposes a 3-loop solution for supporting context-
aware SASs. The loops are dedicated to adapt specific aspects
that are relevant for this kind of SASs. Therefore, they cannot be
utilized for satisfying other type of requirements.

Finally, most of the approaches mentioned above do not sup-
port adaptive AMs in decentralized settings. Thus, their appli-
cation in modern SASs is limited. Table 1 provides an overview
of the main characteristics of the approaches mentioned above.
That is, the time at which an adaptation is triggered (proactive,
before an event happens, or reactive, once it happens); the type
of change enacted over the AM, parameter or structure; the fun-
damentals of the approach adopted, e.g., learning based, driven
by predefined rules/functions or based on the replacement of the
complete AM; the (de)centralization level supported; and finally,
the type of system in which they can operate. These dimen-
sions are based on the taxonomy for self-adaptation proposed
in the extensive survey conducted by Krupitzer et al. [62]. For
comparison purposes, we have also characterized our solution,
HAFLoop.

Many efforts have been done for supporting adaptive AMs
in SASs in order to improve ME’s adaptation results. However,
from the software engineering perspective, there are still some
research gaps. A software solution should be reusable among
different systems [63], in this case different SASs. From the ana-
lyzed approaches, we have concluded that there are not complete
and flexible enough solutions that could be adopted by a variety
of modern SASs. Therefore, there is a need and opportunity for
engineers to innovate in this field. A reusable software solution
would accelerate and structure the development process as well
as facilitate the evolution of the system over time. Motivated
by this facet, HAFLoop aims at providing a generic and reusable
architecture for supporting engineers in the systematic develop-
ment of adaptive feedback loops for SASs. Our proposal should be
detailed enough to describe the operation of adaptive feedback
loops’ elements, components and subcomponents, and generic
enough to be replicated in a variety of SASs.

5. HAFLoop

In this section, we provide the details of our proposal. First,
we describe the architectural decisions that encompass the fun-
damentals of HAFLoop. Then, we explain how those decisions
can be implemented as a generic framework for fastening the
development of adaptive feedback loops.

5.1. Architecture

HAFLoop proposes a generic architecture for adaptive AMs.
Concretely, since one of the most prominent loops for implement-
ing AMs is the MAPE-K loop, our proposal bases its foundations in
this loop. HAFLoop is able to support both structure and parame-
ter adaptation of the elements of the loop, as well as operate in a
variety of settings, from centralized to fully decentralized loops.
The architecture consists of a set of modular components that
can operate together or in isolation. Concretely, we have defined
four types of reusable components that correspond to different
abstraction levels, from more complex to simpler:

− Adaptive AM or adaptive feedback loop
− Adaptive MAPE-K element
− Element component
− Managers and policies

In next subsections, we describe each of these components.

5.1.1. Adaptive AM or adaptive feedback loop
In HAFLoop, we consider that the loop implementing the adap-

tive AM can have more than one element of each type, as we
have established in the principles of the HIIC pattern [17] (see
Section 3.1). This could be beneficial in some situations, e.g., for
load-balancing, redundancy or for comparing two logics in a
single SAS [30]. HAFLoop AMs can also share elements with
each other in order to, for instance, unify adaptation decisions
of different SASs. This is the case of complex SASs such as traffic
control systems composed of a set of adaptive traffic lights, which
operate as a system-of-systems [33–37]. Finally, by adopting the
HIIC pattern, HAFLoop AMs’ elements are able to communicate

612 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

and coordinate with MAPE-K elements of other SASs. For in-
stance, in the case of our running example, an SDV could use
vehicle-to-vehicle (V2V) communication for re-calculating routes
to optimize the traffic in a city.

The structural and behavioral characteristics of HAFLoop AMs,
mentioned above, are supported in by the use of runtime policies.
Policies are configuration elements that, besides other informa-
tion, encompass the up-to-date knowledge of AMs structure.
These configuration elements have been previously introduced by
our HIIC pattern [17]. However, in HIIC, details about how they
should be managed are not provided. Therefore, in this work, we
propose a series of mechanisms for managing and reconfiguring
such policies at runtime, supporting in this way the adaptation
of both the parameters and the structure of SASs’ feedback loops.
Policies also allow the loop elements to decouple their opera-
tion; therefore, fully decentralized loops can be supported. More
details about policies are provided later in Sections 5.1.3 and
5.1.4.

5.1.2. Adaptive MAPE-K element
At the element level, HAFLoop separates the generic function-

ality, e.g., adaptation and data handling tasks, from the element-
specific functionality, i.e., the logic required to monitor, ana-
lyze, plan, execute, and manage runtime knowledge. With this
approach, a design for a generic adaptive element that serves
as basis for all the elements can be provided. The HAFLoop
MAPE-K element extends the FESAS template [18], presented
in Section 3.2, with a set of components and mechanisms for
coordinating elements’ operation with their adaptation process.
Concretely, a generic HAFLoop element is composed of four func-
tional layers: a Communication layer, a Message processing layer, a
Logic layer, and a Knowledge layer (see Fig. 5). These layers repre-
sent the main functionalities of an element, that is: communicate
with other systems, process input and output messages, execute
element-specific logic and adaptation logic, and manage runtime
knowledge, respectively.

The Communication and Message processing layers correspond
to the communication and data handling components in the
FESAS template [18]. Meanwhile, the Logic layer partially cor-
responds to the logic component, since adaptation capabilities
are not considered in the FESAS template. Finally, we have ex-
tended the original template with a Knowledge layer, in order
to enable MAPE-K elements to manage element-specific runtime
knowledge such as adaptive policies. In order to perform the
functionalities of each layer, we propose the following compo-
nents:

− Communication layer

• Receiver. This component is in charge of providing an in-
terface for enabling external systems to communicate with
the loop elements. It receives input messages and forwards
them to the Logic selector component.

• Sender. The main function of this component is to send
output messages to the corresponding recipients (e.g.,
other loop elements or the MEs) using the adequate inter-
faces, i.e., protocol, endpoints, etc.

− Message processing layer

• Logic selector. This component analyzes input messages
and selects the logic component that should process them,
i.e., the Functional or the Adaptation logic.

• Message composer. The Message composer is in charge
of preparing elements’ output messages. Output messages
are mainly generated by the Functional and the Adapta-
tion logic components. Concretely, the Message composer’s

function consists of determining the recipients of a spe-
cific message, ensuring format adequacy, and creating the
necessary message copies. These copies are passed to the
Sender component for being sent to the final recipients.

− Logic layer

• Functional logic. This component is the component in
charge of enacting any logic related to the main function-
ality of the elements and is what gives them their nature,
i.e., it determines whether an element is a Monitor, an
Analyze, a Plan, an Execute or a Knowledge base.

• Adaptation logic. This component contains the logic for
processing elements’ adaptation messages, for instance, it
could decide whether an adaptation action can actually
be enacted or not, given a specific context. The Adapta-
tion logic forwards adaptation messages to the Knowledge
manager for being executed, and, if needed, sends out-
put messages (e.g., an acknowledgment of the received
adaptation message) to the Message composer.

− Knowledge layer

• Knowledge manager. The Knowledge manager, as its
name implies, is in charge of managing the knowledge
required by the rest of components for operating correctly.
In our proposal, knowledge is stored in the form of runtime
policies, which can be adapted at runtime. In order to
support the adaptation process, this component receives
adaptation messages from the Adaptation logic, then it
determines to which element component(s) an adaptation
request should be sent. This component can also be utilized
for managing other types of knowledge. However, in this
work, we focus only on the adaptive runtime policies since
they play a crucial role in the adaption of the MAPE-K
elements.

5.1.3. Element component
Elements’ adaptations are managed at the component level.

This decision makes our design modular and scalable since each
element’s component can be adapted independently from the rest
of the components. In order to coordinate components’ operation
with their adaptation process, we propose to include in each
component at least three subcomponents: a Message manager, a
Component policy manager, and a Component policy (see Fig. 6).
The Message manager subcomponent is dedicated to receive mes-
sages from other components (or external systems, e.g., in the
case of the Receiver) while the Component policy manager re-
ceives the adaptation requests (from the Knowledge manager
component).

After processing an adaptation request, the Component policy
manager sends the corresponding adaptation action to the Com-
ponent policy subcomponent. This last subcomponent represents
the current active policy. After receiving the adaptation action,
the Component policy performs two tasks: first, it updates the
component’s policy variables; second, it notifies the changes to
the rest of the components’ subcomponents that utilize such pol-
icy variables, e.g., the Message manager subcomponent described
before. Fig. 7 illustrates this interaction.

Each subcomponent being notified, may then interpret such
changes in the adequate way. For instance, in the case of the
Analyze element’s Functional logic subcomponents, a change on
policy variables could mean the substitution of the algorithm
used for analyzing monitoring data. In other cases, changes on
policy variables may be interpreted as structural changes, for
instance, in the example of the Analyze element’s Functional
logic, a structural change could be the substitution of one analysis
provider by another, e.g., using re-composition techniques in case
of service-based systems.

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 613

Fig. 5. Generic HAFLoop adaptive MAPE-K element.

Fig. 6. Generic HAFLoop adaptive element component.

614 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 7. Policy adaptation sequence diagram.

5.1.4. Managers and policies
Each component of an element has a different purpose, as

described in Section 5.1.2; therefore, the component-specific logic
encompassed by theirMessage manager subcomponent may differ
for each of them. In order to support such variety, we propose
a series of subcomponents for realizing the Message manager of
each element’s component (see Fig. 8). Below, we describe these
subcomponents:

− Message processor. This subcomponent plays the role of
the Message manager in the Receiver component. After
receiving an input message, it utilizes Receiver’s policy for
deciding to which Logic selector a message should be sent
and sends it.

− Message dispatcher. The Message dispatcher realizes Logic
selector’s Message manager. It utilizes component’s policy
for deciding whether a message should be sent to the
Functional logic or to the Adaptation logic.

− Functional logic enactor. This subcomponent operates as
the Message manager of the Functional logic component. Its
functionality consists of calling the Functional logic enactor
manager, another subcomponent of the Functional logic
(FLE manager in Fig. 8), when a new operational message
is received. The FLE manager in its turn decides to which
specific logic a message should be sent.

