Publication
Enhanced Model-Free Predictor for Latency Compensation in Remote Driving Systems
Remote driving plays a vital role in coordinating automated vehicles in challenging situations. Data transmission latency, however, can cause several problems in remote driving. Firstly, it can degrade the performance of remote-controlled vehicles, evident in issues like lane-following deviation and vehicle stability. Additionally, the remote control tower’s driving feedback is affected by delayed vehicle signals, leading to delayed driving experience. To address this, a model-free-based predictor is employed to compensate for the delay in remote driving. This approach does not require any dynamic model of the system and only needs tuning of two parameters to reduce communication delay. This study enhances the previous work by mitigating the amplitude of overshoot around peak points. It leverages the principle of the second-order derivative to predict the signal’s peak time and uses it to address the predictor’s overshoot issue. The effectiveness of the proposed method is validated using real car data from multiple participants in two scenarios, including Slalom and lane-following. Simulation results indicate that the proposed method can reduce prediction error by nearly 25% compared to previous works. Moreover, the solutions in this study are capable of managing not only delays in remote driving vehicles but also in traditional mechanical systems, such as CAN bus delays in conventional cars.