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“Normally Positioned” Children?

* Most restraint system testing assumes
normally positioned children:
e Symmetrical posture
» Torso against seat back
* Belt well positioned

* Field and experimental data show other
postures are common:

* Normally riding postures vary widely

* Crash-avoidance maneuvers affect postures

Stockman 2016
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Long-Term Objectives

1. Develop research tools for quantifying occupant behaviors in
vehicles
- extended duration, automated data collection and reduction
- “good” accuracy and precision

2. Develop and deploy production systems to characterize and
monitor occupants
— adapt restraint systems for occupant characteristics and posture
- intervene to improve occupant pre-crash posture
- Modulate automated vehicle performance based on occupant
factors, including during pre-crash manevers
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Body Shape Measurement and Modeling

http://humanshape.org/
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Laser Scanner Sample Scans Body Shape Models

Park, B-K and Reed, M.P. (2015). Parametric body shape model of

‘ standing children ages 3 to 11 years. Ergonomics, 58(10):1714-
1725. 10.1080/00140139.2015.1033480
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i Park, B-K D., Ebert, S., and Reed, M.P. (2017). A parametric model of child body shape in seated
 \ 4 ‘ UMIH‘ postures. Traffic Injury Prevention. 18(5):533-536



Child Scanning With Microsoft Kinect Sensor (Xbox)

(a) (b)

measurement using depth cameras and a statistical body shape model. Ergonomics, 58(2):301-

‘ IJM-l-H ‘ Park, B-K, Lumeng, J.C., Lumeng, C.N., Ebert, S.M., and Reed, M.P. (2014). Child body shape
309. 10.1080/00140139.2014.965754



Scanning Subject: Kinect V2

* Simple hardware configuration for scanning: 1 sensor + 1 laptop

* Takes 3 scans of individual from 3 views (front, side and back)

.ﬂ. UMTRIScan
Powerad by Kinect v2

Hardware configuration for scanning
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Inscribed Fitting Methods

Fit body shape model inside
scan data to estimate body
size and shape under clothing
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Gencler: 0.48

AgeAtTesting: 8.39

Welghtlkg: 30.22

Storfure: 1207 .86
ErectiittingHelght: 620.42

SHS: 053

BMI: 17.23

EyeHelght: 609.04
AcromiaHelght: 430.25
KneeHelght: 407.78
TragionToTopOfHead: 124,50
Headlength: 180.96
HeacBreadith: 145,96
Shoulder-Elowlength: 270,69
Elbow-HardLength: 347,79
MaxHIpBreadth: 253,13
Butfoc k-Kneelength: 441,18
Buttock-Popliteallength: 270,20
BlacromiciBreadth: 271,22
ShoulderBreacith: 326.03
ChestDepth{Scapula): 165.28
ChestDepth(Spine): 146.71
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Seated Posture Fitting with Kinect v2

* Only frontal torso part of the model is
fitted to target Kinect depth data

* Corresponding vertex pairs are found
using an iterative closest point (ICP)
technique

Fitting Procedure Schematic

SBSM Target scan

¥ h 4

Pair nearest points

Build PC-sensitivity matrix > _
using kd-tree
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Find least-squared
PC scores
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" Vectors of paired points
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Apply PC scores to SBSM

A 4

Meet
criteria?

Calculate displacements
between SBSM and scan

‘ ”N”-H ‘ Kinect depth data Body shape model



Seated Posture Fitting with Kinect v2 (P lot)

* Fitted manikins were compared to the
measured actual anthropometric data and
laser scans

 Stature estimated from the Kinect-fitted
models was the most accurately predicted
variable (Pearson correlation coefficient of
0.89 and RSME of 57.6 mm).

* The BMI and weight were estimated
somewhat higher than the true values.

e RMSE for six participants was 23.6 mm, and
the Pearson correlation coefficient was 0.964.

Park, B-K.D. and Reed, M.P. (2017). Characterizing Vehicle Occupant Body Dimensions and Postures Using a
‘ ”MTH‘ Statistical Body Shape Model. SAE Technical Paper 2017-01-0497. SAE International, Warrendale, PA



Tracking Motions in Dynamic Events
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Head Tracking

* Accurately track head orientation and
location by fitting a head model to
depth data

* The fitting method can be further
improved by detecting facial features,
i.e., nose tip

* Speed will be enhanced by analyzing
frames in sequence and through
kinematic prediction

‘ ”MTH‘ Subject-specific head model fitting



Child Postures

Sensor View

Sensor View
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Side View
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Child Postures
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Child Postures

‘ UMIH‘ Frames from 30 Hz capture of RGB-D data (3d with color)
Background removed



What Can We Do?