− Adaptation logic enactor. This is the Message manager of
the Adaptation logic component. It utilizes the Adaptation
logic’s policy for deciding whether an adaptation can be
enacted in the element or not, in case of yes, the adap-
tation message is forwarded to the Knowledge manager
component.

− Formatter. This subcomponent realizes the Message man-
ager of the Message composer component. It utilizes the
component’s policy for determining: (1) to which recip-
ients a message should be sent, (2) which data format
is required by each recipient. Then, the Message creator,
which is another subcomponent of the Message composer
(see Fig. 8), receives formatted messages from the Format-
ter and sends the output messages to the corresponding
Sender component.

− Message sender. This is the Sender’s Message manager.
Considering the component’s policy, this subcomponent
sends output messages to the elements’ recipients using
the corresponding interfaces, e.g., a service call.

− Adaptive knowledge manager. This subcomponent is the
Message manager of the Knowledge manager component. It
utilizes the component’s policy for deciding in which com-
ponent(s) of the HAFLoop element an adaptation should be
enacted and sends the corresponding request(s).

HAFLoop components’ operation is driven by adaptive runtime
policies. The configuration variables contained in policies are
intended to describe how an element should behave, how it is
internally structured and how it communicates with other sys-
tems. Since policies’ adaptation is already managed by HAFLoop
components, as described in Section 5.1.3, SASs’ owners can fo-
cus on designing how policy changes should be translated into
changes of their specific software components.

Policies can contain innumerable configuration variables; vari-
ables will depend on the requirements of each HAFLoop in-
stance, i.e., each use case. Moreover, variables can be generic
and reusable among different SASs, but also domain specific. For
instance, in our SDV example, policies could include the type of
adaptation supported (structure, e.g., for enabling the trade-off
of active sensors; parameter, e.g., for allowing changes on the
monitoring frequency) as well as the type of logic that should
be utilized for determining the need of adaptation (proactive,
using learning techniques; reactive, once a sensor fault happens).
In the evaluation of HAFLoop, we provide examples of policies
(see Appendix); however, the list of variables considered is not
intended to be complete, but to serve as guideline for future
approaches reusing HAFLoop.

5.2. Implementation

In order to support engineers in the development process
of adaptive feedback loops, we have implemented the generic
functionalities of HAFLoop in the form of a Java-based framework.
The framework consists of a series of interfaces that describe the
behavior of the different HAFLoop components, i.e., the adaptive
AM or adaptive feedback loop, the adaptive MAPE-K element, the
element components and the subcomponents (i.e., managers and
policies). The framework also provides a set of implementations
for those interfaces, except for the Functional logic enactor man-
ager (and the specific logics) and the Message sender, which will
vary for each SAS. These implementations can be reused, substi-
tuted or extended by other SASs’ owners. This framework is not
only intended to serve as a basis for Java-based adaptive feedback
loop projects, but also as an example implementation of HAFLoop
for the future creation of frameworks for other programming

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 615

Fig. 8. Message manager realization in each HAFLoop element component.

languages. Fig. 9 shows a simplified version of the components
of our HAFLoop implementation.

This implementation of HAFLoop improves the development
process of adaptive feedback loops in different ways. First, the
great majority of the components and subcomponents, as well as
the communication mechanism, can be reused by any SAS. There-
fore, systems’ owners can focus on domain or application-specific
issues, i.e., the development of MAPE-K elements’ functional log-
ics. Second, the operation of the components has been optimized
based on previous experiences [17,32], utilizing popular software
engineering techniques such as multithreading and asynchronous
communications. Third, as mentioned above, components and
subcomponents can be replaced by other implementations and/or
extended for fulfilling specific SASs’ requirements.

From an organizational perspective, since loop elements, com-
ponents and subcomponents are conceptually and technically
loosely coupled, they can be developed independently, e.g., by dif-
ferent specialized teams/companies, and gradually improved as
required. This characteristic is quite convenient since nowadays

software systems are developed more and more in distributed en-
vironments and following agile methodologies. Finally, regarding
usability, due to the close relation between the terms typically
used in the SASs’ field and the HAFLoop components, we consider
that our implementation is easy to understand, learn, and use. The
source code of this implementation as well as more details about
its construction and instructions for reusing it are open (under
Apache License, Version 2.0) and available at https://github.com/
edithzavala/loopa.

6. Evaluation

The evaluation of HAFLoop aims to demonstrate: first, the
feasibility and benefits of adopting adaptive feedback loops in
modern SASs; second, that our solution is generic enough to
support SASs from different application domains and in different
settings. With this purpose, we have considered a couple of SASs
from two different domains: an SDV based on our running exam-
ple, and an IoT network. On the one hand, as mentioned before,

https://github.com/edithzavala/loopa
https://github.com/edithzavala/loopa
https://github.com/edithzavala/loopa

616 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 9. HAFLoop framework implementation.

SDVs are currently a popular subject of research due to all the
challenges their design, development and maintenance conveys.
On the other hand, IoT applications are increasingly emerging and
their rapid growth in recent years has brought multiple research
opportunities (energy consumption optimization, availability, re-
liability, security, etc.) [64–66]. Moreover, both domains may
share self-adaption solutions in the future due to its close rela-
tion, for instance, in the ecosystem of a smart city [67]. For both
cases, we have simulated SASs through software components
using existing platforms. The evaluation has been performed in
real-time using an IntelR CoreTM i7-7700HQ CPU @ 2.80 GHz,
with 16,0 GB RAM. On the one hand, the SDV has been simulated
using the open-source software environment OpenDaVINCI [15].
On the other hand, the IoT network has been simulated using the
DeltaIoT artifact [16]:

− OpenDaVINCI [15] is a middleware that provides the func-
tionalities typically required for experimenting with au-
tonomous vehicles, e.g., a visualization environment and
components to embody simulations (vehicle kinematics,
sensor simulations for a virtual camera, infrared, and ul-
trasonic sensors). Moreover, it provides a series of reusable
algorithms for autonomous vehicles.

− Similarly, DeltaIoT [16] provides a simulator of an adaptive
IoT network (composed of temperature, RFID and infrared
sensors) for the evaluation of new solutions. In the simula-
tor, the activities of the network during a specified period
of wall clock time can be simulated in one run. As an
example of usage, DeltaIoT [16] provides the logic of an
adaptive IoT network (composed of 15 motes, 14 sensors
and a gateway) that aims to minimize energy consumption.

For both SASs, we have reused the algorithms provided by
the simulators for supporting the operation of the adaptation
logic. In the remainder of this section, we describe the evaluation
process and the threats to validity that we have identified for this
evaluation.

6.1. HAFLoop instantiation

In order to conduct our evaluation, we have implemented
adaptive feedback loops using the HAFLoop framework. Reusing
all the generic modules of the framework, in both cases we only
had to implement: elements’ Functional logic enactor manager

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 617

Fig. 10. Level-2 loop implementation using HAFLoop.

subcomponent (and the required use case logics), elements’ Mes-
sage sender subcomponent, and the Sensors and Effectors (for
which our implementation of HAFLoop also provides interfaces).
We have instantiated both centralized and decentralized loops;
therefore, the flexibility of HAFLoop’s architecture can also be
demonstrated. Finally, in both cases, we have adopted the layer-
based architecture proposed by the HIIC pattern. Concretely, we
have implemented for each SAS two loops: a Level-1 loop (cor-
responding to the Middle-layer loop in Fig. 3) and a Level-2 loop
(corresponding to the Top-layer loop in Fig. 3). These loops are
completely decoupled, i.e., they operate as completely indepen-
dent systems. Below, we describe the implementation of each
SAS.

6.1.1. An improved context-aware self-driving vehicle
OpenDaVINCI provides the SDV logic in C++. This encompasses

the vehicle itself and a feedback loop in charge of controlling
the self-driving functionality, henceforth Level-1 loop. For this
evaluation, we have extended such logic introducing runtime
policy variables and context-aware functionality. Concretely, the
Monitor element of the loop was extended by a weather service,
a traffic service and V2Vcommunication. For the system in charge
of the adaptation of the Level-1 loop, we have implemented
a second loop, henceforth Level-2 loop. For implementing the
Level-2 loop, we have used the HAFLoop framework. Fig. 10
provides a simplified overview of the implementation of this loop.
Both loops are centralized and operate as independent services
connected through an adaptor component. Concretely, each loop
can be summarized as follows:

− Level-1 loop. This loop is implemented by a series of con-
tainerized services. First, a set of microservices implement
the Functional logic of the Monitor element of the loop.
Each microservice gathers data from a different source,

being the sources: an inertial measurement unit (IMU), a
camera, an infrared and ultrasonic sensors system, V2V
communication, and weather and traffic services. Then,
the Analyze, Plan and Execute elements’ logics are imple-
mented by another service that manages the self-driving
context-aware functionality, taking into account the moni-
toring data gathered at runtime. All these services commu-
nicate with each other through a multicast service, placed
at the Knowledge base element of the loop. The imple-
mentation of this loop can be found at https://github.com/
edithzavala/OpenDaVINCI/tree/feature.smartvehicle and
https://github.com/edithzavala/cityreporter.

− Level-2 loop. For this loop, we have reused the generic
components of the HAFLoop framework and instantiated
the Simple Autonomic Manager implementation. The AM
consists of a loop composed of one element of each type
(see Self-driving vehicle Level-2 loop in Fig. 10). The setup
of this loop is carried out by the AMmodule, which receives
all the policies for initializing and connecting elements and
elements’ components. It is also in charge of notifying the
corresponding elements, when a new ME is connected.
On the left side, the HAFLoop generic modules available
for the implementation of the loop; on the right side, the
modules implemented for this specific SAS. The complete
implementation of this loop can be found at https://github.
com/edithzavala/ksam-loopa.

