Three dimensional (3D) fibre-reinforced composites have shown weight efficient strength and stiffness characteristics as well as promising energy absorption capabilities. In the considered class of 3D-reinforcement, vertical and horizontal weft yarns interlace warp yarns. The through-thickness reinforcements suppress delamination and allow for stable and progressive damage growth in a quasiductile manner. With the ultimate goal of developing a homogenised computational model to predict how the material will deform and eventually fail under loading, this work proposes candidates for failure initiation criteria. The criteria are evaluated numerically for tensile, compressive and shear tests. The extension of the LaRC05 stress based failure criteria to this class of 3D-woven composites is one possibility. This however, presents a number of challenges which are discussed. These challenges are related to the relative high stiffness in all directions, which produce excessively high shear components when projected onto potential off-axis failure planes. To circumvent these challenges, strain based criteria inspired by LaRC05 are formulated. Results show that strain based failure predictions for the simulated load cases are qualitatively more reasonable.

Carolyn Oddy, Tomas Ekermann (KTH), Magnus Ekh, Martin Fagerström, Stefan Hallström
Research area
Publication type
Published in
Proc. 18th European Conference on Composite Materials, Athens, Greece
Year of publication

Safer – Vehicle and Traffic Safety Centre

SAFER is the open innovation arena where researchers and expertise work together to create safe mobility. Our traffic safety approach covers people, vehicles and the infrastructure – and together we contribute to safer road transports and smarter, more sustainable cities.

Contact information


Lindholmspiren 3A
SE-417 56 Göteborg

 +46 31-772 21 06
 safer [at] chalmers.se