Publication

Effect of Lap Belt Position on Kinematics & Injuries by using 6YO PIPER child HBM - in Frontal Crash Simulations

Traffic accidents are the second leading cause of child fatality among children younger than 15 years of age. In the course of 10 years, the implementation of child restraint systems has decreased child fatality in traffic accidents with 50%, for children younger than 15 years. To gain an understanding of the kinematics and injury mechanisms of children in cars, finite element based human body models, representing higher biofidelity compared to crash test dummies, are developed. An FP7 European project, PIPER, developed a child HBM with an associated framework for scaling, morphing and positioning. The PIPER child HBM is scalable between the ages of 1.5-6YO, with scalable anthropometrics. This makes the PIPER child HBM, a powerful tool for analyzing children in vehicles.

There are insufficient analyses conducted with the PIPER child HBM, due to its recent release. The purpose is thus to study the robustness of the HBM and its sensitivity to variation of lap belts by conducting a parametric study. Injury analysis and its sensitivity to lap belt variations were in addition studied in terms of kinematics by the study of submarining, the pelvic interaction with the lap belt, and the study of injuries related to the skull, brain, kidneys and liver.

A full frontal crash simulation of a 6YO PIPER child HBM, with anthropometrics, covering the 50th percentile, have been investigated. The 6YO PIPER child HBM was seated with no booster, Volvo booster cushion and Volvo highback booster, with variations of the lap belt. The hip interactions and the submarining response of the 6YO PIPER child HBM were studied, by the study of the lap belt interactions with the pelvis and abdominal organs. The abdominal organs were related to the liver and kidneys, and compared to published threshold values.

This study showed that the overall robustness of the model was questionable. With respect to kinematics, the model indicated higher robustness, however, when conducted the crash simulations with the 6YO PIPER child HBM, it was concluded that the robustness was low due to repeated premature terminations. The 6YO PIPER child HBM revealed repeated errors such as, mesh distortions, negative volume and shooting nodes. When studying the sensitivity of the 6YO PIPER child HBM, when varying the lap belt angles, as well as changing the type of boosters in addition to vehicle anchorage positions, it could be seen that the 6YO PIPER child HBM was able to capture variations with respect to lap belt positioning. Hence, the model seems to be capable of providing relevant information regarding sensitivity for lap belt variations from the kinematic perspective, in terms of being able to capture kinematic o↵set, submarining and pelvis interaction with the lap belt. However, with respect to predicted abdominal injuries and head injuries, the sensitivity was not as distinct. Some limitations were observed in which the 6YO PIPER child HBM indicated unrealistic predicted injuries related to the head, which was associated with excessive movement of the 6YO PIPER child HBM.

Author(s)
Sarah El-Mobader
Research area
Human body protection
Publication type
Master's thesis
Published in
Karlstad Universitet
Year of publication
2018