6.1.2. An improved adaptive IoT network
DeltaIoT provides the adaption logic of the IoT network in

a single Java class. This corresponds to the Level-1 loop of the
adaptive IoT network. In order to make this loop adaptive as
well, we have migrated such logic to a HAFLoop loop. Fig. 11
provides a simplified overview of the implementation of this loop
(IoT Level-1 loop modules). In this case, the implemented loop

https://github.com/edithzavala/OpenDaVINCI/tree/feature.smartvehicle
https://github.com/edithzavala/OpenDaVINCI/tree/feature.smartvehicle
https://github.com/edithzavala/OpenDaVINCI/tree/feature.smartvehicle
https://github.com/edithzavala/cityreporter
https://github.com/edithzavala/ksam-loopa
https://github.com/edithzavala/ksam-loopa
https://github.com/edithzavala/ksam-loopa

618 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 11. Level 1 and Level-2 loops implementation using HAFLoop.

is decentralized. For adapting the Monitor element of the Level-
1 loop, we have reused the structure and some of the logic and
policy variables of the HAFLoop SDV Level-2 loop.

− Level-1 loop. This loop is composed of a series of ser-
vices. Each element of the loop is an independent ser-
vice and has been developed using the implementations
of HAFLoop. This is possible thanks to the modularity of-
fered by our approach, both at design and implementa-
tion levels. The structure of the Level-1 loop for the IoT
network is dynamic. Concretely, the number of Monitor
instances operating at the same time changes during the
execution. The amount of monitors running at a specific
point of time is transparent for the IoT network as well as
for the rest of the elements of the Level-1 loop. Effectors
and Sensors are implemented by the DeltaIoT simulator;
therefore, in this case they are not included. Finally, setup
and policies’ management processes are carried out by
each element, in a decentralized way. The complete imple-
mentation can be found at https://github.com/edithzavala/
DecentralizedLoop-HAFLoop.

− Level-2 loop. This loop instantiates the Simple Autonomic
Manager implementation provided by HAFLoop, which

manages setup and policies as explained for the SDV case.
Some changes on the elements’ implementation have been
done, e.g., on the functional logic (represented by the
elements’ Logic classes in Fig. 11), in order to correctly
adapt the DeltaIoT Level-1 loop. Other components that
have changed are the interfaces of the loop for interacting
with the Level-1 loop. The rest of the components have
been reused from the SDV use case. The complete imple-
mentation of this loop can be found at https://github.com/
edithzavala/DeltaIoTLoopa2MAPEK.

6.2. Scenarios’ execution

6.2.1. An improved context-aware self-driving vehicle
The evaluation of HAFLoop in the SDVs domain has consisted

in two main use cases: a sensor fault and battery level issues (see
Table 2).

In this evaluation, the adaptation decisions are based on three
main factors: the number of vehicles on the road (the more
vehicles, the more increased driving risk); the typical self-driving
functionality usage, learned from driver’s behavior (using data
mining techniques) which has been simulated in a training phase;

https://github.com/edithzavala/DecentralizedLoop-HAFLoop
https://github.com/edithzavala/DecentralizedLoop-HAFLoop
https://github.com/edithzavala/DecentralizedLoop-HAFLoop
https://github.com/edithzavala/DeltaIoTLoopa2MAPEK
https://github.com/edithzavala/DeltaIoTLoopa2MAPEK
https://github.com/edithzavala/DeltaIoTLoopa2MAPEK

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 619

Table 2
SDV use case scenarios.
Use case Scenario Expected adaptation

Sensor fault us1 Frontal ultrasonic sensor fails when the SDV goes on
a road with no other vehicles, at the beginning of
the journey.

No adaptation is enacted. Self-driving functionality stays active.

us2 Frontal ultrasonic sensor fails when the SDV goes on
a road with other vehicles, at the beginning of the
journey.

V2V communication is activated given the increased driving risk.
Self-driving functionality stays active.

us3 Frontal ultrasonic sensor fails when the SDV goes on
a road with no other vehicles, close to the end of
the journey.

No monitor adaptation is enacted. According to patterns learned, driver
will change to manual mode in the near future.

Battery issues us4 Critical battery level is experienced when the SDV
starts its journey in a road with no other vehicles.
Parameter adaptation is not supported.

A trade-off between required and non-required monitor is performed,
resulting in the deactivation of the traffic and weather monitoring
services.

us5 Rapid battery depletion is experienced when the SDV
is in the middle of its journey in a road with no
other vehicles. Parameter adaptation is supported.

A trade-off between required and non-required data sources, and their
monitoring frequency is performed, resulting in the proactive adaptation
of the traffic monitoring service frequency (i.e., it is reduced).

us6 Critical battery level is experienced when the SDV
starts its journey in a road with other vehicles.

No monitor adaptation is enacted given the increased driving risk.
However, a take-over request is sent to the driver. Driving mode is
changed to manual.

Fig. 12. SSDV sensors layout [15].

and the cost and utility of each source of monitoring data, i.e.,
sensors, V2V communication and cloud services. In this domain,
we are interested in the adaptation response time given the
criticality of this factor in this specific type of systems.

For running the evaluation of HAFLoop in the SDVs domain,
we have utilized sensor data simulated by OpenDaVINCI, i.e., ul-
trasonic, infrared and camera. The sensors layout is displayed in
Fig. 12. In order to find patterns on the self-driving functionality
usage, we have utilized a set of data mining algorithms offered by
a well-known data mining tool, Weka (https://www.cs.waikato.
ac.nz/ml/weka/). In a previous work [17], we have already utilized
the Weka tool in the domain of smart vehicles. The results in that
work were satisfactory; therefore, we have incorporated the same
tool in the evaluation of HAFLoop.

In order to train the SDV, we have considered the following
scenario: a driver goes from work to her home in a daily basis
and utilizes the self-driving functionality in specific segments of
the journey. The resulting models are used at runtime for: (1)
predicting the position of the vehicle in the near future (i.e., next
N iterations) when a fault or battery issues are experienced; (2)
predicting the self-driving functionality usage in that position.
Given the nature of the data, for learning route preferences, we
have utilized the IBk (K-nearest neighbors) classifier on vehicle’s
position data; meanwhile, for learning about the self-driving us-
age, we have utilized the JRip (Rule-based) classifier on a Boolean
class variable that indicated whether the functionality was ac-
tive or not. We have selected this algorithm based on previous
works [17,31,68,69]. The resulting rules regarding the self-driving
functionality usage are shown in Fig. 13.

At runtime, Level-1 and Level-2 loops require policy variables
for driving their operation. Therefore, we have defined a set of

policies for the loop elements. A simplified version of the most
relevant configuration variables considered in the SDV evalua-
tion, and the initial values assigned to them in each scenario,
are provided in Appendix (Tables A.1 and A.2). For instance,
some variables related to elements’ structure such as the list of
recipients, are not shown. Fig. 14 illustrates how each use case
scenario has been executed, i.e., the number of vehicles on the
road and the point (average point calculated after executing all
scenarios’ replications) at which the sensor fault or the battery
issue is experienced.

When executing software systems, results may be affected
by factors that are out of our control, e.g., the way in which
the operative system manages resources in a specific execution.
Therefore, in order to ensure the reliability of the results, we
have decided to run each evaluation scenario several times. For
calculating the correct number of replications to execute, we have
used the formula of Berenson and Levine [70] and calculated the
limit when the total population size (i.e., the expected number of
executions in the software system life-time) tends to infinite:

n =
Z2

αNpq

e2 (N − 1) + Z2
αpq

where:

− n is the number of replications needed (i.e., the sample
size).

− Zα is the value from the standard normal distribution for
a selected confidence level. We have selected the typically
used 95% of confidence level which Zα is 1,96.

− N is the total population size. In our case, infinite.
− e is the sample error we accept for this evaluation. For the

error, we have utilized 0.1.
− p and q: are the probability of success and failure respec-

tively. We have selected the typical value of 0,5 for each of
them.

As a result, we obtained n = 96,04. Based on this result, we have
decided to run 100 replications for each use case scenario.

6.2.2. An improved adaptive IoT network
On the other hand, the evaluation of HAFLoop in the IoT net-

work has been conducted for the following use cases: unexpected
monitoring service shutdown and monitor QoS degradation. In
this evaluation, a varying number of monitoring services are
utilized for gathering data from the network motes, i.e., the

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/

620 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 13. Self-driving usage patterns in the simulation environment.

Fig. 14. HAFLoop evaluation context-aware SDV scenarios execution.

monitoring task is distributed, initially balanced among two mon-
itoring services. The scenarios evaluated for each use case are
shown in Table 3. The scenarios are designed to evaluate the ben-
efits of enabling adaptive feedback loops against using static loops
in adaptive IoT networks. For that purpose, we use the metrics
relevant for this domain, proposed by Iftikhar et al. [16]: energy
consumption and packet loss. The initial adaptive IoT network
uses the Level-1 loop for maximizing network’s life-time. That is,
this loop is in charge of reducing energy consumption through
the adaption of motes’ operation. In this context, a malfunctioning
loop would not be able to properly satisfy its goal.

In the DeltaIoT simulator, the activities of the network during
a specified period of wall clock time can be simulated in one
run; the default period is 15 min. The exemplar provides two
predefined configurations: a default network configuration with
14 sensors and a gateway, as shown in Fig. 15; and, a reference
configuration where each mote in the network communicates
at maximum power, and sends/forwards all its messages to all
its parents. Adaptation of the IoT network is based on adapting
the network settings of the motes that participate in the IoT
network. In our case, the configuration regarding the power used
for transmitting messages is the one adapted at runtime.

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 621

Table 3
Adaptive IoT network use case scenarios.
Use case Scenario Expected adaptation

Monitor service
shutdown

us1 One of the monitoring services unexpectedly shuts
down and Level-2 loop is not enabled.

No adaptation is enacted and the Level-1 loop is not able to operate
correctly (e.g., the Analyze element does not have all the information it
requires for determining the need of network’s adaptation).

us2 One of the monitoring services unexpectedly shuts
down and Level-2 loop is enabled.

A new Monitor microservice is started with the configuration of the lost
Monitor service.

Monitor QoS
degradation

us3 One of the monitoring services experience
performance degradation (response time) and Level-2
loop is not enabled.

No adaptation is enacted and the Level-1 loop is not able to operate
correctly (e.g., at some iterations, monitoring data is incomplete and no
adaptation is done).

us4 One of the monitoring services experience
performance degradation (response time) and
Level-2 loop is enabled.

