


MONASH UNIVERSITY ACCIDENT RESEARCH CENTRE

# Are Parents Willing to Allow their Unaccompanied Children to Travel in Emerging & Future Travel Modes?

Associate Professor Sjaan Koppel Monash University Accident Research Centre Melbourne, Australia

Child Occupant Protection seminar: Latest knowledge & challenges in future mobility Gothenburg, Sweden, September 21<sup>st</sup> 2022



## BACKGROUND

An increasing global emphasis on emerging & future travel modes to provide **SAFE, AFFORDABLE, ACCESSIBLE, & SUSTAINABLE** transportation (United Nations, 2016).

• Unable to drive, or unable to obtain driver's licence, including: ageing adults, adults with medical conditions &/or physical or cognitive impairments, & children/adolescents (Koppel et al., 2019).

Rideshare (RS) & automated vehicles (AV) could provide mechanism for independent travel.

Research explored potential for travel modes to enhance mobility of ageing adults & adults with impairments (Abraham et al., 2017; Li et al., 2019; Musselwhite et al., 2015; Reimer, 2014).

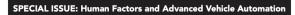
• Limited research explored use of RS (Koppel et al., 2021) &/or AV to transport unaccompanied children/adolescents (Lee & Mirman, 2018; Tremoulet et al., 2020).

Understanding factors influencing parents' decision-making re: willingness to use transportation modes (i.e., trust unknown driver &/or driverless system) important for guiding development of policies & strategies that encourage their use.



#### WORKSHOP - 2019




## BACKGROUND

Tremoulet et al. (2020) examined P' decisions re: using AVs to transport unaccompanied children/teens.

- Ps of 8-16 yrs rode in driving simulator in autonomous mode & interviewed re: views & features required to support child in AV.
- Benefit = convenience.
- Fear = Can't protect child during unplanned trip interruptions.
- Required vehicle features: 2-way audio & video feeds, seatbelt checks, automatic locking, secure passenger identification, & remote access to vehicle information.

Lee & Mirman (2018) used online survey & behavioural willingness to investigate Ps' willingness ('definitely' / 'might' / 'hesitant' / 'never') to use AVs to enhance children's mobility.

- Willingness related to technology readiness, parent (sex, residence area) & child (age, restraint system).
- Benefits = advance mobility & safety.
- Using AVs to transport children = likely ridership scenario.
- Concerns = losing active vehicle control & being alone in AV.



Transporting Children in Autonomous Vehicles: An Exploratory Study

Patrice D. Tremoulet<sup>[]</sup>, Rowan University, Glassboro, New Jersey, USA, Thomas Seacrist, Chelsea Ward McIntosh<sup>[]</sup>, Helen Loeb, Children's Hospital of Philadelphia, Pennsylvania, USA, Anna DiPietro, Rowan University, Glassboro, New Jersey, USA, and Sophia Tushak, Children's Hospital of Philadelphia, Pennsylvania, USA



Transportation Research Part C: Emerging Technologies Volume 96, November 2018, Pages 415-431



Parents' perspectives on using autonomous vehicles to enhance children's mobility

Yi-Ching Lee <sup>a</sup> A ⊠, Jessica H. Mirman <sup>b</sup>

## BACKGROUND

Online survey examined willingness (definitely/might/hesitant/never) to use AV to transport unaccompanied children/teen.

- 775 Ps lived with >1 child (<17 years).
- Willingness to use AV to transport unaccompanied child:
  - I would definitely (7.7%) Ο
  - I might (17.0%) Ο
  - I would be hesitant (31.7%) Ο
  - I would never (43.5%) Ο
- Willingness (definitely/might/hesitant) associated with Ps' age, gender, education level, propensity for technology adoption, risky driving behaviours, perceived AV knowledge, & requirements for assurance-related features in AV.

Current study aimed to investigate Ps' willingness to allow unaccompanied children to travel in RS & AV.



