Publication

Interaction design for Augmented Reality Head-Up Displays: Developing graphics design and evaluating perceptual and safety aspects for navigation use cases

The interactions with everyday products and technology are often done without being noticed or reflected upon. Interactions driving a vehicle are happening automatically for most people when having experience driving. With the innovative shift within the automotive industry toward connectivity and autonomous driving, new demands on the interaction and communication between humans and machines are created.

This thesis project was carried out in collaboration with Volvo Cars and the Research Institute of Sweden (RISE) within their joint research project SCREENS. Their project aims to investigate whether implementing Augmented Reality in Head-Up Displays (AR-HUD), and other vehicle technologies can benefit users in perceiving and understanding the environment when driving. Misapplied technology may result in users misperceiving visual information causing faulty decision making resulting in accidents and interaction errors. Their research objective implementing automotive technology benefitting safer driving, better cars, and competitive advantages for Volvo Cars. This thesis objective was to design visual information for a navigation feature in AR-HUD and implement the graphics into a Volvo XC60 concept car. The implemented graphics were then evaluated with users operating the vehicle in realistic environments. The results were analyzed to investigate if positive perceptual, attentional, and safety aspects using AR-HUD could be indicated. The project aim was to design and explore the user interactions resulting in valuable insights from an industrial design engineering perspective for future research.

The thesis project had a human-centered design approach following a modified version of the iterative cycle for human-centered design process. Stages of ideating, implementing, evaluating, and analyzing were iterated two times during the twenty-week project. The user experiences from interacting with the system were fundamental during the project, relating design decisions to qualitative and quantitative data collected during evaluations.

From the user evaluations could indications be found that AR-HUD aided the driver in keeping their eyes on the road more frequently using AR guidance compared to traditional HUD guidance. Aspects to consider when designing visual navigation information were found and related to relevant theory about visual perception and human information processing. The most critical aspect regarding the implementation of visual information was the timing of when graphics appear. Qualitative and quantitative data collected indicated that easily perceived information presented at the right time and duration was the most important aspect to consider when creating human-machine interfaces providing good user interactions.

Author(s)
Johan Hansols
Research area
Road user behaviour
Publication type
Master's thesis
Published in
Luleå University of Technology
Project
Year of publication
2022