A new Monitor microservice is started and a load-balancing process is
triggered, resulting in the adaptation of the slow Monitor policy, .i.e. list
of monitored motes is reduced.

Fig. 15. DeltaIoT network topology [16].

In order to simulate traffic, the DeltaIoT simulator is loaded
with different profiles. For the evaluation of HAFLoop, we have
utilized a profile that simulates communication interference at
some points of time as well as fluctuating traffic. This profile is
the one also utilized by the authors for exemplifying an evalua-
tion using DeltaIoT. Fig. 16 illustrates the execution of different
DeltaIoT runs. Concretely, it shows the energy consumption and
packet loss of a network over time for different scenarios. In
both use cases of this evaluation of HAFLoop, monitor shutdown
and monitor performance degradation have been simulated at
the beginning of the execution, i.e., around the second or third
iteration of the Level-1 loop.

In order to report results, we have calculated the energy
consumption and packet loss average for a complete run. Then,
we have computed the average of the results taking into account
all the replications of a run. Finally, for this evaluation, we have
defined a series of policy variables for the Level-1 and Level-2
loops. A simplified version of these variables, and the initial val-
ues assigned to them in each scenario, are provided in Appendix
(Tables A.3 and A.4). Some variables, for instance, the ones related
to the elements’ structure, are not shown, but they are present

in the implementation. In the list of policies, it can be noticed
that some variables were reused from one application domain to
another, although with different values. For example, the variable
Monitor, which corresponds to the list of available monitoring
sources, or the Alert iterations variable, which indicates the num-
ber of iterations that the Analyze element should wait before
triggering an adaptation plan.

6.3. Analysis of the results

6.3.1. An improved context-aware self-driving vehicle
In order to analyze the evaluation results of the SDV, two

aspects are explored: adaptation response time and adequacy.
The response time is split into:

− Level-2 loop response time. Time elapsed since the Monitor
element detects a sensor fault or a battery issue until an
adaptation decision (in case of no adaptation required) or
an adaptation request is sent to the Level-1 loop.

− Level-1 loop response time. Time elapsed since an adapta-
tion request is received until it is enacted.

622 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 16. HAFLoop adaptive IoT network scenarios example execution.

− Data mining response time. Time required by the data min-
ing module for performing the predictions at runtime. This
time is subsumed by the Level-2 loop response time but
still we find interesting to isolate it in our benchmarking.

Regarding the adequacy, two metrics are taken into account:

− Adaptation enactment/decision correctness. Expected
adaptations, described in Table 3, which are finally realized.

− Prediction correctness. The need for (no) adaptation is cor-
rectly predicted and prediction results are timely, i.e., SDV
position after prediction is the same or previous to the last
predicted.

Fig. 17 presents the Level-1 and Level-2 loops’ response time
values obtained in each use case scenario replication as well
as the data mining module’s response time. The x-axis of each
sub-graph shows the number of replication (iteration), while the
y-axis shows the response times. On the other hand, Table 4
provides the replications’ average response time (in milliseconds)
for each use case scenario. In Table 4, we also include the standard
deviation of the response times. The Level-1 loop response time
values range in average from 406 ms to 1557 ms. Regarding Level-
2 loop response time, values range in average from 29,106 ms
to 89,218 ms. Comparing these results with those obtained in a
previous evaluation that we conducted in the domain of smart
vehicles [17], a great improvement can be noticed. In our previous
work, the response time of the scenarios using data mining was
in the order of seconds while in this evaluation, results are in the
order of milliseconds.

This improvement is due to different factors: (1) thanks to the
utilization of our framework, software modules now communi-
cate with each other asynchronously; (2) elements’ operation and
their adaptation process are treated independently, i.e., modules
are multithread; (3) the amount of data to analyze at runtime

has been drastically reduced while ensuring its relevance, as
suggested in the conclusions of our previous work [17]; (4) data
mining is used for prediction and not for model generation at
runtime. On the other hand, the significant difference in Level-2
loop’s response time between sensor fault and battery issues sce-
narios is due to a control mechanism that we have implemented
to avoid adapting the system in response to isolated events.

In the case of a sensor fault, this mechanism forces the system
to wait some iterations before the need of adaptation is triggered.
The correct number of iterations to wait may depend on several
factors. Therefore, it is still a variable subject of research for
future implementations and that we have included as part of
the Monitor and Analyze elements’ functional logic policy (see
Appendix). Finally, regarding the data mining module response
time, it ranges in average from 113,30 ms to 142,68 ms. From the
results, it can be noticed that in this evaluation, the performance
of the data mining module has had a great impact on the Level-
2 loop’s response time. Therefore, future approaches adopting
learning techniques for adapting SDV’s feedback loops should
address the optimization of this module.

Regarding adaptation adequacy, in all the scenarios, adapta-
tion has been enacted when required and the decision of not
adapting has also been correctly made (according to expected
adaptations described in Table 2). Moreover, regarding the pre-
diction correctness, both position and self-driving functionality
usage have been predicted correctly in all the scenarios. As a final
metric, we have determined the prediction timeliness. In order to
do so, we have plot for each scenario:

− Route. The route followed by the SDV during the execution
of the scenario.

− Self-driving active. The segment in which the self-driving
functionality is usually active, according to patterns
learned.

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 623

Fig. 17. Adaptation response time per use case scenario replication.

Table 4
Results per SDV use case scenario (time given in milliseconds).
Id Level-1 loop

response time
Level-1 loop response
time std. deviation

Level-2 loop
response time

Level-2 loop response
time std. deviation

Data mining
response time

Data mining response
time std. deviation

us1 N/A N/A 855,34 23,34 113,93 13,31
us2 4,06 3,56 892,18 27,16 129,68 19,44
us3 N/A N/A 875,35 18,35 130,47 16,39

us4 10,82 6,36 291,06 42,39 113,30 27,45
us5 15,57 8,62 297,00 51,50 115,03 30,45
us6 N/A N/A 315,50 52,34 142,68 35,12

− Sensor fault/Battery issue position. The average SDV po-
sition, taking into account the results of all the replica-
tions, at which the sensor fault or the battery issue is
experienced.

− Position after analysis. The position of the SDV after exe-
cuting the data mining and providing the predictions.

− Last predicted position. The last point predicted by the
data mining algorithm.

The visualization of these variables is provided in Fig. 18. Accord-
ing to the results, we have concluded that in all the scenarios,
the data mining predictions, apart from correct, have been timely
performed. The number of positions to predict is indicated to
the Analyze element through policies. Similar to the case of the
waiting iterations mechanism, this is an exploratory variable that
should be studied for each use case. The advantage of adopt-
ing HAFLoop is that SASs’ owners can focus on investigating
these application-specific variables instead of expending time
on repetitive tasks such as the implementation of the generic
functionalities of an adaptive MAPE-K loop.

6.3.2. An improved adaptive IoT network
In this section, we present the detailed results of the adaptive

IoT network evaluation. In order to analyze these results, we
have considered two aspects: adaptation impact and adaptation
correctness. For the first metric, impact, two measures were
considered:

− Average network energy consumption. The average energy
consumed by the network during a run. Each run simulates

Table 5
Results per adaptive IoT network use case scenario.
Id Average energy

consumption
(C)

Average
energy
consumption
std. deviation

Average
packet loss
(%)

Average
packet loss
std.
deviation

us1 17,24 0,25 14,44 0,71
us2 32,61 0,24 5,64 0,44

us3 17,56 0,22 14,10 0,58
us4 18,69 0,35 13,63 0,67

No network
adaptation

33,03 0,43 5,39 0,94

Level-1 loop
without
faults

16,66 0,25 14,78 0,74

a 24 h period in which every 15 min, motes’ metrics are
consulted.

− Average packet loss. Similarly, this corresponds to the av-
erage network packet loss rate of a run.

Regarding adaptation correctness, we were interested in assess-
ing whether the expected adaptations, described in Table 3 are
finally realized or not. In Table 5, we provide the replications’
average energy consumption (in Coulombs) for each use case
scenario. The standard deviation of the average energy consump-
tion is also included. In Fig. 19 detailed average network energy
consumption values obtained in each of the replications of each
scenario can be visualized. In a similar way, Table 5 provides the
information about the average packet loss and Fig. 20 the values

624 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Fig. 18. Prediction timeliness per use case scenario.

obtained in each replication. Packet loss and energy consumption
have a negative co-relation (see Table 5), because in order to re-
duce energy consumption, motes use less power to send packets.
In this evaluation, we reused the algorithm provided by Iftikhar
et al. [16], which focus on minimizing energy consumption while
trying to reduce packet loss.

We have included in Table 5 the energy consumption and
packet loss information for the cases when adaptation of the IoT
network is no enabled (i.e., Level-1 loop is not operating), and
when it is enabled and no problem is experienced (i.e., monitoring
services operate without faults). These two scenarios allow us to
compare our results against the worst and best cases. From the
results shown in Table 5, it can be noticed that adopting adaptive
feedback loops represents a great advantage for achieving SASs

goals, particularly, when Level-1 loops are affected by runtime
challenging situations such as faults.

The advantage of adaptive loops is more evident in the case of
an unexpected monitor shutdown; see in Table 5 the resulting
energy consumption for us1 (it is clearly close to the energy
consumption of a Level-1 loop without faults) compared to the
resulting consumption for us2 (which is closer to a non-adaptive
IoT network). The results also confirm the importance of ensur-
ing the adequate operation of SASs’ feedback loops since any
disturbance may negatively affect the adaptation process and in
consequence the performance of the MEs. Regarding packet loss,
results are consistent with the best and worst cases, i.e., more
energy consumption means less packet loss and vice versa.

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 625

Fig. 19. Average energy consumption per use case scenario replication.

Fig. 20. Average packet loss per use case scenario replication.

6.4. Threats to validity

In this section, we describe the threats that affect the validity
of this evaluation as well as the actions that we have taken for
mitigating them:

− Construct validity. In this evaluation, a threat to construct
validity is that it was conducted using simulated compo-
nents. Thus, the evaluation could be affected by our inter-
pretation of the environment and, in the case of the SDV,
the interactions of the driver with the vehicle. Moreover,
factors that can only be measured in a real environment,
e.g., time required by a sensor for physically turning on and

off, could not be reflected in our evaluation results. In order
to reduce this threat, we have utilized the OpenDaVINCI
middleware and the DeltaIoT simulator, which offer envi-
ronments based on realistic data. The advantage of both
platforms is that they provide the mechanisms required for
transferring experiments setups to real-scale systems.