Key factors associated with Australian parents' willingness to use an automated vehicle to transport their unaccompanied children

Sjaan Koppel <sup>a</sup> <sup>A</sup> <sup>⊠</sup>, Yi-Ching Lee <sup>b</sup> <sup>⊠</sup>, Jessica Hafetz Mirman <sup>c</sup> <sup>⊠</sup>, Sujanie Peiris <sup>d</sup> <sup>⊠</sup>, Patrice Tremoulet <sup>e</sup> <sup>⊠</sup>



sustainability

Parents' Willingness to Allow Their Unaccompanied Children to Use Emerging and Future Travel Modes

MDPI

Sjaan Koppel <sup>1,\*</sup>, Hayley McDonald <sup>1</sup>, Sujanie Peiris <sup>1</sup>, Xin Zou <sup>2</sup> and David B. Logan <sup>1</sup>

## METHOD

#### **Participants**

Eligible if: aged  $\geq$ 18 years; lived in Australia; drove  $\geq$ 1 x week (pre-COVID-19), & lived with  $\geq$ 1 children (aged  $\leq$ 17 years).

#### **Materials**

Ps completed online survey (approx. 25 min).

Socio-Demographic Characteristics:

- age, gender, education level, household income.
- Child Characteristics & Transport Patterns:
  - # (& age) of children (<17 years) living with them.
  - youngest child's: age, gender, type of restraint (RF CRS, FF CRS, booster, seatbelt, no restraint), frequency of restraint use (1=Always; 6=Never), frequency of travelling in different modes, including RS (1=Daily; 8=Never).
- Driving Characteristics:
  - annual mileage (kms), driving frequency (1=Daily; 5≤1 per week), crash &/or infringement history in past 2 years, frequency of seatbelt use (1=Always; 6= Never).



## METHOD

#### **Materials**

- Driving Behaviour Questionnaire (DBQ) (Reason et al., 1990):
- 28-items measuring frequency of engaging in risky driving behaviours (0=Never; 5=Always):
  - errors (e.g., Hit something when reversing that you hadn't noticed).
  - lapses (e.g., Forget where you left your parked car).
  - violations (e.g., Disregard the speed limit).
  - aggressive violations (e.g., Get angry at a driver and express your anger any way you can).
- Higher scores = higher frequency of risky driving behaviours.
- Technology Readiness Index 2.0 (TRI 2.0) (Parasuraman et al., 2015):
  - 16-items measuring technology readiness (1=Strongly Disagree; 5=Strongly Agree):
    - innovativeness (e.g., I keep up with the latest technological developments).
    - optimism (e.g., New technologies contribute to a better quality of life).
    - insecurity (e.g., People are too dependent on technology).
    - discomfort (e.g., I think technology systems are not designed for use by ordinary people).
  - Higher scores = higher propensity for technology adoption.

Awareness of Automated Vehicles:

• Aware of 'automated vehicles' (e.g., Yes; Not sure; No).



## METHOD

#### **Materials**

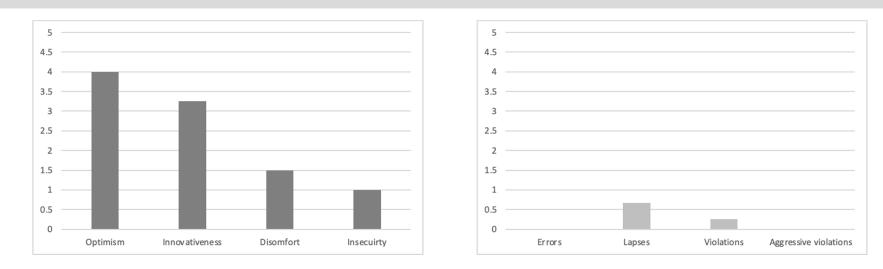
Importance of Vehicle Features (Lee et al., 2020):

- Importance of 25 features (1=Unnecessary; 4=Required) for transporting unaccompanied children::
  - route-control (i.e., GPS tracking to know where vehicle is at all times).
  - assurance (i.e., installation of camera/microphone to see/hear child in vehicle).
  - safety (i.e., ability to restrain child appropriately).
  - comfort (i.e., ability to control vehicle entertainment).
- Willingness to Allow Unaccompanied Child to Travel (Lee & Mirman, 2018):
  - Willingness to allow unaccompanied child to travel in RS & AV:
    - I would definitely
    - I might
    - I would be hesitant
    - I would never

#### Procedure

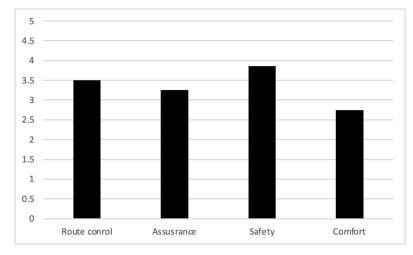
Study approved by Institutional ethics committee.