How can we use this information?

e occupant characterization for
restraint system optimization

* dynamic pre-crash restraint
adjustment

* Provide feedback to occupants
on posture and belt fit

* Modify vehicle dynamics

UMIR
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Child Postures
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Kinect v2

» Specification of Kinect v2 sensor
* Depth data resolution: 512 x 424 pixels (vs. 320 x 240) |} S T ——

.'-'!'. R

* FOV:70x 60 degrees (vs. 58 x 46 deg.)
* Nominal tracking rate: 30 Hz (vs. 30 Hz)

: - : : !
//////:"’;Innr //'{///////,:/

i Fulllength with hands up |
|
Full-length wisshaity |
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HumanShape.org
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Standing Standing
Male Female




Portable Body Scanner using Kinect v2

Four steps to generate a subject-specific avatar

A Scanning

, Aligning scan
subject | to model
J using a single Kinect J using synthetic landmarks
sensor

Merging scans
by minimizing sum
of distances
between scans

Fitting to scan /
in body shape space
of model \

UMIR



Scanning Subject: Kinect V2

* Simple hardware configuration for scanning: 1 sensor + 1 laptop

* Takes 3 scans of individual from 3 views (front, side and back)

.@. UMTRIScan
Powered by Kinect v2

\J

Hardware configuration for scanning DEMO
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Application: Rapid Body Dimension Measurement

The model can be fitted to:
. 3D depth image Gendar 0,48
. 2D image AgeAfTasting: 8.39
Weightig: 20.22
Stoture: 1307.86
ErectsittingHeight: 690.42

SH5 053

. Scan with clothing

BMIE17.23

EyeHeight 60%.04
AcromicHeight: 430,25
KneeHeight: 407,78
TragionToTopCfHead 124,50

.Mo:iel?.osﬁlom;ng Bl

Headlength: 180.96
Landmark-based Positioning
HeadBreadith: 143,96

Shoulder-Elbowlength 270,69

‘ Point-based Align ‘
Elcow-Handlength: 347.79

MeixHipBracicith 253.15 l — ‘ — ‘
Butiock-Kneelength: 441,18

Buttock-Poplteallength: 370,20 Y = 100 i
BlacromialBreadth: 271.22

shoulcerBreadth: 326,03 ‘ Rotate ‘ [ Translate

ChestDepth(Scapula): 166,28
R Save/Load Transformation

ChestDepthiSpine) 1456.71 5
File Name PL*transform l<_|

BlASISBreadth: 170.96

ChestCircumference: 670,44 \ Save ‘ l Load l

WaktClrcumference: 617.58

HipCircurrference: 733.50
UppermhighCircumference: 4149%
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Body Dimension Estimates (minimally clad)
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Park, B-K and Reed, M.P. (2015). Parametric body shape model of standing children ages 3 to
11 years. Ergonomics, 58(10):1714-1725. 10.1080/00140139.2015.1033480
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Fitting Demo

File  Tools Help

‘ Load Statistical Model ‘

‘ Open PLY Model ‘

Arthrop. Control | PC Seore Control |
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i - | poar @D P @R
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Stature: 1761.05

BMI: 26,7753

Age:

[Predicted Anthropometincs)
STATURE wioshoes, 176.10.cm

C7 levelstanding,151.13cm
AcromienHt Standing 144.8%.cm

Hip kint helghte1.06.cm

Ankle helght,7 0d.cm

Upper arm length (Acromian-radiale) st
Raclale-styllon length 28.68 cm
Shoukder width (clacromial 40,76 cm
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Hip breadth standing 33.16.cm
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Sitfing helght,33.07.In
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Buttock-knee l2ngth,o5.54.cm
Footlength,11.03.In
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Adults

ENC level: mean 11.6 mm, 95th %tile 16.5 mm, RMSE 12.0 mm
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Markerless-motion capture



Strategy for obtaining quality motion data

Kinect v2

Skeleton Data Depth data

Remove background points

Remove noise !
and noise

Interpolate joint locations Detect end-effectors
in motion space from depth points

Refined joint locations Cleaned depth data

with end-effector locations
Apply joint locations to

fitted body shape model Articulated body
shape model

Fit model to depth data

@ Reconstructed joints

2 UMTR



Background Subtraction

e Subtract background depth data to obtain depth related to the subject only
* Use multiple background images to reduce noise

UMIR



Kinect Joint Data

Reconstructed Kinect skeleton data are
applied to the model
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BioHuman Articulated Model and Kinect Joint Data
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Model Fitting using Articulated ICP: Correspondences

K-d tree algorithm was used to rapidly find the
correspondences of the depth points for each body
segment

UMIR



Model Fitting using Articulated ICP: ICP

Iterative closest point
(ICP) algorithm finds
the best
transformation to
align each segment to
the corresponding
depth point group
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Model Fitting using Articulated ICP: Fine Adjustment

Apply fitted transformation matrices to all the body segments
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Results
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