− Internal validity. The internal validity refers to our ability
to reason about the results in each use case scenario, for
instance, confounding variables’ relationships. In order to
reduce this threat, we have quantitatively interpreted our
results using descriptive statistics to determine tendencies
and dispersion. Accidental bugs in software components

626 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Table A.1
SDV Level-2 loop policies.
Policy
element

Variable Variable description us1 us2 us3 us4 us5 us6

Monitor

Alert iterations Number of iterations, detecting
sensor fault or battery issue, to
wait before triggering an analysis
alert

3 0

Initial battery level The battery level at the initial
point of each scenario execution

100% 60%

Battery limit The battery level considered as
critical

45%

Monitors List of monitoring data sources,
type of source (T), the
monitoring data provided
(Vars), the monitoring
frequency (F) and their cost
(C, a factor in relation to the
rest of monitors, taking into
account power and monetary
aspects, and its utility for
correctly supporting the
self-driving functionality)

traffic: (T) service, (Vars) traffic
factor, (F) 60.000 ms, (C) 40
weather: (T) service, (Vars)
weather, (F) 60.000 ms, (C) 16

traffic: (T) service, (Vars) traffic
factor, (F) 10.000 ms, (C) 40
weather: (T) service, (Vars)
weather, (F) 10.000 ms, (C) 16

IMU: (T) sensor, (Vars) longitude–latitude- speed, (F) 100 ms, (C) 1
camera: (T) sensor, (Vars) image size–frontal distance, (F) 100 ms, (C) 10
infrared (frontal right, rear and rear right): (T) sensors, (Vars) frontal right
distance–rear distance–rear right distance, (F) 100 ms, (C) 5 each
ultrasonic (frontal center, front right, rear right): (T) sensors, (Vars) frontal center
distance–frontal right distance–rear right distance, (F) 100 ms, (C) 3 each V2V: (T)
service, (Vars) distance–road event, (F) 100 ms, (C) 30

Monitoring variables Variables to be monitored and
variables’ values characteristics
(type (T), min, max
or possible values (Val)). Values
out of min–max range or not
listed as possible values, might
indicate a monitor fault

traffic factor: (T) Double, (Val) −1, 10
weather: (T) String, (Val) Rain, Snow, Extreme, Clear, Clouds, Foggy, Fog, Drizzle,
Mist
longitude: (T) Double, (Val) −180, 180
latitude: (T) Double, (Val) −90, 90
speed: (T) Double, (Val) 0, 2 [m/s]
frontal right distance, rear right distance, frontal center distance, rear
distance: (T) Double, (Val) −1, 39
road event: (T) String, (Val) Crash
image size: (T) Double, (Val) 0, 5.000.000

Initial monitors Initial set of active monitoring
data sources

Traffic, weather, IMU, camera, infrared (frontal right, rear and rear right), ultrasonic
(frontal center, front right, rear right)

Analyze

Alert iterations Number of iterations, receiving
an alert from the Monitor, to wait
before triggering data mining
analysis

3 0

Adaptation supported Type(s) of adaptation supported Structural S Param. S

Analysis technique This could include: technique,
tool, endpoint, algorithms,
algorithms’ parameters

Technique: Machine Learning
Tool: Weka
Endpoint: protocol, host, port
Algorithms: JRip, IBk
Parameters: Positions to predict (N = 100)

ME functionalities Critical functionalities to be
provided by the ME

Self-driving

Plan Plan technique This could include: technique,
tool, endpoint, algorithms,
algorithms’ parameters

Technique: Objective function (min (monitoring cost), max (monitoring data required by
the ME functionalities))

Monitoring data
required by ME
functionalities

Monitoring data required by
each of the ME functionalities

Self-driving: longitude, latitude, speed, frontal right distance, rear right distance and
frontal center distance

Execute Level-1 loop endpoint ME interface to communicate
adaptation decisions

Protocol, host, port

Knowledge
base

Persistence format The format in which data is
going to be persisted

.arff (the format required by the Weka tool)

Monitoring data List of monitoring data sources
to take into account for
persistence

Traffic, weather, IMU, camera, infrared (frontal right, rear and rear right), ultrasonic
(frontal center, front right, rear right), V2V

are also a threat to internal validity. We have tried to re-
duce this unavoidable threat using well-established frame-
works and tools for building our solution such as Spring
boot (https://spring.io/projects/spring-boot), Gradle (https:
//gradle.org/), Docker (https://www.docker.com/), among
others.

− External validity. External validity refers to the generaliz-
ability of our conclusions. In this work, we have evaluated
HAFLoop in two application domains. The results have
shown the feasibility and benefits of using HAFLoop in

modern SASs, particularly, SDVs and IoT networks. How-
ever, due to the simulation environments in which the
scenarios have been executed, generalization may be lim-
ited, not only to these specific domains, but also to the
application of HAFLoop in these specific domains. In order
to reduce this threat, we have evaluated HAFLoop using dif-
ferent use cases. In future work, we plan to conduct a series
of experiments using real vehicles in a scaled environment
and the deployed IoT network of the KU Leuven.

https://spring.io/projects/spring-boot
https://gradle.org/
https://gradle.org/
https://gradle.org/
https://www.docker.com/

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 627

Table A.2
SDV Level-1 loop policies.
Policy element Variable Variable description us1 us2 us3 us4 us5 us6

Monitor
Monitors List of monitoring data sources and their

monitoring frequency

Monitoring variables Variables to be monitored Same as in Table A.1

Initial monitors Initial set of active monitoring data sources

Analyze Vehicle variables Variables resulting from vehicle’s monitoring Vehicle’s position and speed, frontal right, rear right,
frontal center and rear distance

Context variables Variables gathered from external systems Weather, traffic, road event

Plan Adaptation variables Variables to include in the adaptation plan Acceleration, steering wheel angle, driving route

Execute ME endpoint ME interface to communicate adaptation
decisions

Vehicle id

Knowledge base Level 2 AM sensors
endpoint

Interface to send runtime data to Level 2 AM Protocol, host, port

Table A.3
IoT Level-2 loop policies.
Policy
element

Variable Variable description us1 us2 us3 us4 IoT net Adaptive IoT net

Monitor
Monitors List of monitoring data sources,

the monitoring data provided
(MotesId) and the monitoring
frequency (F)

monitor1: (MotesId) [2,3,4,5,6,7,8], (F) 2.000 ms
monitor2: (MotesId) [9,10,11,12,13,14,15], (F) 2.000 ms

Initial
monitors

Initial set of active monitoring
data sources

Monitor1, monitor2

Pull frequency Frequency at which Level-2 loop
gathers data from Level-1 loop
monitors

4.000 ms

Analyze Alert
iterations

Number of iterations, detecting
monitor shutdown or
degradation to wait before
triggering a plan alert

3 N/A 3 N/A

Plan Monitors List of monitoring data sources,
the monitoring data provided
(MotesId) and the monitoring
frequency (F)

monitor1: (MotesId) [2,3,4,5,6,7,8], (F) 2.000 ms
monitor2: (MotesId) [9,10,11,12,13,14,15], (F) 2.000 ms

Execute Level-1 loop
endpoint

Monitors interface to
communicate adaptation
decisions

Protocol, host, port

Knowledge
base

For this use case, we have not stored any data. All required knowledge was kept in memory.

Table A.4
IoT Level-1 loop policies.
Policy element Variable Variable description us1 us2 us3 us4 IoT net Adaptive IoT net

Monitor
Monitoring variables Motes to be monitored Same as in Table A.3

Monitoring frequency Frequency at which motes
should be monitored

Analyze endpoint Analyze interface Protocol, host, port

Analyze and Plan IoT network
composition

Total list of motes motes = [2,3,4,5,6,7,8,9,10,11,12,13,14,15]

Plan/Execute endpoint Plan/Execute interface Protocol, host, port

Execute ME endpoint IoT network interface to
communicate adaptations

Protocol, host, port

Knowledge base For this use case, we have not stored any data. All required knowledge was kept in memory.

7. Conclusions and future work

In this work, we have presented HAFLoop, an architectural
proposal for supporting adaptive feedback loops in SASs. Al-
though great efforts have been done for supporting the adapta-
tion of SASs’ AM, generic solutions for systematically developing
adaptive loops were missing. Motivated by this fact, we have
developed HAFLoop. HAFLoop is a generic and reusable solution
that easies and fastens the design and implementation of adaptive

AMs. Our solution enables AMs to support structural and param-
eter adaptation of its components as well as organize them in
a variety of settings, from centralized to fully decentralized. The
adaptation process of the feedback loops implementing SASs’ AMs
is driven by a set of runtime policies, which describe structural
and behavioral aspects of the AM components.

HAFLoop has been evaluated in two application domains: SDVs
and IoT networks. The evaluation results have demonstrated not
only the feasibility of applying HAFLoop in modern, extremely de-
manding SASs, but also the benefits of adopting adaptive feedback

628 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

loops in these domains. In future work, we plan to apply HAFLoop
in real systems and test different use cases. For instance, adapt the
rest of the elements of the loop. For the SDV, we also plan to run
experiments using different data mining algorithms, while for the
IoT network we plan to investigate their incorporation into the
loop. Finally, our work could be extended by running experiments
with different values on the policy variables, e.g., using different
values for the number of iterations to wait before triggering the
need for adaptation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Thanks to CONACYT, Mexico, for the PhD scholarship granted
to Edith Zavala. Also, thanks to the vehicle laboratory Revere
for the technical support provided during HAFLoop evaluation.
This work has been partially supported by the AstaZero, Sweden
openresearch@astazero program (call 4 - 20180430); and the
Spanish project GENESIS (TIN2016-79269-R).

Appendix

See Tables A.1–A.4.

References

[1] C. Krupitzer, F.M. Roth, S. Vansyckel, G. Schiele, C. Becker, A survey on
engineering approaches for self-adaptive systems, Pervasive Mob. Comput.
17 (2015) 184–206, http://dx.doi.org/10.1016/j.pmcj.2014.09.009.