- Ps recruited through online & social media advertising.
- Survey administered from Aug Nov 2020.

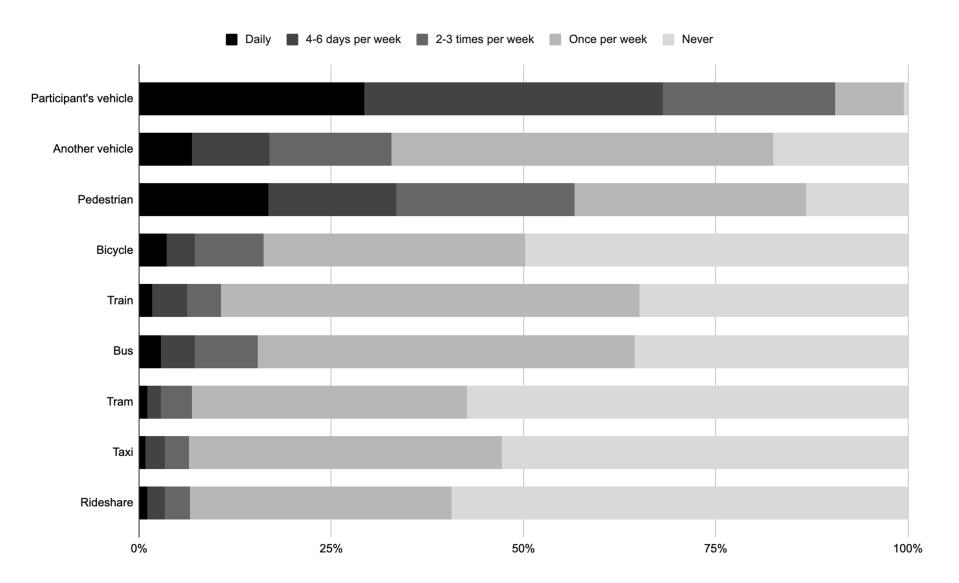


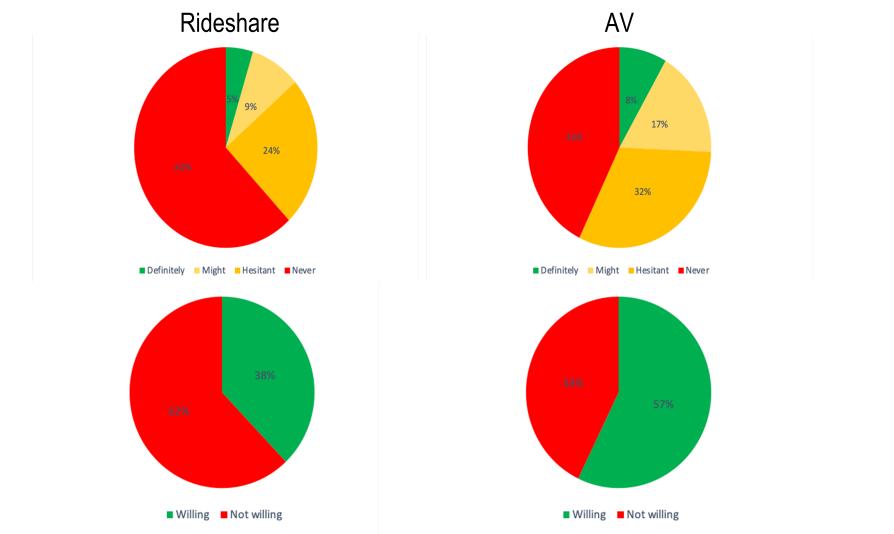

631 Ps (M=39.2 years, SD=10.5 years, Min=18 years, Max=70 years) completed online survey.

| Socio-demographic characteristics |                                  | % (N)       |
|-----------------------------------|----------------------------------|-------------|
| Age (years)                       | 18-34                            | 38.5% (243) |
|                                   | 35-54                            | 53.4% (337) |
|                                   | 55+                              | 8.1% (51)   |
| Sex                               | Male                             | 36.6% (231) |
|                                   | Female                           | 63.4% (400) |
| Education level                   | Primary/Intermediate/High school | 15.8% (100) |
|                                   | Technical/Trade/Diploma          | 30.0% (189) |
|                                   | Undergraduate/Postgraduate       | 54.2% (342) |
| Annual household income (\$AUD)   | ≤\$100,000                       | 63.6% (385) |
|                                   | ≥\$100,001                       | 36.4% (220) |
|                                   | Prefer not to say                | 4.1% (26)   |


| Driving Characteristics              |                                                    | % (N)       |
|--------------------------------------|----------------------------------------------------|-------------|
| Driving frequency                    | Daily                                              | 56.3% (355) |
|                                      | 4–6 times per week                                 | 31.5% (199) |
|                                      | 2–3 times per week                                 | 9.5% (60)   |
|                                      | <1 time per week                                   | 2.7% (17)   |
| Estimated annual mileage (kms)       | <5,000 km                                          | 20.3% (128) |
|                                      | 5,001–15,000 km                                    | 46.6% (294) |
|                                      | ≥15,001 km                                         | 33.1% (209) |
| Seatbelt use                         | Always                                             | 92.6% (584) |
|                                      | Almost always/Usually/Sometimes/Almost never/Never | 7.4% (47)   |
| Crash involvement (past 2 years)     | No                                                 | 90.6% (572) |
|                                      | Yes                                                | 9.4% (59)   |