[2] B.H. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B.
Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar,
A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H.M. Kienle, J. Kramer,
M. Litoiu, S. Malek, R. Mirandola, H.A. Müller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, J. Whittle, Software engineering for self-adaptive
systems: A research roadmap, Softw. Eng. Self-Adapt. Syst. (2009) 1–26,
http://dx.doi.org/10.1007/978-3-642-02161-9_2.

[3] R. De Lemos, H. Giese, H.A. Müller, M. Shaw, J. Andersson, M. Litoiu, B.
Schmerl, G. Tamura, N.M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs,
K.M. Göschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer, A.
Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos, O.
Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer, R. Schlichting, D.B. Smith,
J.P. Sousa, L. Tahvildari, K. Wong, J. Wuttke, Software engineering for self-
adaptive systems: A second research roadmap, in: Lect. Notes Comput.
Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
in: LNCS, vol. 7475, 2013, pp. 1–32, http://dx.doi.org/10.1007/978-3-642-
35813-5_1.

[4] D. Weyns, Software engineering of self-adaptive systems: An organised
tour and future challenges, Handb. Softw. Eng. (2017) 1–41.

[5] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J.
Wuttke, J. Andersson, H. Giese, K.M. Göschka, On patterns for decentralized
control in self-adaptive systems, in: Lect. Notes Comput. Sci. (Including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), in: LNCS, vol.
7475, 2013, pp. 76–107, http://dx.doi.org/10.1007/978-3-642-35813-5_4.

[6] BMI, An architectural blueprint for autonomic computing, IBM White Pap.
36 (2006) 34, http://dx.doi.org/10.1021/am900608j.

[7] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Comput.
Soc. 36 (2003) 41–50, http://dx.doi.org/10.1109/MC.2003.1160055.

[8] R.J. Anthony, M. Pelc, W. Byrski, Context-aware reconfiguration of auto-
nomic managers in real-time control applications, in: Proceeding 7th Int.
Conf. Auton. Comput. - ICAC ’10, ACM, New York, NY, USA, 2010, pp. 73–74,
http://dx.doi.org/10.1145/1809049.1809061.

[9] M.U. Iftikhar, D. Weyns, Assuring system goals under uncertainty with
active formal models of self-adaptation, in: Companion Proc. 36th Int. Conf.
Softw. Eng. - ICSE Companion 2014, ACM, New York, NY, USA, 2014, pp.
604–605, http://dx.doi.org/10.1145/2591062.2591137.

[10] C. Krupitzer, J. Otto, F.M. Roth, A. Frommgen, C. Becker, Adding self-
improvement to an autonomic traffic management system, in: Proc. -
2017 IEEE Int. Conf. Auton. Comput. ICAC 2017, IEEE, 2017, pp. 209–214,
http://dx.doi.org/10.1109/ICAC.2017.16.

[11] G. Tamura, N.M. Villegas, H.A. Muller, L. Duchien, L. Seinturier, Improv-
ing context-awareness in self-adaptation using the DYNAMICO reference
model, in: 2013 8th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst., IEEE,
2013, pp. 153–162, http://dx.doi.org/10.1109/SEAMS.2013.6595502.

[12] T. Zhao, W. Zhang, H. Zhao, Z. Jin, A reinforcement learning-based frame-
work for the generation and evolution of adaptation rules, in: Proc. -
2017 IEEE Int. Conf. Auton. Comput. ICAC 2017, IEEE, 2017, pp. 103–112,
http://dx.doi.org/10.1109/ICAC.2017.47.

[13] F.M. Roth, C. Krupitzer, C. Becker, Runtime evolution of the adaptation logic
in self-adaptive systems, in: Proc. - IEEE Int. Conf. Auton. Comput. ICAC
2015, IEEE, 2015, pp. 141–142, http://dx.doi.org/10.1109/ICAC.2015.20.

[14] E. Zavala, X. Franch, J. Marco, Adaptive monitoring: A systematic mapping,
Inf. Softw. Technol. 105 (2019) 161–189, http://dx.doi.org/10.1016/j.infsof.
2018.08.013.

[15] C. Berger, From a competition for self-driving miniature cars to a standard-
ized experimental platform: Concept, models, architecture, and evaluation,
J. Softw. Eng. Robot. 5 (2014) 63–79.

[16] M.U. Iftikhar, G.S. Ramachandran, P. Bollansée, D. Weyns, D. Hughes,
DeltaIoT: A self-adaptive internet of things exemplar, in: Proc. - 2017
IEEE/ACM 12th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. SEAMS
2017, 2017, pp. 76–82, http://dx.doi.org/10.1109/SEAMS.2017.21.

[17] E. Zavala, X. Franch, J. Marco, A. Knauss, D. Damian, SACRE: Supporting
contextual requirements’ adaptation in modern self-adaptive systems in
the presence of uncertainty at runtime, Expert Syst. Appl. 98 (2018)
http://dx.doi.org/10.1016/j.eswa.2018.01.009.

[18] C. Krupitzer, F.M. Roth, S. Vansyckel, C. Becker, Towards reusability in
autonomic computing, in: Proc. - IEEE Int. Conf. Auton. Comput. ICAC 2015,
IEEE, 2015, pp. 115–120, http://dx.doi.org/10.1109/ICAC.2015.21.

[19] C. Krupitzer, S. Vansyckel, C. Becker, FESAS: Towards a framework for
engineering self-adaptive systems, in: 2013 IEEE 7th Int. Conf. Self-
Adaptive Self-Organizing Syst., IEEE, 2013, pp. 263–264, http://dx.doi.org/
10.1109/SASO.2013.36.

[20] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in:
Futur. Softw. Eng. (FOSE ’07), IEEE, 2007, pp. 259–268, http://dx.doi.org/
10.1109/FOSE.2007.19.

[21] M.U. Iftikhar, D. Weyns, ActivFORMS: Active formal models for self-
adaptation, in: Proc. 9th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst.,
2014, pp. 125–134, http://dx.doi.org/10.1145/2593929.2593944.

[22] D. Weyns, M.U. Iftikhar, ActivFORMS: A model-based approach to engineer
self-adaptive systems, X, 2019, http://arxiv.org/abs/1908.11179.

[23] N. Medvidovic, D.S. Rosenblum, R.N. Taylor, A language and environment
for architecture-based software development and evolution, in: Proc. 21st
Int. Conf. Softw. Eng. - ICSE ’99, 1999, pp. 44–53, http://dx.doi.org/10.1145/
302405.302410.

[24] H. Tajalli, J. Garcia, G. Edwards, N. Medvidovic, PLASMA: A plan-based lay-
ered architecture for software model-driven adaptation, in: Proc. IEEE/ACM
Int. Conf. Autom. Softw. Eng. - ASE ’10, ACM Press, New York, New York,
USA, 2010, p. 467, http://dx.doi.org/10.1145/1858996.1859092.

[25] C. Dorn, S. Dustdar, Interaction-driven self-adaptation of service ensembles,
in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), in: LNCS, vol. 6051, 2010, pp. 393–408, http:
//dx.doi.org/10.1007/978-3-642-13094-6_31.

[26] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, S. Uchitel, MORPH: a
reference architecture for configuration and behaviour self-adaptation,
2015, http://dx.doi.org/10.1145/2804337.2804339.

[27] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, S. Uchitel, An extended
description of MORPH: A reference architecture for configuration and
behaviour self-adaptation, in: Lect. Notes Comput. Sci. (Including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), in: LNCS, vol. 9640,
2017, pp. 377–408, http://dx.doi.org/10.1007/978-3-319-74183-3_13.

[28] I. Gerostathopoulos, T. Bures, P. Hnetynka, A. Hujecek, F. Plasil, D. Skoda,
Strengthening adaptation in cyber-physical systems via meta-adaptation
strategies, ACM Trans. Cyber-Phys. Syst. 1 (2017) 1–25, http://dx.doi.org/
10.1145/2823345.

[29] I. Gerostathopoulos, D. Skoda, F. Plasil, T. Bures, A. Knauss, Tuning self-
adaptation in cyber-physical systems through architectural homeostasis, J.
Syst. Softw. 148 (2019) 37–55, http://dx.doi.org/10.1016/j.jss.2018.10.051.

[30] G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein, Y. Le Traon, O. Barais,
J.M. Jezequel, Towards flexible evolution of dynamically adaptive systems,
in: Proc. Int. Conf. Softw. Eng., 2012, pp. 1353–1356, http://dx.doi.org/10.
1109/ICSE.2012.6227081.

[31] A. Knauss, D. Damian, X. Franch, A. Rook, H.A. Müller, A. Thomo, Acon: A
learning-based approach to deal with uncertainty in contextual require-
ments at runtime, Inf. Softw. Technol. 70 (2016) 85–99, http://dx.doi.org/
10.1016/j.infsof.2015.10.001.

[32] E. Zavala, X. Franch, J. Marco, A. Knauss, D. Damian, SACRE: A tool for
dealing with uncertainty in contextual requirements at runtime, in: 23rd
IEEE Int. Requir. Eng. Conf, IEEE, 2015, pp. 278–279, http://dx.doi.org/10.
1109/RE.2015.7320437.

[33] J. Branke, P. Goldate, H. Prothmann, Actuated traffic signal optimiza-
tion using evolutionary algorithms, in: Proc. 6th Eur. Congr. Exhib.
Intell. Transp. Syst. Serv. (ITS 2007), 2007, http://dx.doi.org/10.1179/
1743284713Y.0000000425.

http://dx.doi.org/10.1016/j.pmcj.2014.09.009
http://dx.doi.org/10.1007/978-3-642-02161-9_2
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb4
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb4
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb4
http://dx.doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1021/am900608j
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1145/1809049.1809061
http://dx.doi.org/10.1145/2591062.2591137
http://dx.doi.org/10.1109/ICAC.2017.16
http://dx.doi.org/10.1109/SEAMS.2013.6595502
http://dx.doi.org/10.1109/ICAC.2017.47
http://dx.doi.org/10.1109/ICAC.2015.20
http://dx.doi.org/10.1016/j.infsof.2018.08.013
http://dx.doi.org/10.1016/j.infsof.2018.08.013
http://dx.doi.org/10.1016/j.infsof.2018.08.013
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb15
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb15
http://dx.doi.org/10.1109/SEAMS.2017.21
http://dx.doi.org/10.1016/j.eswa.2018.01.009
http://dx.doi.org/10.1109/ICAC.2015.21
http://dx.doi.org/10.1109/SASO.2013.36
http://dx.doi.org/10.1109/SASO.2013.36
http://dx.doi.org/10.1109/SASO.2013.36
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1145/2593929.2593944
http://arxiv.org/abs/1908.11179
http://dx.doi.org/10.1145/302405.302410
http://dx.doi.org/10.1145/302405.302410
http://dx.doi.org/10.1145/302405.302410
http://dx.doi.org/10.1145/1858996.1859092
http://dx.doi.org/10.1007/978-3-642-13094-6_31
http://dx.doi.org/10.1007/978-3-642-13094-6_31
http://dx.doi.org/10.1007/978-3-642-13094-6_31
http://dx.doi.org/10.1145/2804337.2804339
http://dx.doi.org/10.1007/978-3-319-74183-3_13
http://dx.doi.org/10.1145/2823345
http://dx.doi.org/10.1145/2823345
http://dx.doi.org/10.1145/2823345
http://dx.doi.org/10.1016/j.jss.2018.10.051
http://dx.doi.org/10.1109/ICSE.2012.6227081
http://dx.doi.org/10.1109/ICSE.2012.6227081
http://dx.doi.org/10.1109/ICSE.2012.6227081
http://dx.doi.org/10.1016/j.infsof.2015.10.001
http://dx.doi.org/10.1016/j.infsof.2015.10.001
http://dx.doi.org/10.1016/j.infsof.2015.10.001
http://dx.doi.org/10.1109/RE.2015.7320437
http://dx.doi.org/10.1109/RE.2015.7320437
http://dx.doi.org/10.1109/RE.2015.7320437
http://dx.doi.org/10.1179/1743284713Y.0000000425
http://dx.doi.org/10.1179/1743284713Y.0000000425
http://dx.doi.org/10.1179/1743284713Y.0000000425

E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630 629

[34] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter, F. Rochner,
H. Schmeck, Organic computing - Addressing complexity by controlled self-
organization, in: Proc. - ISoLA 2006 2nd Int. Symp. Leveraging Appl. Form.
Methods, Verif. Valid., 2007, pp. 185–191, http://dx.doi.org/10.1109/ISoLA.
2006.19.

[35] H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Müller-Schloer, H.
Schmeck, Organic control of traffic lights, in: Lect. Notes Comput. Sci.
(Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), in:
LNCS, vol. 5060, 2008, pp. 219–233, http://dx.doi.org/10.1007/978-3-540-
69295-9_19.

[36] F. Rochner, H. Prothmann, J. Branke, C. Müller-Schloer, H. Schmeck, An
organic architecture for traffic light controllers, Proc. Inform. 1 (2006)
120–127.

[37] S. Tomforde, H. Prothmann, F. Rochner, J. Branke, J. Hähner, C. Müller-
Schloer, H. Schmeck, Decentralised progressive signal systems for organic
traffic control, in: Proc. - 2nd IEEE Int. Conf. Self-Adaptive Self-Organizing
Syst. SASO 2008, 2008, pp. 413–422, http://dx.doi.org/10.1109/SASO.2008.
31.

[38] D. Sykes, W. Heaven, J. Magee, J. Kramer, From goals to components: a
combined approach to self-management, in: Proc. 2008 Int. Work. Softw.
Eng. Adapt. Self-Managing Syst. - SEAMS ’08, ACM Press, New York, New
York, USA, 2008, p. 1, http://dx.doi.org/10.1145/1370018.1370020.

[39] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, K. Inoue, Learning revised
models for planning in adaptive systems, in: 2013 35th Int. Conf. Softw.
Eng., IEEE, 2013, pp. 63–71, http://dx.doi.org/10.1109/ICSE.2013.6606552.

[40] D. Sykes, J. Magee, J. Kramer, FlashMob: Distributed adaptive self-assembly,
in: Proceeding 6th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. -
SEAMS ’11, 2011, p. 100, http://dx.doi.org/10.1145/1988008.1988023.

[41] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, Model evolution by run-
time parameter adaptation, in: Proc. - Int. Conf. Softw. Eng., IEEE, 2009,
pp. 111–121, http://dx.doi.org/10.1109/ICSE.2009.5070513.

[42] A. Elkhodary, N. Esfahani, S. Malek, FUSION: A framework for engineering
self-tuning self-adaptive software systems, in: Proc. ACM SIGSOFT Symp.
Found. Softw. Eng., 2010, pp. 7–16, http://dx.doi.org/10.1145/1882291.
1882296.

[43] N. Esfahani, A. Elkhodary, S. Malek, A learning-based framework for
engineering feature-oriented self-adaptive software systems, IEEE Trans.
Softw. Eng. 39 (2013) 1467–1493, http://dx.doi.org/10.1109/TSE.2013.37.

[44] P. Jamshidi, A.M. Sharifloo, C. Pahl, A. Metzger, G. Estrada, Self-learning
cloud controllers: Fuzzy Q-learning for knowledge evolution, in: Proc. -
2015 Int. Conf. Cloud Auton. Comput. ICCAC 2015, 2015, pp. 208–211,
http://dx.doi.org/10.1109/ICCAC.2015.35.

[45] C. Quinton, R. Rabiser, M. Vierhauser, P. Grünbacher, L. Baresi, Evolution
in dynamic software product lines: challenges and perspectives, in: Proc.
19th Int. Conf. Softw. Prod. Line - SPLC ’15, 2015, pp. 126–130, http:
//dx.doi.org/10.1145/2791060.2791101.

[46] A.M. Sharifloo, A. Metzger, C. Quinton, L. Baresi, K. Pohl, Learning and
evolution in dynamic software product lines, in: Proc. 11th Int. Work.
Softw. Eng. Adapt. Self-Managing Syst. - SEAMS ’16, ACM Press, New York,
New York, USA, 2016, pp. 158–164, http://dx.doi.org/10.1145/2897053.
2897058.

[47] L. Baresi, C. Quinton, Dynamically evolving the structural variability of
dynamic software product lines, in: Proc. - 10th Int. Symp. Softw. Eng.
Adapt. Self-Managing Syst. SEAMS 2015, 2015, pp. 57–63, http://dx.doi.
org/10.1109/SEAMS.2015.24.

[48] V. Klos, T. Gothel, S. Glesner, Adaptive knowledge bases in self-adaptive
system design, in: Proc. - 41st Euromicro Conf. Softw. Eng. Adv. Appl. SEAA
2015, 2015, pp. 472–478, http://dx.doi.org/10.1109/SEAA.2015.48.

[49] A. Rodrigues, R.D. Caldas, G.N. Rodrigues, T. Vogel, P. Pelliccione, A learning
approach to enhance assurances for real-time self-adaptive systems, 2018,
pp. 206–216, http://dx.doi.org/10.1145/3194133.3194147.

[50] G.G. Pascual, M. Pinto, L. Fuentes, Self-adaptation of mobile systems driven
by the common variability language, Future Gener. Comput. Syst. 47 (2015)
127–144, http://dx.doi.org/10.1016/j.future.2014.08.015.

[51] Z.A. Mann, A. Metzger, Auto-adjusting self-adaptive software systems, in:
2018 IEEE Int. Conf. Auton. Comput., 2018, pp. 181–186, http://dx.doi.org/
10.1109/ICAC.2018.00030.

[52] R.J. Anthony, Policy-centric integration and dynamic composition of au-
tonomic computing techniques, in: ICAC, 2007, http://dx.doi.org/10.1109/
ICAC.2007.32.

[53] R.J. Anthony, A versatile policy toolkit supporting run-time policy recon-
figuration, Cluster Comput. 11 (2008) 287–298, http://dx.doi.org/10.1007/
s10586-008-0058-7.

[54] R. Anthony, D. Chen, M. Törngren, D. Scholle, M. Sanfridson, A. Rettberg,
T. Naseer, M. Persson, L. Feng, Autonomic middleware for automotive
embedded systems, in: Auton. Commun., 2009, pp. 169–210, http://dx.doi.
org/10.1007/978-0-387-09753-4_7.

[55] N.M. Villegas, G. Tamura, H.A. Müller, L. Duchien, R. Casallas, DYNAMICO:
A reference model for governing control objectives and context relevance
in self-adaptive software systems, in: Lect. Notes Comput. Sci. (Including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), in: LNCS, vol.
7475, 2013, pp. 265–293, http://dx.doi.org/10.1007/978-3-642-35813-5_
11.

[56] E. Lee, Y.-G.G. Kim, Y.-D.D. Seo, K. Seol, D.-K.K. Baik, RINGA: Design and
verification of finite state machine for self-adaptive software at runtime,
Inf. Softw. Technol. 93 (2018) 200–222, http://dx.doi.org/10.1016/j.infsof.
2017.09.008.

[57] H. Nakagawa, A. Ohsuga, S. Honiden, Towards dynamic evolution of self-
adaptive systems based on dynamic updating of control loops, in: 2012
IEEE Sixth Int. Conf. Self-Adaptive Self-Organizing Syst., 2012, pp. 59–68,
http://dx.doi.org/10.1109/SASO.2012.17.

[58] L. Baresi, L. Pasquale, An eclipse plug-in to model system requirements
and adaptation capabilities, in: Proc. 6th IT-Eclipse Work, 2011.

[59] L. Baresi, L. Pasquale, P. Spoletini, Fuzzy goals for requirements-driven
adaptation, in: Proc. 2010 18th IEEE Int. Requir. Eng. Conf., 2010, pp.
125–134, http://dx.doi.org/10.1109/RE.2010.25.

[60] L. Pasquale, L. Baresi, B. Nuseibeh, Towards adaptive systems through
requirements@runtime?, in: CEUR Workshop Proc., 2011, pp. 13–24.

[61] N. Ali, C. Solis, Self-adaptation to mobile resources in service oriented
architecture, in: Proc. - 2015 IEEE 3rd Int. Conf. Mob. Serv. MS 2015, 2015,
pp. 407–414, http://dx.doi.org/10.1109/MobServ.2015.62.