| Driving infringements (past 2 years) | No                                                 | 87.3% (551) |
|                                      | 'Yes                                               | 12.7% (80)  |
| Perceived AV knowledge               | Yes                                                | 80.2% (506) |
|                                      | No                                                 | 19.8% (125) |

| Youngest Child Characteristics |                                 | % (N)              |
|--------------------------------|---------------------------------|--------------------|
| Age                            | <1 year                         | 5.2% (33)          |
|                                | 1–3 years                       | <u>29.0% (183)</u> |
|                                | 4–7 years                       | 23.0% (145)        |
|                                | 8–12 years                      | 22.5% (142)        |
|                                | 13–17 years                     | 20.3% (128)        |
|                                | Male                            | 54.2% (342)        |
| Sex                            | Female                          | 45.5% (287)        |
|                                | Other                           | 0.3% (2)           |
|                                | Daily                           | 29.3% (185)        |
| Frequency of vehicle travel    | 4–6 times per week              | 38.8% (245)        |
| r requericy of verticle traver | 2–3 times per week              | 22.3% (141)        |
|                                | <u>&lt;</u> 1 time per week     | 9.5% (60)          |
|                                | Rearward-facing CRS             | 11.3% (71)         |
|                                | Forward-facing CRS              | 22.3% (141)        |
| Type of restraint              | Booster seat                    | 21.7% (137)        |
|                                | Seatbelt                        | 41.8% (264)        |
|                                | No restraint                    | 2.9% (18)          |
| Frequency of restraint use     | Always                          | 85.6% (540)        |
|                                | Almost always/Usually/Sometimes | 10.3% (65)         |
|                                | Never                           | 4.1% (26)          |





#### Technology Readiness Index 2.0

#### **Driving Behaviour Questionnaire**



#### Importance of Vehicle Features





Ps willing to allow unaccompanied child to travel in RS more likely to allow unaccompanied child to travel in AV (79.1%) than Ps not willing to allow child to travel in RS (43.9%),  $\chi^2(1)=75.16$ , p<0.001.