[62] C. Krupitzer, F.M. Roth, S. Vansyckel, G. Schiele, C. Becker, A survey on
engineering approaches for self-adaptive systems, Pervasive Mob. Comput.
17 (2015) 184–206, http://dx.doi.org/10.1016/j.pmcj.2014.09.009.

[63] V. Chang, M. Abdel-Basset, M. Ramachandran, Towards a reuse strategic
decision pattern framework – from theories to practices, Inf. Syst. Front.
21 (2019) 27–44, http://dx.doi.org/10.1007/s10796-018-9853-8.

[64] P. Fremantle, B. Aziz, Deriving event data sharing in IoT systems using
formal modelling and analysis, Internet Things 8 (2019) 100092, http:
//dx.doi.org/10.1016/j.iot.2019.100092.

[65] F. Al-Turjman, M. Abujubbeh, IoT-enabled smart grid via SM: An overview,
Future Gener. Comput. Syst. 96 (2019) 579–590, http://dx.doi.org/10.1016/
j.future.2019.02.012.

[66] R. Han, G. Shapiro, V. Gramoli, X. Xu, On the performance of distributed
ledgers for internet of things, Internet Things (2019) 100087, http://dx.doi.
org/10.1016/j.iot.2019.100087.

[67] F. Al-Turjman, A. Malekloo, Smart parking in IoT-enabled cities: A survey,
Sustain. Cities Soc. 49 (2019) http://dx.doi.org/10.1016/j.scs.2019.101608.

[68] A. Rook, A. Knauss, D. Damian, A. Thomo, A case study of applying data
mining to sensor data for contextual requirements analysis, in: 2014 IEEE
1st Int. Work. Artif. Intell. Requir. Eng., 2014, pp. 43–50, http://dx.doi.org/
10.1109/AIRE.2014.6894855.

[69] A. Rook, On the Feasibility of Integrating Data Mining Algorithms
into Self Adaptive Systems for Context Awareness and Requirements
Evolution (Master thesis), University of Victoria, 2014.

[70] M.L. Berenson, D.M. Levine, Basic Bussiness Statistics: Concepts and
Applications, sixth ed., Prentice-Hall International, Inc., 1996.

Edith Zavala received her Ph.D. degree in Comput-
ing from Universitat Politècnica de Catalunya (UPC-
BarcelonaTech), Spain, in 2019. She is member of
the Software and Service Engineering research group
(GESSI) of the UPC-BarcelonaTech since 2015. Cur-
rently, she is working in the fields of Self-adaptive
systems and Adaptive monitoring. She is especially
focused on the research of engineering solutions for
intelligent systems and the integration of Machine
learning techniques in such type of systems. Her
research interests are in software architecture, dis-

tributed systems, runtime adaptive applications and the engineering of Artificial
Intelligence for such complex systems.

Xavier Franch received his Ph.D. degree in In-
formatics from Universitat Politècnica de Catalunya
(UPC-BarcelonaTech), Spain, in 1996. Currently, he
is a professor in Software Engineering at the UPC-
BarcelonaTech. His research interest embraces many
fields in software engineering, including require-
ments engineering, empirical software engineering,
open source software, and agile software development.
Prof. Franch is a member of the IST, REJ, IJCIS, and
Computing editorial boards, Journal First chair of JSS,
and Deputy Editor of IET Software. He served as PC

chair at RE’16, ICSOC’14, CAiSE’12, and REFSQ’11, among others, and as General
Chair for RE’08 and PROFES’19. More information at https://www.essi.upc.edu/
~franch.

http://dx.doi.org/10.1109/ISoLA.2006.19
http://dx.doi.org/10.1109/ISoLA.2006.19
http://dx.doi.org/10.1109/ISoLA.2006.19
http://dx.doi.org/10.1007/978-3-540-69295-9_19
http://dx.doi.org/10.1007/978-3-540-69295-9_19
http://dx.doi.org/10.1007/978-3-540-69295-9_19
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb36
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb36
http://dx.doi.org/10.1109/SASO.2008.31
http://dx.doi.org/10.1109/SASO.2008.31
http://dx.doi.org/10.1109/SASO.2008.31
http://dx.doi.org/10.1145/1370018.1370020
http://dx.doi.org/10.1109/ICSE.2013.6606552
http://dx.doi.org/10.1145/1988008.1988023
http://dx.doi.org/10.1109/ICSE.2009.5070513
http://dx.doi.org/10.1145/1882291.1882296
http://dx.doi.org/10.1145/1882291.1882296
http://dx.doi.org/10.1145/1882291.1882296
http://dx.doi.org/10.1109/TSE.2013.37
http://dx.doi.org/10.1109/ICCAC.2015.35
http://dx.doi.org/10.1145/2791060.2791101
http://dx.doi.org/10.1145/2791060.2791101
http://dx.doi.org/10.1145/2791060.2791101
http://dx.doi.org/10.1145/2897053.2897058
http://dx.doi.org/10.1145/2897053.2897058
http://dx.doi.org/10.1145/2897053.2897058
http://dx.doi.org/10.1109/SEAMS.2015.24
http://dx.doi.org/10.1109/SEAMS.2015.24
http://dx.doi.org/10.1109/SEAMS.2015.24
http://dx.doi.org/10.1109/SEAA.2015.48
http://dx.doi.org/10.1145/3194133.3194147
http://dx.doi.org/10.1016/j.future.2014.08.015
http://dx.doi.org/10.1109/ICAC.2018.00030
http://dx.doi.org/10.1109/ICAC.2018.00030
http://dx.doi.org/10.1109/ICAC.2018.00030
http://dx.doi.org/10.1109/ICAC.2007.32
http://dx.doi.org/10.1109/ICAC.2007.32
http://dx.doi.org/10.1109/ICAC.2007.32
http://dx.doi.org/10.1007/s10586-008-0058-7
http://dx.doi.org/10.1007/s10586-008-0058-7
http://dx.doi.org/10.1007/s10586-008-0058-7
http://dx.doi.org/10.1007/978-0-387-09753-4_7
http://dx.doi.org/10.1007/978-0-387-09753-4_7
http://dx.doi.org/10.1007/978-0-387-09753-4_7
http://dx.doi.org/10.1007/978-3-642-35813-5_11
http://dx.doi.org/10.1007/978-3-642-35813-5_11
http://dx.doi.org/10.1007/978-3-642-35813-5_11
http://dx.doi.org/10.1016/j.infsof.2017.09.008
http://dx.doi.org/10.1016/j.infsof.2017.09.008
http://dx.doi.org/10.1016/j.infsof.2017.09.008
http://dx.doi.org/10.1109/SASO.2012.17
http://dx.doi.org/10.1109/RE.2010.25
http://dx.doi.org/10.1109/MobServ.2015.62
http://dx.doi.org/10.1016/j.pmcj.2014.09.009
http://dx.doi.org/10.1007/s10796-018-9853-8
http://dx.doi.org/10.1016/j.iot.2019.100092
http://dx.doi.org/10.1016/j.iot.2019.100092
http://dx.doi.org/10.1016/j.iot.2019.100092
http://dx.doi.org/10.1016/j.future.2019.02.012
http://dx.doi.org/10.1016/j.future.2019.02.012
http://dx.doi.org/10.1016/j.future.2019.02.012
http://dx.doi.org/10.1016/j.iot.2019.100087
http://dx.doi.org/10.1016/j.iot.2019.100087
http://dx.doi.org/10.1016/j.iot.2019.100087
http://dx.doi.org/10.1016/j.scs.2019.101608
http://dx.doi.org/10.1109/AIRE.2014.6894855
http://dx.doi.org/10.1109/AIRE.2014.6894855
http://dx.doi.org/10.1109/AIRE.2014.6894855
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb69
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb69
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb69
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb69
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb69
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb70
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb70
http://refhub.elsevier.com/S0167-739X(19)31844-8/sb70
https://www.essi.upc.edu/~franch
https://www.essi.upc.edu/~franch
https://www.essi.upc.edu/~franch

630 E. Zavala, X. Franch, J. Marco et al. / Future Generation Computer Systems 105 (2020) 607–630

Jordi Marco received the M.Sc. and Ph.D. degrees in
computing from Universitat Politècnica de Catalunya
(UPC-BarcelonaTech), Spain, in 2005. Currently, he
is an Associate Professor in Computer Science at
the UPC-BarcelonaTech. His research interests include
service-oriented computing, quality of service, con-
ceptual modeling, container libraries, and computer
graphics. Dr. Marco has been PC member on several
international conferences like ATSE, QASBA, RCIS, and
BIGDSE. He also reviewed papers for journals including
ESWA and IST. More information at https://www.cs.

upc.edu/~jmarco.

Christian Berger is Associate Professor and Docent for
Software Engineering at the Department of Computer
Science and Engineering at University of Gothenburg.
His research focuses on systematically architecting
complex software and systems embracing continuous
integration, continuous deployment, and continuous
experimentation for a growingly automated and digi-
talized society. He is an expert for self-driving vehicles
with over a decade of experience. Currently, he jointly
leads the design and development of the open source
platform Open Driverless Vehicle (OpenDLV), software

that powers research projects at Chalmers vehicle laboratory Revere.

https://www.cs.upc.edu/~jmarco
https://www.cs.upc.edu/~jmarco
https://www.cs.upc.edu/~jmarco

	HAFLoop: An architecture for supporting Highly Adaptive Feedback Loops in self-adaptive systems
	Introduction
	Running example
	Background
	The hierarchical inter–intra collaborative architectural pattern (HIIC)
	The FESAS component template

	Related work
	HAFLoop
	 Architecture
	Adaptive AM or adaptive feedback loop
	Adaptive MAPE-K element
	Element component
	Managers and policies

	Implementation

	Evaluation
	HAFLoop instantiation
	An improved context-aware self-driving vehicle
	An improved adaptive IoT network

	Scenarios' execution
	An improved context-aware self-driving vehicle
	An improved adaptive IoT network

	Analysis of the results
	An improved context-aware self-driving vehicle
	An improved adaptive IoT network

	Threats to validity

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	Appendix
	References