Ps' willingness to allow unaccompanied child to travel in a RS significantly related to several factors,  $\chi^2(7)=159.59$ , p<0.001.

|                             |             | Exp(B) | 95%CI    |
|-----------------------------|-------------|--------|----------|
| Used RS with youngest child | No          | -      | -        |
|                             | Yes         | 2.52   | 1.7, 3.7 |
| Annual mileage (kms)        | <5000       | -      | -        |
|                             | 5001–15,000 | 1.66   | 1.0, 2.8 |
|                             | >15,001     | 1.87   | 1.1, 3.2 |
| DBQ—VIOLATIONS              |             | 1.33   | 1.1, 1.6 |
| TRI-OPTIMISM                |             | 1.09   | 1.0, 1.2 |
| ROUTE CONTROL               |             | 0.59   | 0.4, 0.9 |
| ASSURANCE                   |             | 0.48   | 0.3, 0.7 |

Ps' willingness to allow unaccompanied child to travel in an AV significantly related to several factors,  $\chi^2(6)=113.33$ , p<0.001.

|                     | Exp(B)                                           | 95%CI                                                                              |
|---------------------|--------------------------------------------------|------------------------------------------------------------------------------------|
| No                  | -                                                | -                                                                                  |
| Yes                 | 1.81                                             | 1.2, 2.8                                                                           |
| Primary/High school | -                                                | -                                                                                  |
| Tech/Trade/Diploma  | 0.99                                             | 0.6, 1.7                                                                           |
| Under/Postgraduate  | 1.84                                             | 1.1, 3.0                                                                           |
|                     | 1.11                                             | 1.1, 1.2                                                                           |
|                     | 1.10                                             | 1.0, 1.2                                                                           |
|                     | 0.47                                             | 0.4, 0.6                                                                           |
|                     | Yes<br>Primary/High school<br>Tech/Trade/Diploma | No-Yes1.81Primary/High school-Tech/Trade/Diploma0.99Under/Postgraduate1.841.111.10 |

## DISCUSSION

Most Ps would 'never' allow unaccompanied child to travel in a RS (62.1%) or an AV (42.8%).

Higher % would 'never' allow their unaccompanied child to travel in a RS:

- More willing to trust driverless system than unknown driver.
- Significant concerns over personal safety & security re: RS drivers (Bayne et al., 2021; Chaudhry, et al., 2018 Lee, et al., 2017), & low levels of trust in RS companies (Koppel, et al., 2021).

Similar factors predicted Ps' willingness to allow unaccompanied child to travel in RS or AV:

- Previous experience (of RS) or awareness (of AV).
- Higher levels of technology-related 'optimism'.
- Lower requirements for route-control vehicle features (i.e., GPS to track vehicle location, etc.).

Unique factors predicted Ps' willingness to allow unaccompanied child to travel in RS:

- Higher annual driving distances.
- Higher driving violation scores.
- Lower requirements of assurance features (i.e., camera/microphone to see/hear child in vehicle).

Unique factors predicted Ps' willingness to allow unaccompanied child to travel in AV:

- Higher levels of education.
- More positive views towards technology (i.e., view as innovative).

## DISCUSSION

Several limitations should be noted.

- Due to large % of Ps who would 'never' use either mode to transport their unaccompanied child(ren), remaining Ps classified as being 'willing' (i.e., 'definitely'/'might'/'would be hesitant').
  - Likely differences between Ps who responded 'definitely' vs. 'might' vs. 'would be hesitant'.
  - Future research should qualitatively explore differences between 'might' & 'would be hesitant'.

Findings based on Ps' <u>anticipated</u> willingness to use both modes to transport their unaccompanied children, without having experienced the mode in the real world.

- Penmetsa et al. (2019) reported that VRUs with experience interacting with AVs reported significantly higher expectations of safety benefits associated with AVs than individuals with no experience.
- Research should be replicated with increasing levels of RS & AV.



### CONCLUSION

Despite potential for emerging or future travel modes to provide additional personal transportation options, results suggest Australian parents unwilling to use them to transport unaccompanied child/teen.

Identified some factors that may influence parents' decision-making to use these transportation modes:

- Willingness to trust a driver unknown to them & their child?
- Willingness trust a driverless system?
- Important for guiding development of policies & strategies that encourage their use







#### Sjaan.Koppel@monash.edu